Molecular Polarity Vs. Bond Polarity Lab – Part A

Name		Period/Block	Date	
	The polarity of a hand and the polarity of a molecule	e are two different h	out related topics A	nonnolar

The polarity of a bond and the polarity of a molecule are two different but related topics. A nonpolar covalent bond is a bond in which the electronegativity difference between the bonded atoms is less than 0.5. A polar covalent bond is a bond in which the electronegativity difference between the bonded atoms is 0.5-1.8. The polarity of the bond **and** the shape of the molecule determine the polarity of the molecule. Shapes that have lone pairs on the central atom are always polar molecules. NOTE:

- If a molecule has **only** nonpolar bonds in it, it will be a nonpolar molecule.
- If a molecule has polar bonds in it, it can be a polar **or** a nonpolar molecule.
 - o If the molecule is symmetrical (all atoms bonded to the central atom are the same) it will be nonpolar.

Complete the chart below. You may use the model sets.

Bond	Electronegativity Difference (SHOW WORK)	Polar or Nonpolar Bond?	Molecule	Lewis Structure	Shape Name	Polar or Nonpolar Molecule?
Nitrogen bonded to nitrogen			N ₂			
Nitrogen bonded to fluorine			Nitrogen trifluoride			
Hydrogen bonded to chlorine			HCl			
Carbon bonded to sulfur			Carbon Disulfide			
Carbon bonded to bromine			CBr ₄			

Molecular Polarity Vs. Bond Polarity Lab – Part B

Purpose: to understand the shapes of molecules and how those shapes affect the properties

Procedure:

- 1. Draw the Lewis Structure for each molecule.
- 2. Use the model set to build the molecules.
 - a. Balls represent atoms, and springs/sticks represent bonds.
 - b. Colors: carbon is black, oxygen is red, hydrogen is white (or yellow), halogens are green
- 3. Sketch the molecule that you built.
- 4. Determine the shape(s) present in the molecules. Look at **each** central atom to help you do this.
- 5. Determine the polarity of each molecule. (For small molecules like those listed below. if the molecule has a polar and a nonpolar shape in it, the molecule is polar molecule.)

Molecule	Lewis Structure	Drawing	Shape Name(s)	Polar Molecule?
O_2				
H ₂ O				
H_2O_2				
11202				
GYY GYY				
CH₃OH				
C_2H_6				

Questions. Answer the following on a separate paper. Provide complete answers.

- 1. Is oxygen a solid, liquid, or gas at room temperature? Does it have a very high melting (and boiling point) or a very low melting (and boiling point)? Why? Provide a full explanation.
- 2. Would you expect methanol, CH₃OH to be soluble in water? Why?/Why not? Provide a full explanation.
- 3. H₂O₂ and C₂H₆ have similar molar masses. One is a liquid at room temperature is a gas at room temperature. Which is which? Provide a full explanation.
- 4. Vaseline is a nonpolar compound that is a soft solid at room temperature. What can you ascertain about its molar mass?
- 5. Label the following as ionic compound, polar molecule, or nonpolar molecule. Explain why.
 - a.) Sugar b.) oil c.) brick d.) plastic