

ASSESSING HUMAN HEALTH RISKS FROM CHEMICALLY CONTAMINATED FISH IN THE LOWER COLUMBIA RIVER

DATA REPORT

AUGUST 7, 1995

Prepared By:

TETRA TECH

TETRA TECH

FINAL REPORT TC 9968-04

ASSESSING HUMAN HEALTH RISKS FROM CHEMICALLY CONTAMINATED FISH IN THE LOWER COLUMBIA RIVER

DATA REPORT

AUGUST 7, 1995

Prepared For:

The Lower Columbia River BI-State Water Quality Program

Prepared By:

TETRA TECH, INC. 15400 NE 90th Street Redmond, WA 98052

ACKNOWLEDGMENTS

This report was prepared by Tetra Tech, Inc. of Redmond, Washington for the Lower Columbia River Bi-State Water Quality Program under Contract Nos. C0091228 (WDOE) and 78-91 (ODEQ). The Project Coordinators for the Bi-State Program were Don Yon from the Oregon Department of Environmental Quality and Brian Offord from the Washington Department of Ecology. Tetra Tech's Project Manager for the Lower Columbia River Bi-State Water Quality Program was Dr. Steven Ellis. The principal authors of the document were Tad Deshler, Kathy Rogovin, and Paul Bean. Word processing support was provided by Lisa Fosse.

The following laboratories provided analytical services for this project:

- Pacific Analytical -- Dioxins/furans, pesticides/PCBs, semi-volatiles
- Battelle Marine Science Lab -- Metals
- Triangle Labs -- Dioxins/furans (four samples only)

CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF TABLES
1.0 INTRODUCTION
2.0 FIELD SAMPLING PROCEDURES
2.1 FISH COLLECTION METHODS
2.1.1 Electroshocking22.1.2 Hatchery Collections82.1.3 Hook and Line8
2.2 SAMPLE PROCESSING 8
2.3 SAMPLE COMPOSITING
2.4 SAMPLE CUSTODY AND SHIPPING PROCEDURES
3.0 LABORATORY PROCEDURES
3.1 SAMPLE PROCESSING 14
3.2 SAMPLE ANALYSES 14
3.2.1 Lipids 15 3.2.2 Dioxins/Furans 15 3.2.3 Semi-volatile Organics 15 3.2.4 Pesticides and PCBs 16 3.2.5 Metals 16
4.0 RESULTS
4.1 METALS DATA VALIDATION
4.1.1 Arsenic (inorganic) 19 4.1.2 Barium 19 4.1.3 Lead 19 4.1.4 Nicket 10

	Selenium 19 Silver 20
4.2 SEMIVO	DLATILE ORGANICS DATA VALIDATION
4.2.2	bis(2-Ethylhexyl)phthalate204-Methylphenol21Phenol21
4.3 PESTIC	DES/PCBS DATA VALIDATION 21
	Endrin Ketone 21 Hexachlorobutadiene 22
4.4 DIOXIN	S/FURANS DATA VALIDATION 22
4.4.2 4.4.3 4.4.4 4.4.5 4.4.5	1,2,3,4,6,7,8-HpCDD 22 OCDD 23 1,2,3,6,7,8-HxCDF 23 2,3,4,6,7,8-HxCDF 23 1,2,3,7,8,9-HxCDF 23 1,2,3,4,6,7,8-HpCDF 23
4.5 DATA V	ALIDATION SUMMARY 24
5.0 REFERENCES	

APPENDICES

APPENDIX A. CHAIN OF CUSTODY FORMS

APPENDIX B. METALS DATA

APPENDIX C. SEMIVOLATILE ORGANIC DATA

APPENDIX D. PESTICIDE/PCB DATA

APPENDIX E. DIOXIN/FURAN DATA

TABLES

<u>Number</u>	Page
2-1	Capture Date, Method, Location, and Physical Information for Each Lower Columbia River Specimen
2-2	Composite Identification, Lower Columbia River Human Health Risk Assessment . 11
2-3	Biological Data for Each Fish Sample, Lower Columbia River Human Health Risk Assessment

v

1.0 INTRODUCTION

The Lower Columbia River Bi-State Water Quality Program (Bi-State Program) is conducting a study to characterize the human health risks associated with the consumption of fish from the lower Columbia River. This study consists of four tasks: 1) review and evaluation of existing fish tissue contaminant data; 2) design and implementation of a field collection effort to fill data gaps; 3) QA/QC review and presentation of data collected during task 2; and 4) characterization and evaluation of potential human health risks. Tasks 1 and 2 have been completed; this report was prepared as part of task 3. A brief summary of the activities accomplished as part of tasks 1 and 2 are provided below:

- Task 1: Fish tissue contaminant data in the lower Columbia River Basin from 1984 through 1994 were compiled and evaluated (Tetra Tech 1994a). The majority of data on fish contaminant levels consisted of analyses of whole-body composite samples of bottom fish. Collection of additional data on contaminant levels in fillets was recommended to characterize human health risks.
- Task 2: To fill the data gaps identified in task 1, a study was designed to analyze contaminant levels in fillets of both resident and migratory species of fish in the lower Columbia River (Tetra Tech 1994b). Collection of fish samples took place from September 1994 through February 1995.

This data report includes data that will be used for the human health risk assessment. This report provides documentation on the collection methods, sample processing, laboratory analysis, and QA/QC data evaluation. Chain-of-Custody Records are included in Appendix A of this document. Appendices B through E contain the contaminant data for metals, semi-volatiles, pesticides/PCBs and dioxins/furans, respectively. No interpretation or analysis of the data is provided in this report; this will be accomplished as part of Task 4.

Field sampling was conducted throughout the lower Columbia River from September 1994 through February 1995. Sample collection, processing and handling methods are described in separate sections below.

2.1 FISH COLLECTION METHODS

Five of the seven proposed target species listed in the Sampling and QA/QC Plan (Tetra Tech 1994b) were collected during the sampling effort in the lower Columbia River. Steelhead, largescale sucker, and carp were obtained by electrofishing. Only one of the nine composite samples of carp originally specified in the sampling design could be obtained, even after extensive sampling effort. Chinook and coho salmon were collected at hatchery facilities. Walleye and smallmouth bass, the two remaining target species, could not be caught in the lower Columbia River despite repeated attempts to capture fish using hook and line, gill nets, and electroshocking. Implementation of the original sampling design was intended to occur during the summer months when both of these species are commonly targeted by recreational fishermen. During the winter, these two species apparently inhabit deeper water. Because of the difficulty in capturing these two target species, an additional target species, white sturgeon, was selected during the field effort. Sturgeon were caught by hook-and-line.

Table 2-1 provides the data for each specimen collected including: specimen number, species, collection method, collection location, total length, weight, and sex.

2.1.1 Electroshocking

Steelhead, largescale sucker, and carp were collected using a Model 7.5 GPP (Smith-Root, Vancouver, WA) electrofishing unit mounted aboard a 20-ft Wooldridge jet sled. Two anodes, swing-mounted off the bow of the boat, generated approximately three amps DC (direct current) pulsed in 10 second bursts at 120 cycles/second. Stunned fish were identified by field personnel and dip nets were used to transfer

12		,	•	CATION, AND PHYS RIVER SPECIMEN (P		1ATION	
Specimen #	Species	Date Captured	Method	Location	Length (in)	Weight (g)	Sey
126	Carp	12/7/94	EF	Martin Slough	20.9	2437.7	M
153	Carp	2/6/95	EF	Carrolls Channel	21.6	2086.2	M
154	Carp	2/6/95	EF	Carrolls Channel	22.4	2449	M
155	Carp	2/6/95	EF	Carrolls Channel	26.0	3718.8	. M
156	Carp	2/7/95	EF	Scappoose Bay	25.0	3809.5	F
157	Carp	2/6/95	EF	Carrolls Channel	23.8	3537.4	F
158	Carp	2/6/95	EF	Carrolls Channel	26.0	3809.5	M
1	Chinook	9/22/94	Hatchery	Kalama River	35.2	n/a	M
3	Chinook	9/29/94	Hatchery	Big Creek	27.7	3306	F
11	Chinook	9/29/94	Hatchery	Big Creek	34.8	n/a	F
12	Chinook	9/29/94	Hatchery	Big Creek	34.1	n/a	F
13	Chinook	9/29/94	Hatchery	Big Creek	36.4	n/a	F
14	Chinook	9/29/94	Hatchery	Big Creek	34.1	n/a	F
15	Chinook	9/29/94	Hatchery	Big Creek	30.5	n/a	F
16	Chinook	9/29/94	Hatchery	Big Creek	31,0	n/a	F
17	Chinook	9/29/94	Hatchery	Big Creek	31.4	n/a	F
18	Chinook	9/29/94	Hatchery	Big Creek	29.7	n/a	F
22	Chinook	9/22/94	Hatchery	Kalama River	32.0	n/a	M
26	Chinook	9/29/94	Hatchery	Big Creek	27.6	3080	F
28	Chinook	9/22/94	Hatchery	Kalama River	33.5	n/a	M
32	Chinook	9/29/94	Hatchery	Big Creek	30.4	4738	F
33	Chinook	9/22/94	Hatchery	Kalama River	36.0	n/a	M
34	Chinook	9/22/94	Hatchery	Kalama River	34.0	n/a	M
35	Chinook	9/22/94	Hatchery	Kalama River	31.6	n/a	M
37	Chinook	9/29/94	Hatchery	Big Creek	30.3	4178	F
40	Chinook	9/22/94	Hatchery	Kalama River	30.5	n/a	M
41	Chinook	9/22/94	Hatchery	Kalama River	31.4	n/a	M
43	Chinook	9/22/94	Hatchery	Kalama River	38.2	n/a	M
45	Chinook	9/22/94	Hatchery	Kalama River	38.1	n/a	M
46	Chinook	9/22/94	Hatchery	Kalama River	35.3	n/a	M
48	Chinook	9/29/94	Hatchery	Big Creek	30.0	3986	F
2	Coho	9/29/94	Hatchery	Big Creek	25.0	2270	F
4	Coho	9/29/94	Hatchery	Big Creek	26.1	2944	M

ł

دى

.

•

.

T.				CATION, AND PHYS RIVER SPECIMEN (Pa		IATION	
Specimen #	Species	Date Captured	Method	Location	Length (in)	Weight (g)	Se
5	Coho	9/22/94	Hatchery	Lewis River	27.5	3305	M
6	Coho	9/29/94	Hatchery	Big Creek	25.0	2236	F
7	Coho	9/22/94	Hatchery	Lewis River	27.4	3040	M
8	Coho	9/22/94	Hatchery	Lewis River	23.3	1941	M
9	Coho	9/29/94	Hatchery	Big Creek	23.4	1822	F
10	Coho	9/29/94	Hatchery	Big Creek	22.0	1563	F
19	Coho	9/22/94	Hatchery	Lewis River	25.0	2401	M
20	Coho	9/29/94	Hatchery	Big Creek	22.8	1377	F
21	Coho	9/29/94	Hatchery	Big Creek	26.1	2192	F
23	Coho	9/29/94	Hatchery	Big Creek	23.6	1812	F
24	Coho	9/22/94	Hatchery	Lewis River	24.9	2243	M
25	Coho	9/29/94	Hatchery	Big Creek	20.8	1411	F
.27	Coho	9/22/94	Hatchery	Lewis River	25.2	2513	M
29	Coho	9/22/94	Hatchery	Lewis River	25.6	2396	M
30	Coho	9/22/94	Hatchery	Lewis River	25.9	2488	M
31	Coho	9/22/94	Hatchery	Lewis River	25.1	2441	M
36	Coho	9/29/94	Hatchery	Big Creek	20.6	1271	F
38	Coho	9/22/94	Hatchery	Lewis River	25.0	2546	M
39	Coho	9/22/94	Hatchery	Lewis River	26.1	2658	M
42	Coho	9/29/94	Hatchery	Big Creek	23.6	2395	F
44	Coho	9/29/94	Hatchery	Big Creek	25.5	2297	F
47	Coho	9/22/94	Hatchery	Lewis River	24.1	2319	M
49	LS Sucker	12/2/94	EF	Cottonwood Point	17.0	855.8	F
50	LS Sucker	12/1/94	EF	Bridal Veil	17.2	n/a	M
51	LS Sucker	12/3/94	EF	Hayden Island	20.2	1408	F
52	LS Sucker	12/3/94	EF	Pearcy Island	20.8	1441.2	F
53	LS Sucker	12/2/94	EF	Government Island	19.4	1100.3	F
54	LS Sucker	12/2/94	EF	Cottonwood Point	18.8	1071.2	F
55	LS Sucker	12/3/94	EF	Tomahawk Island	16.6	736	M
56	LS Sucker	12/1/94	EF	Bridal Veil	19.0	n/a	F
57	LS Sucker	12/3/94	EF	Hayden Island	19.2	1152.7	F
58	LS Sucker	12/3/94	EF	Pearcy Island	17.7	967.5	F
59	LS Sucker	12/3/94	EF	Tomahawk Island	18.0	855.3	F

,

4

•

	Т		•		OCATION, AND PHYSIC RIVER SPECIMEN (Paj		IATION	
	Specimen #	Species	Date Captured	Method	Location	Length (in)	Weight (g)	Sex
	60	LS Sucker	12/3/94	EF	Pearcy Island	17.4	824.9	F
	61	LS Sucker	12/2/94	ĒF	Government Island	20.1	1204	F
	62	LS Sucker	12/3/94	EF	Pearcy Island	17.5	815.3	F
	63	LS Sucker	12/1/94	EF	Bridal Veil	16.0	n/a	F
	64	LS Sucker	12/2/94	EF	Cottonwood Point	15.6	630.3	F
	65	LS Sucker	12/1/94	EF	Bridal Veil	19.3	n/a	F
	66	LS Sucker	12/1/94	EF	Bridal Veil	18.1	n/a	F
	67	LS Sucker	12/2/94	EF	Government Island	19.9	1165	F
`	68	LS Sucker	12/2/94	EF	Flag Island	18.4	1066	F
	69	LS Sucker	12/2/94	EF	Government Island	18.3	908	F
	70	LS Sucker	12/2/94	EF	Cottonwood Point	16.8	655	М
	71	LS Sucker	12/1/94	EF	Bridal Veil	18.9	n/a	F
	72	LS Sucker	12/2/94	EF	Flag Island	19.4	1145	F
	100	LS Sucker	12/9/94	EF	Kalama River Marina	18.5	. n/a	F
	101	LS Sucker	12/9/94	EF	Kalama River Marina	18.5	n/a	F
	102	LS Sucker	12/9/94	EF	Kalama River Marina	19.5	n/a	F
	103	LS Sucker	12/9/94	EF	Kalama River Marina	16.3	n/a	F
	104	LS Sucker	12/9/94	EF	Kalama River Marina	20.5	n/a	F
	105	LS Sucker	12/9/94	EF	Kalama River Marina	19.5	n/a	F
	106	LS Sucker	12/9/94	EF	Kalama River Marina	17.3	n/a	F
·	107	LS Sucker	12/9/94	EF	Kalama River Marina	18.5	n/a	F
	108	LS Sucker	12/8/94	EF	Scappoose Bay	18.5	n/a	F
	109	LS Sucker	12/8/94	EF	Scappoose Bay	17.8	n/a	F
	110	LS Sucker	12/8/94	EF	Scappoose Bay	15.0	n/a	F
	111	LS Sucker	12/8/94	EF	Scappoose Bay	16.8	n/a	F
	112	LS Sucker	12/8/94	EF	Scappoose Bay	16.5	n/a	F
	113	LS Sucker	12/8/94	EF	Scappoose Bay	18.5	n/a	F
	114	LS Sucker	12/8/94	EF	Scappoose Bay	17.8	n/a	M
	115	LS Sucker	12/8/94	EF	Scappoose Bay	18.0	n/a	F
	116	LS Sucker	12/7/94	EF	Coon Island	15.3	n/a	М
	117	LS Sucker	12/7/94	EF	Coon Island	20.5	1133.8	F
	119	LS Sucker	12/7/94	EF	Coon Island	20.5	1247.2	F
	120	LS Sucker	12/8/94	EF	Scappoose Bay	16.5	n/a	F

.

1				DCATION, AND PHYSI RIVER SPECIMEN (Pa		LATION	
Specimen #	Species	Date Captured	Method	Location	Length (in)	Weight (g)	Sex
121	LS Sucker	12/8/94	EF	Scappoose Bay	18.3	n/a	F
122	LS Sucker	12/8/94	EF	Scappoose Bay	18.5	n/a	F
123	LS Sucker	12/8/94	EF	Scappoose Bay	20.0	n/a	F
127	LS Sucker	12/4/94	EF	Bachelor Isl. Slough	20.3	1275.5	F
128	LS Sucker	2/2/95	EF	Clatskanie River	18.5	n/a	F
129	LS Sucker	2/2/95	EF	Clatskanie River	17.7	n/a	F
130	LS Sucker	2/2/95	EF	Clatskanie River	15.6	n/a	F
131	LS Sucker	2/5/95	ĒF	Knappa Slough	16.7	n/a	F
132	LS Sucker	2/2/95	EF	Clatskanie River	18.2	n/a	F
133	LS Sucker	2/2/95	EF	Clatskanie River	17.5	n/a	F
134	LS Sucker	2/5/95	EF	Blind Slough	16,7	n/a	F
135	LS Sucker	2/2/95	EF	Clatskanie River	19.3	n/a	F
136	LS Sucker	2/6/95	EF	Clatskanie River	15.7	n/a	F
137	LS Sucker	12/29/94	EF	Near Bug Hole	19.0	n/a	F
138	LS Sucker	2/2/95	EF	Clatskanie River	14.8	n/a	F
139	LS Sucker	2/6/95	EF	Clatskanie River	19.5	n/a	F
140	LS Sucker	2/2/95	EF	Clatskanie River	20.3	n/a	F
141	LS Sucker	12/29/94	EF	John Day River	17.0	n/a	F
142	LS Sucker	2/5/95	EF	Knapper Slough	15.6	n/a	F
143	LS Sucker	2/6/95	EF	Clatskanie River	15.9	n/a	F
144	LS Sucker	2/5/95	EF	Blind Slough	17.5	n/a	F
145	LS Sucker	2/3/95	EF	Clifton Channel	17.9	n/a	F
146	LS Sucker	2/3/95	EF	Clifton Channel	19.3	n/a	F
147	LS Sucker	2/2/95	EF	Clatskanie River	14.8	n/a	M
148	LS Sucker	2/3/95	EF	Clifton Channel	16.5	n/a	F
149	LS Sucker	12/29/94	EF	Near Bug Hole	·19.5	n/a	F
150	LS Sucker	12/30/94	EF	Young's Bay	21.0	n/a	F
151	LS Sucker	2/2/95	EF	Clatskanie River	18.9	n/a	F
152	LS Sucker	2/9/95	EF	Clatskanie River	17.5	n/a	F
73	Steelhead	12/28/94	EF	Cowlitz River	32.0	n/a	M
74	Steelhead	12/28/94	EF	Cowlitz River	27.5	n/a	М
75	Steelhead	12/28/94	EF	Cowlitz River	29.0	n/a	М
76	Steelhead	12/28/94	EF	Cowlitz River	27.0	n/a	М

, , ,

.

Specimen a	# Species	Date Captured	Method	Location	Length (in)	Weight (g
77	Steelhead	12/27/94	EF	Eagle Cliff	28.0	n/a
78	Steelhead	12/27/94	EF	Eagle Cliff	26.0	n/a
79	Steelhead	12/28/94	EF	Cowlitz River	31.0	n/a
80	Steelhead	12/28/94	EF	Cowlitz River	29.0	n/a
81	Steelhead	12/28/94	EF	Cowlitz River	30.0	n/a
82	Steelhead	12/16/94	EF	Eagle Cliff	26.2	n/a
83	Steelhead	12/28/94	EF	Cowlitz River	25.8	n/a
84	Steelhead	12/16/94	EF	Eagle Cliff	24.8	n/a
85	Steelhead	12/16/94	EF	Eagle Cliff	32.3	n/a
86	Steelhead	12/16/94	EF	Eagle Cliff	26.2	n/a
87	Steelhead	12/16/94	EF	Eagle Cliff	27.2	n/a
88	Steelhead	12/16/94	EF	Eagle Cliff	34.6	 n/a
89	Steelhead	12/16/94	EF	Eagle Cliff	25.6	n/a
90	Steelhead	12/15/94	EF	Eagle Cliff	27.9	n/a
91	Steelhead	12/16/94	EF	Eagle Cliff	25.4	n/a
92	Steelhead	12/16/94	EF	Eagle Cliff	29.3	n/a
93	Steelhead	12/15/94	EF	Eagle Cliff	24.8	n/a
94	Steelhead	12/16/94	EF	Eagle Cliff	31.9	n/a
124	Steelhead	12/11/94	EF	Clatskanie River	25.8	n/a
125	Steelhead	12/10/94	EF	Longview	25.3	n/a
95	Sturgeon	1/11/95	Hook	Mouth of Willamette	45.5	6258.5
96	Sturgeon	1/11/95	Hook	Mouth of Willamette	43.0	6848.1
97	Sturgeon	1/11/95	Hook	Mouth of Willamette	46.0	10249.
159	Sturgeon	1/17/95	Hook	Hayden Island	42.0	n/a
160	Sturgeon	1/17/95	Hook	Hayden Island	42.0	n/a
161	Sturgeon	1/17/95	Hook	Hayden Island	45.0	n/a
162	Sturgeon	1/17/95	Hook	Hayden Island	45.5	n/a
163	Sturgeon	3/17/95	Hook	Near Trojan NPP	47.5	n/a
164	Sturgeon	2/17/95	Hook	Briz Bay	43.5	n/a
165	Sturgeon	2/18/95	Hook	Near Trojan NPP	45.5	п/а
166	Sturgeon	2/18/95	Hook	Near Trojan NPP	n/a	n/a
167	Sturgeon	2/18/95	Hook	Near Trojan NPP	47.5	n/a

•

selected fish to holding containers aboard the boat. Upon retrieval, fish identification was verified by trained personnel and the total length of each specimen was measured to be certain that it was within the desired size range. Each fish was sacrificed by a blow to the head with a wooden club, weighed, double wrapped in heavy-duty aluminum foil and placed in a plastic bag with a water-proof tag stating the species type, collection date, collection location, length, and weight. Each specimen was then immediately placed on dry ice in a cooler.

2.1.2 Hatchery Collections

Coho and chinook were obtained from three State hatcheries. Male coho and chinook were obtained from Washington State hatcheries located on the Lewis River and Kalama River, respectively. Female coho and chinook were obtained from the Oregon State hatchery located on Big Creek. The male fish received from the Washington hatcheries were sacrificed prior to spawning by a blow to the head with a wooden club. They were immediately wrapped in aluminum foil and placed on ice. The female fish received from the Oregon hatchery were sacrificed by hatchery personnel after spawning by anesthetization (ESS) followed by a blow to the head. They were immediately wrapped in aluminum foil and placed on ice.

2.1.3 Hook and Line

White sturgeon were caught by hook and line. Each fish was sacrificed by a blow to the head with a wooden club. The fish were filleted at a shore station, double wrapped in heavy-duty aluminum foil and placed in a plastic bag with a water-proof tag stating the species type, collection date, approximate collection location, and length. Each specimen was then immediately placed on ice in a cooler.

2.2 SAMPLE PROCESSING

Fish fillets were removed by trained personnel following guidance provided in U.S. EPA (1993). All fillets included skin. Before processing, each fish was partially thawed. The following steps were followed during the processing of samples:

Step 1. The filleter's hands were washed with ivory soap, rinsed with tap water, and then rinsed with distilled water prior to filleting. Fish were processed on a cutting board covered with heavy duty aluminum foil which was changed between fish. Prior to processing

each specimen, all stainless steel utensils were washed with soap, rinsed with tap water, and then rinsed with distilled water.

- Step 2. The scales were removed (largescale sucker and carp only) by placing the specimen flat against the cutting board and scraping with the edge of a stainless steel knife. The specimen was then rinsed with distilled water to remove the scales.
- Step 3. The initial incision consisted of a shallow cut through the skin on either side of the dorsal fin from the top of the head to the base of the tail. Additionally, an incision was made behind the entire length of the gill cover, cutting through the skin and flesh to the bone. Following this cut, a shallow incision was made along the belly from the base of the pectoral fin to the tail. Care was taken to ensure that there was no cut into the gut cavity so as to not contaminate fillet tissues. Finally, a single cut was made from behind the gill cover to the anus and followed by an incision made on both sides of the anal fin. The fillet was removed and the remaining carcass was discarded.
- Step 4. The fillet was wrapped in heavy duty aluminum foil and place in a plastic bag with the waterproof tag. The plastic bag was sealed and stored frozen.

2.3 SAMPLE COMPOSITING

Samples were composited in accordance with U.S. EPA (1993) recommended guidelines. Each fish was ground individually using a Hobart grinder with 5 mm holes in the inner plate. To prepare the composite samples, equal aliquots from each fish were removed and homogenized. In this manner, each fish contributed equally to the total composite weight, thereby reducing possible bias from fish that were not equal in size.

Each composite sample consisted of eight fish (except for carp which consisted of seven fish). Three composite samples from steelhead, chinook and coho salmon and one composite sample from carp were analyzed. For largescale sucker, three composite samples from each of the following stretches of the lower Columbia River were analyzed: Estuary (RM 0-48), Middle (RM 48-101), Upper (RM 101-146).

Sturgeon samples consisted of individual fillets. Composite information, including the composite sample identification number, specimens which constitute the composite, and the individual's sex (if available), is located in Table 2-2. Additional information about each sample, including the mean length and weight of fish in the composite, percent lipid, and percent moisture, is included in Table 2-3. The ages of the fish were not determined.

2.4 SAMPLE CUSTODY AND SHIPPING PROCEDURES

Samples obtained in the field were strictly controlled by chain-of-custody procedures. A field logbook was maintained to document the collection of each sample. Samples were wrapped in foil and placed in a resealable plastic bag. Waterproof labels, included with the samples in each bag, contained the following information: station location, sampling date, species type, and specimen's weight and length.

Prior to shipping, samples were securely packed inside the cooler with the chain-of-custody forms enclosed in a plastic bag and taped to the inside of the cooler. The chain-of-custody form records the number of included samples in the shipment and the requested analyses. The individuals relinquishing and receiving the samples signed, dated, and noted the time on the chain-of-custody form. Copies of all forms are included as Appendix A. The cooler was sealed with fiber tape and a custody seal. All samples were shipped to the laboratory frozen via overnight delivery.

			TABLE 2	2. COMPOSITE	IDENTIFICATION (Page 1 of 2))	·····		
Composite ID: Species: Number in Composite: Specimen #:	LSCmp1-1 LS Sucker 8 138 (F) 145 (F)	139 (F) 149 (F)	142 (F) 150 (F)	144 (F) 152 (F)	Composite ID: Species: Number in Composite: Specimen #:	DCmp1 Steelhead 8 78 (F) 84 (F)	79 (F) 85 (F)	80 (F) 86 (F)	81 (F) 92 (F)
Composite ID: Species: Number in Còmposite: Specimen #:	LSCmp1-2 LS Sucker 8 128 (F) 133 (F)	130 (F) 135 (F)	131 (F) 136 (F)	132 (F) 143 (F)	Composite ID: Species: Number in Composite: Specimen #:	DCmp2 Steelhead 8 73 (M) 77 (M)	74 (M) 82 (M)	75 (M) 83 (M)	76 (M) 87 (M)
Composite ID: Species: Number in Composite: Specimen #:	LSCmp1-3 LS Sucker 8 129 (F) 141 (F)	134 (F) 146 (F)	137 (F) 148 (F)	140 (F) 151 (F)	Composite ID: Species: Number in Composite: Specimen #:	DCmp3 Steelhead 8 88 (M) 93 (F)	89 (M) 94 (M)	90 (M) 124 (M)	91 (M) 125 (M
Composite ID: Species: Number in Composite: Specimen #:	LSCmp2-1 LS Sucker 8 101 (F) 110 (F)	103 (F) 112 (F)	106 (F) 114 (M)	107 (F) 121 (F)	Composite ID: Species: Number in Composite: Specimen #:	KCmp1 Chinook 8 1 (M) 34 (M)	22 (M) 35 (M)	28 (M) 40 (M)	33 (M) 41 (M)
Composite ID: Species: Number in Composite: Specimen #:	LSCmp2-2 LS Sucker 8 102 (F) 113 (F)	104 (F) 115 (F)	105 (F) 119 (F)	109 (F) 122 (F)	Composite ID: Species: Number in Composite: Specimen #:	KCmp2 Chinook 8 3 (F) 43 (M)	26 (F) 45 (M)	32 (F) 46 (M)	37 (F) 48 (F)

Composite ID:	LSCmp2-2	3			Composite ID:	KCmp3			
Species:	LS Sucker	•			Species:	Chinook			
Number in Composite:	8				Number in Composite:	8 .			
Specimen #:	100 (F)	108 (F)	111 (F)	116 (M)	Specimen #:	11 (F)	12 (F)	13 (F)	14 (F)
	117 (F)	120 (F)	123 (F)	127 (F)		15 (F)	16 (F)	17 (F)	18 (F)
Composite ID:	LSCmp3-1	L		- -	Composite ID:	HCmp1			
Species:	LS Sucker	,	·		Species:	Coho			
Number in Composite:	8				Number in Composite:	8			
Specimen #:	50 (M)	63 (F)	65 (F)	66 (F)	Specimen #:	5 (M)	7 (M)	8 (M)	19 (M)
	69 (F)	70 (M)	71 (F)	72 (F)		24 (M)	27 (M)	29 (M)	30 (M)
Composite ID:	LSCmp3-2	2	r		Composite ID:	HCmp2			
Species:	LS Sucker				Species:	Coho			
Number in Composite:	8				Number in Composite:	8			
Specimen #:	49 (F)	51 (F)	52 (F)	53 (F)	Specimen #:	4 (M)	25 (F)	31 (M)	38 (M)
· .	55 (M)	58 (F)	62 (F)	68 (F)		39 (M)	42 (F)	44 (F)	47 (M)
Composite ID:	LSCmp3-3	}			Composite ID:	HCmp3			
Species:	LS Sucker			. *	Species:	Coho			
Number in Composite:	8				Number in Composite:	8			
Specimen #:	54 (F)	56 (F)	57 (F)	59 (F)	Specimen #:	2 (F)	6 (F)	9 (F)	10 (F)
	60 (F)	61 (F)	64 (F)	67 (F)		20 (F)	21 (F)	23 (F)	36 (F)
Composite ID:	CCmp1					•		·	
Species:	Carp								
Number in Composite:	7	•							
Specimen #:	126 (M)	153 (M)	154 (M)	155 (M)	· · · ·				
	156 (F)	157 (F)	158 (M)						

	TABLE 2-3. BIO	LOGICAL	DATA FOR I	EACH FISH S	SAMPLE	
1		Number				
		Fillets per	Mean	Mean	•	
Sample ID	Species	Sample	Length (in)	Weight (g)	% Lipid	% Moisture
LSCmp1-1	Largescale Sucker	8	17.9	n/a	1.17	79.08
LSCmp1-2	Largescale Sucker	8	17.2	n/a	0.79	80.09
LSCmp1-3	Largescale Sucker	8	18.3	n/a	1.08	79.80
LSCmp2-1	Largescale Sucker	8	17.3	n/a	1.45	80.85
LSCmp2-2	Largescale Sucker	8	19.1	n/a	2.06	78.68
LSCmp2-3	Largescale Sucker	8	18.3	n/a	2.26	77.94
LSCmp3-1	Largescale Sucker	8	18.0	n/a	1.41	79.55
LSCmp3-2	Largescale Sucker	8	18.5	1048.8	2.88	80.86
LSCmp3-3	Largescale Sucker	8	18.5	986.2	1.69	79.88
CCmp1	Carp	7	23.7	3121.2	4.37	72.51
DCmp1	Steelhead	8	28.5	n/a	2.87	73.86
DCmp2	Steelhead	8	27.9	n/a	4.06	74.39
DCmp3	Steelhead	8	28.0	n/a	4.82	70.60
KCmp1	Chinook	8	33.3	n/a	3.51	66.52
KCmp2	Chinook	8	32.1	3566.5	1.71	73.99
KCmp3	Chinook	8	33.2	n/a	0.72	76.24
HCmp1	Coho	8	25.6	2548.4	1.67	71.80
HCmp2	Coho	8	24.6	2384.6	0.48	73.52
HCmp3	Coho	8	24.0	1896.0	0.85	74.22
SIND1	White Sturgeon	1	45.5	6258.5	2.17	78.78
SIND2	White Sturgeon	1	43.0	6848.1	1.69	76.73
SIND3	White Sturgeon	1	46.0	10249.4	0.86	77.75
SIND4	White Sturgeon	1	42.0	n/a	1.00	· 77.71
SIND5	White Sturgeon	1	42.0	n/a	0.69	77.07
SIND6	White Sturgeon	1	45.0	n/a	2.46	75.02
SIND7	White Sturgeon	1	45.5	n/a	0.99	77.03
SIND8	White Sturgeon	1	47.5	n/a	0.88	77.83
SIND9	White Sturgeon	1	43.5	n/a	0.04	80.26
SIND10	White Sturgeon	1	45.5	n/a	0.14	81.80
SIND11	White Sturgeon	1	na	n/a	0.36	80.64
SIND12	White Sturgeon	1	47.5	n/a	0.41	80.55
n/a= not avai	lable					

This section describes the process by which the analytical laboratories [Pacific Analytical, Inc., Carlsbad, CA and Battelle Marine Sciences Lab (MSL), Sequim, WA] received, processed, and analyzed each fish sample. Pacific Analytical analyzed each sample for dioxins/furans, semi-volatile organics, pesticides, and PCBs, while Battelle Marine Science Lab analyzed each sample for selected trace metals. Four salmon samples were reanalyzed by Triangle Labs for dioxins/furans because of blank contamination noted in the original analyses.

3.1 SAMPLE PROCESSING

Pacific Analytical was responsible for all initial processing of fish fillets. The 31 samples were received frozen by overnight courier in 5 different batches and immediately placed in a freezer at -10° C until processing. Each batch was processed separately. Each fillet was homogenized separately after partial thawing using a Hobart meat grinder with 5 mm holes in the inner plate and placed in individual jars. For the 19 composite samples, aliquots for each of the analyses were prepared by taking equal amounts (weight dependent on the type of analysis) from each of the individual specimen jars. For the 12 samples consisting of individual filets (sturgeon), all of the required sample amount was taken from one jar. All homogenized tissue in excess of what Pacific Analytical needed for the three analyses they performed on each sample was shipped frozen by overnight courier to Battelle Marine Science Lab. Battelle prepared composite and individual samples in a manner identical to Pacific Analytical.

3.2 SAMPLE ANALYSES

The extraction/digestion and analytical methods for each of the analyses are described in separate sections below.

3.2.1 Lipids

The percentage of lipid in each of the samples was determined gravimetrically using petroleum ether as a solvent. The petroleum ether fraction was partitioned from a homogenized aliquot of the sample and then evaporated. The residue (i.e., lipid) was then weighed and compared to the original aliquot weight.

3.2.2 Dioxins/Furans

All 31 samples were analyzed for the seventeen 2,3,7,8-substituted polychlorinated dioxins/furans by isotope dilution high-resolution gas chromatography/high resolution mass spectroscopy (HRGC/HRMS) (U.S. EPA Method 1613A). The sample size extracted was increased to 50 g (20 g samples are typical) in order to achieve lower detection limits. After removing the moisture from the homogenized tissue with a Dean-Stark apparatus, the solid residue was soxhlet extracted. The extract was washed (back extracted) with base and acid, followed by silica gel and celite (AX-21) cleanups (used to remove nonpolar interferences) and alumina column cleanup (used to remove polar interferences). HRGC/HRMS analysis proceeded as described in the method. All 2,3,7,8-congeners were quantified using a DB-5 GC column as primary. All positive results for 2,3,7,8-TCDF were confirmed using a dissimilar GC column (Rtx-200) as required by the method. The lower of the concentrations from the two columns for this congener were reported. Each batch included the analysis of all QC samples required by the method.

3.2.3 Semi-volatile Organics

Fourteen semi-volatile organic compounds were analyzed by GC/MS in the selective ion monitoring (SIM) mode (U.S. EPA Method 8270). These 14 compounds are a subset of the compounds normally quantified using Method 8270 and are listed in the data appendix. During the study design, it was determined that these compounds represented a potential source of risk to human health from the consumption of fish in the Columbia River (Tetra Tech 1994b).

For each composite or individual sample, a 30 g aliquot was ground with anhydrous sodium sulfate and methylene chloride in a tissue homogenizer. The sample was then soxhlet extracted using methylene chloride and concentrated to 2 mL using a Kuderna-Danish (KD) apparatus. The extract was cleaned using gel permeation chromatography (GPC), followed by further concentration using KD and nitrogen blowdown to 0.5 mL. Compounds were quantified as described in the method using a DB-5 GC column with a MS detector in SIM mode. Each batch included the analysis of all QC samples required by the method.

3.2.4 Pesticides and PCBs

Pesticides and PCBs were analyzed by GC/Electron Capture Detection (ECD) (U.S. EPA Method 8081). In addition to the compounds normally detected using this method, two additional pesticides (mirex and methyl parathion) and two semi-volatile organic compounds (hexachlorobenzene and hexachlorobutadiene) were also analyzed. Additional calibration standards for these compounds were added to the initial and continuing calibration run sequences. Hexachlorobenzene and hexachlorobutadiene were quantified using this method rather than method 8270 because of the lower detection limits that could be achieved.

For each composite or individual sample, a 30 g aliquot was ground with anhydrous sodium sulfate and petroleum ether in a tissue homogenizer. The sample was then concentrated to 2 mL using a Snyder column. The extract was cleaned using gel permeation chromatography (GPC), followed by a solvent exchange with hexane, and cleanup with sulfuric acid. The resulting extract was eluted through a Florisil column with petroleum ether (PCB fraction), 6 percent ethyl ether in petroleum ether (pesticide fraction 1), and 15 percent ethyl ether in petroleum ether (pesticide fraction 2). The PCB fraction was further cleaned using an acidic silica gel, followed by the use of KD and nitrogen blowdown which concentrated the extract to 0.2 mL. Each of the three fractions were analyzed on two dissimilar megabore GC columns (DB-608 and DB-1701) using an ECD detector. The DB-608 was typically used for quantitation, while the DB-1701 was used for confirmation. Each batch included the analysis of all QC samples required by the method.

3.2.5 Metals

All samples were analyzed for ten trace metals (Ag, As, Ba, Cd, Cu, Hg, Ni, Pb, Sb, and Se). Concentrations of all metals except mercury and selenium were determined by inductively coupled plasma mass spectroscopy (ICP/MS)(U.S. EPA Method 200.8). Mercury was determined by cold vapor atomic absorption (CVAA) and selenium was determined by graphite furnace atomic absorption (GFAA). Total arsenic was determined by ICP/MS. Inorganic arsenic and methylated (monomethyl and dimethyl) arsenic were determined by hydride AA. The difference between total arsenic and the sum of the inorganic and methylated forms of arsenic is generally assumed to be organoarsenic compounds which are not easily quantified.

Each sample was digested with a 4:1 mixture of nitric acid to perchloric acid in a teflon bomb heated to 130° C for 4 hours. All samples analyzed for arsenic speciation were digested instead with sodium

hydroxide which was intended to dissolve the tissue without decomposing the organoarsenic compounds. The samples were analyzed following standard operating procedures used by Battelle MSL (MSL-M-024-01, MSL-M-031-00, and MSL-M-035-01) which are patterned closely after U.S. EPA methods. Each batch included the analysis of a procedural blank, laboratory duplicate, matrix spike, and standard reference material (DORM-2).

All analytical data for this project are reported in Appendices B-E and will not be presented in the text. All data are reported on a wet-weight basis.

A thorough data validation was performed for all data according to guidance provided by U.S. EPA (1994a,b,c). Several types of QA/QC data were examined, including initial and continuing calibration; instrument performance checks; preparation blanks; internal standard, surrogate, and matrix spike recoveries; laboratory control standards; certified reference materials; and laboratory duplicates. Data qualifiers were added, as appropriate, to data appendix tables. The definition of all data qualifiers is also included in each data table.

None of the data collected during this study have been qualified as unusable for the human health risk assessment. A brief summary of the data validation performed for the analytical data is provided below for each analytical group. The summary includes an explanation for all data qualifiers that were added.

4.1 METALS DATA VALIDATION

Thirty-one fish tissue samples were analyzed for the presence of eleven trace metals. The samples were analyzed in three batches. Quality control samples analyzed with each batch included preparation blanks, certified reference material (CRM)(DORM-2), laboratory control standards (two batches only), matrix spikes, and laboratory duplicates. If the results for any metal in a particular QC sample were outside the data quality objectives (Tetra Tech 1994b), all of the data for that metal in that batch were qualified.

Data qualifiers were not added to detected concentrations for the following metals: 1) antimony, 2) arsenic (total), 3) cadmium, 4) copper and, 5) mercury. Qualifiers for the other trace elements are described below.

4.1.1 Arsenic (inorganic)

Six of the thirty-one samples were qualified as estimates (J_6) because a single matrix spike had a recovery outside the acceptable QC range of (75-125 percent). The percent recovery for this matrix spike was 58 percent. Low spike recoveries could indicate that the associated sample concentrations have been underestimated.

4.1.2 Barium

Ten of the thirty-one samples were qualified as estimates (J₈) because duplicate precision requirements $(\pm 30 \text{ percent})$ were not met. The relative percent difference (RPD) between the duplicates was 36 percent. In addition, two samples were also qualified as undetected due to blank contamination (BU) because sample concentrations were less than five times the blank concentration (i.e., the 5X rule). The concentration of barium detected in the blank (0.016 μ g/g dry) was slightly higher than the detection limit (0.011 μ g/g dry).

4.1.3 Lead

Twenty-five of the thirty-one samples were qualified during the QC review. Thirteen of the samples were qualified (BUJ₈) because sample concentrations did not exceed blank concentrations by 5X and duplicate precision requirements (\pm 30 percent) were not met. Nine additional samples were also qualified as undetected due to blank contamination (BU) and three additional samples were qualified as estimates (J₈) because of duplicate analyses. RPDs for the two duplicate pairs which exceeded precision criteria were 84 and 53 percent. Lead was detected in two preparation blanks at concentrations 3X (0.044 vs. 0.014 µg/g dry) and 2X (0.006 vs. 0.003 µg/g dry) the detection limit.

4.1.4 Nickel

Six of the thirty-one samples were qualified as estimates (J_7) because reference material concentrations were slightly outside the acceptable QC range (70-130 percent) of the certified value. The RPDs between measured and certified values for two replicate measurements of the CRM were 34 and 42 percent. These results could indicate that the associated sample concentrations have been underestimated.

4.1.5 Selenium

Nine of the thirty-one samples were qualified as estimates (J_8) because a single duplicate analysis was outside precision criteria. The RPD for this duplicate sample analysis was 63 percent.

4.1.6 Silver

Six of the thirty-one samples were qualified as estimates (J_6) because of a single matrix spike recovery outside the acceptable QC range. The percent recovery for this matrix spike was 31 percent.

4.2 SEMIVOLATILE ORGANICS DATA VALIDATION

Thirty-one fish tissue samples were analyzed for the presence of thirteen semivolatile chemicals. These samples were analyzed in five batches. Quality control samples analyzed with each batch included method blanks, matrix spikes, and surrogate spikes (every sample). If the results for any compound or surrogate in a particular QC sample were outside the data quality objectives (Tetra Tech 1994b), all of the data for that compound or associated compounds in that batch were qualified.

Detected concentrations were qualified as estimates for at least a portion of the 31 samples for 3 of the 13 compounds. For the other 10 compounds, two undetected sample concentrations for each compound were qualified (UJ_5) because of surrogate spike recoveries outside acceptable QC recovery limits. The three compounds for which detected concentrations were qualified are described individually below.

4.2.1 bis(2-Ethylhexyl)phthalate

Thirty of the thirty-one samples were qualified in the QC review. Twenty-eight of the thirty-one samples were qualified undetected due to blank contamination (BU) because sample concentrations did not exceed blank concentrations by more than 10X. One sample was qualified as BUJ_5 because of blank contamination and low surrogate recoveries, while one additional sample was qualified as J_5 because of low surrogate spike recoveries. Low surrogate recoveries could indicate that the associated sample concentrations have been underestimated. Blank contamination was noted in each of the five batches at concentrations ranging from 8-60 μ g/kg (nominal reporting limit = 10 μ g/kg). Sample concentrations as high as 223 μ g/kg were qualified as undetected because of the blank contamination. Contamination from bis(2-ethylhexyl)phthalate is commonly observed in this method (U.S. EPA 1994a).

4.2.2 4-Methylphenol

Five of the thirty-one samples were qualified in the QA review. Two samples were qualified (J_5) because surrogate spike recoveries were outside acceptable QC recovery limits. Three samples were qualified (J_1) because sample concentrations were below nominal reporting limits (10 µg/kg). The J_1 qualifier indicates that the analyst was confident that the compound was present in the sample, but the actual concentration reported is less certain than reported concentrations greater than 10 µg/kg.

4.2.3 Phenol

Twenty-five of the thirty-one samples were qualified in the QA review. Twenty-three of the samples were qualified as undetected due to blank contamination (BU) because sample concentrations did not exceed blank concentrations by more than 5X. Two samples were qualified (J_5) because surrogate spike recoveries were outside the acceptable QC recovery limits. Blank contamination was noted in four of the five batches at concentrations ranging from 8-17 μ g/kg (nominal reporting limit = 10 μ g/kg). Sample concentrations as high as 52 μ g/kg were qualified as undetected because of the blank contamination. Phenol is a commonly observed laboratory contaminant in this method (U.S. EPA 1994a).

4.3 PESTICIDES/PCBS DATA VALIDATION

Thirty-one fish tissue samples were analyzed for the presence of thirty-two pesticides/PCBs. These samples were analyzed in five batches. Quality control samples analyzed with each batch included method blanks, matrix spikes, and surrogate spikes (every sample). If the results for any compound or surrogate in a particular QC sample were outside the data quality objectives (Tetra Tech 1994b), all of the data for that compound or associated compounds in that batch were qualified.

None of the compounds were qualified as estimates for any of the samples. Two compounds were qualified as undetected due to blank contamination for at least some samples. These compounds are described below.

4.3.1 Endrin Ketone

One of the thirty-one samples was qualified (BU) because the sample concentration (0.41 μ g/kg) did not exceed the blank concentration (0.33 μ g/kg) by more than 5X.

4.3.2 Hexachlorobutadiene

One of the thirty-one samples was qualified (BU) because the sample concentration (0.17 μ g/kg) did not exceed the blank concentration (0.06 μ g/kg) by more than 5X.

4.4 DIOXINS/FURANS DATA VALIDATION

Thirty-one fish tissue samples were analyzed for the presence of 17 dioxins/furan congeners. These samples were analyzed in 5 batches. Quality control samples analyzed with each batch included method blanks, ongoing precision and recovery (OPR) samples, and internal standards (each sample). If the results for any compound or internal standard in a particular QC sample were outside the data quality objectives (Tetra Tech 1994b), all of the data for that compound or associated compounds in that batch were qualified. Four of the salmon samples (KCMP2, KCMP3, HCMP2, and HCMP3) were reanalyzed by Triangle Labs in two different batches because blank contamination had previously been noted for the most toxic congener (2,3,7,8-TCDD). Each batch included the analysis of a method (preparation) blank and and OPR sample, both of which consisted of sodium sulfate.

None of the congeners were qualified as estimates for any of the samples. Several of the congeners were qualified as undetected due to blank contamination for at least one sample. These congeners are discussed below.

None of the congeners were qualified as estimates for any of the samples. Several congeners were qualified as undetected due to blank contamination for at least one sample. These congeners are discussed below.

4.4.1 1,2,3,4,6,7,8-HpCDD

Two of the thirty-one samples were qualified (BU) because sample concentrations (0.08-0.16 ng/kg) did not exceed the blank concentration (5.9 ng/kg) by 5X. The laboratory believed the high concentration in the blank was due to defective glassware and not contamination in the analytical apparatus.

4.4.2 OCDD

One of the thirty-one samples was qualified (BU) because the sample concentration (0.17 ng/kg) did not exceed the blank concentration (90.4 ng/kg) by 5X. The laboratory believed the high concentration in the blank was due to defective glassware and not contamination in the analytical apparatus.

4.4.3 1,2,3,6,7,8-HxCDF

One of the thirty-one samples was qualified (BU) because the sample concentration (0.14 ng/kg) did not exceed the blank concentration (0.04 ng/kg) by more than 5X.

4.4.4 2,3,4,6,7,8-HxCDF

One of the thirty-one samples was qualified (BU) because the sample concentration (0.15 ng/kg) did not exceed the blank concentration (0.15 ng/kg) by more than 5X.

4.4.5 1,2,3,7,8,9-HxCDF

One of the thirty-one samples was qualified (BU) because the sample concentration (0.28 ng/kg) did not exceed the blank concentration (0.07 ng/kg) by 5X.

4.4.6 1,2,3,4,6,7,8-HpCDF

One of the thirty-one samples was qualified (BU) because the sample concentration (0.18 ng/kg) did not exceed the blank concentration (0.05 ng/kg) by 5X.

4.4.7 Interlaboratory Comparison

Four salmon samples were analyzed by both Pacific Analytical and Triangle Labs. The data for these four samples in the draft data report (Tetra Tech 1995) were from Pacific Analytical. The data for these four samples which were used in this risk assessment and included in Appendix E of this document were from Triangle Labs.

The estimated detection limits achieved by Triangle Labs were generally lower than those achieved by Pacific Analytical. The results for the two labs were generally in agreement with respect to whether the congener was detected. Some of the congeners were detected by Triangle Labs but not by Pacific Analytical, but in most of these cases, the Triangle Labs detection limit was much lower; thus, these

results should not be seen as disagreeing. No blank contamination for 2,3,7,8-TCDD was noted in either method blank analyzed by Triangle Labs.

4.5 DATA VALIDATION SUMMARY

None of the data collected during this study have been qualified as unusable for the human health risk assessment. A total of 73 target analytes were analyzed for each of 31 samples. Of the total number of data points (73 x 31 = 2263), three percent (69/2263) were qualified as estimates due after evaluation of the QC results. Data points qualified as estimated were still considered useable for the risk assessment, although the final risk estimates for compounds with estimated data points might be more uncertain. Detected values which were less than 5X (or 10X for common laboratory contaminants such as phenol and phthalates) greater than concentrations detected in associated laboratory blanks were qualified as undetected. An additional four percent (84/2263) of the data points were qualified in this manner.

5.0 REFERENCES

Tetra Tech, Inc. 1994a. Assessing human health risks from chemically contaminated fish in the lower Columbia River. List of data sets to be evaluated for assessing fish consumption risks to humans. Prepared for the Columbia River Bi-State Program. Tetra Tech, Inc., Redmond, Washington,

Tetra Tech, Inc. 1994b. Assessing human health risks from chemically contaminated fish in the lower Columbia River. Sampling and QA/QC Plan. Final report. Prepared for the Columbia River Bi-State Program. Tetra Tech, Inc., Redmond, Washington.

Tetra Tech, Inc. 1995. Assessing human health risks from chemically contaminated fish in the lower Columbia River. Draft Data Report. Prepared for the Columbia River Bi-State Program. Tetra Tech, Inc., Redmond, Washington.

U.S. Environmental Protection Agency. 1993. Guidance for assessing chemical contaminant data for use in fish advisories. Volume 1: Fish sampling and analysis. EPA 823-R-93-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

U.S. Environmental Protection Agency. 1994a. U.S. EPA Contract Laboratory Program national functional guidelines for organic data review. EPA-540/R-94/012. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency. 1994b. U.S. EPA Contract Laboratory Program national functional guidelines for inorganic data review. EPA-540/R-94/013. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency. 1994c. EPA Region 10 SOP for the validation of polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) data. Revision 1.2, 11/21/94. U.S. Environmental Protection Agency, Region 10, Office of Quality Assurance, Seattle, Washington.

APPENDIX A

CHAIN OF CUSTODY FORMS

77 6983110 Q9831103 CAPCASS ALD LUG O SETSAL . Ì 09 22 96 ... · ?` DATE __ LEWIS REVER HATCHERY TECH DEALES 52 99914. -KEDNOND, Ħ 05 C RECEIVER HATCHERY alda SIGNATURE SIGNATURE +h Joint STATE OF WASHINGTON DEPARTMENT OF FISHERIES DEPT. Ecolo **CARCASS & EGG DISPOSAL TICKET** 0 SPECIES SEX CARCASS USE EGGS DISTRIBUTION HATCHERY MORTALITY 001-9 SPIRING CHINOOK NUMBER FALL CHINOOK OF ¢Ν. 3 ESTIMATED ACTUAL. VALUE AMOUNT FISH CONDITION CONDITION CONDITION WEIGHT WEIGHT ROUND STRIPPED JUVENILE DONATION SPAWNED OR SOCKEYE DISPOSA FEMALE T GREEN EGGS -INDIAN COHO CHUM MALE FEGGS SOLD EYED PINK 001-0 Š 602 88 5 3. ---- 1 2 3 2 f 3 2 3 2 3 ŧ 2 £ 1 1 4 12 72 72 Х Х Х ş 2 ł ٠, ¢ . AMOUNT DUE 2 3 -8 9 10 4 5 6 7 1 DEALER COPY FORM FS-DP-113 REV 2/89

H/ 510	GN	CH	ER' 'UR	Y E	\geq	Ę	7	f ir		61	er	า	7.	17	4							-	in Ine	-	tra /	lad	Le.	hle	
		ST	ATE									ITM Osa					IER	IES	. •	-	J				*	-			
	s	PE	CIE	S				SEX			CA	RCA	SS		USE			EG	GS X	:	DK	TRU	BUTT	ON			*	· .	
£	DOI-10 FALL CHINOOK			ONS PINK							1	R ROUND	÷.,		CONDITION 2		1	TYED.			÷.	SOLD	NA INDIAN		NUMBER OF FISH OR BGGS	ESTIMATED WEIGHT	ACTUAL WEIGHT	VALUE	AMOUNT
	s X	ð	8	8	0	X	2	3	4	0	T	ž		X	4	4	1.	2			X	4	3		//	165	165		
		•					-											 	, ,										
																											· .		
-					-				!																				
				- <u>-</u>	-																				· · · · · · · · · · · · · · · · · · ·				
											4 4		7											-	:	•			
							~		••••									•											
																										·····			
						-													 										
1		2	3				6	7	8	Ş	•	10							L	, ,			<u> </u>			L		AMOUN	
F	OF	IM I	=S•D	DE 19-11	AL 3 RE		89 89	DPY	/ 																				

13630 DATE 09	121 94 DAY YR		ANADA	UNEGON		
Como SPECIES Co			ADULT	TRANSACTION		
	39 4. OCK BROOD YEAR)			· · · · ·	Fish & Wildlife	
HATCHERY CODE	BC (TWO LETTERS)	NAME_	Big Cre	et Hatchery (ADMINISTRATIVE UNIT)		
	F	ISH CON	DITION		[]	
L = LI	VE	D - D	IED	KILLED		
		TYPE o	TRANSA	CTION		
1 ⁺ = COL- 2 = TRANS LECTED IN (FISH IN)	3 .= TRANS 4 = RE OUT LE	E 5 = BURY Ase	Y 6 = REN- 7 = S DER (FISH OUT	OLD 8 - PRO- GIVE 10*= OTHE CESS AWAY	A 11 - LIVE 12 - FREEZ- SPAWN ER	
M PHOM/TO Tet?		15400	D NE GO	OF OUTTOI	Rodmond, WA	
the line by					7805,	
	NUMBER (not reruns)	RERUNS (for collections only)	WEIGHT SAMPLE LBS./FISH		HERE APPROPRIATE)	
MALES	·····					
UN- FEMALES ŞPAWNED				OTHER*	r, FORMALIN, ETC.)	
SPAWNED FEMALES EGGS FEMALES REMOVED		-	4.3	COLLECTION STATUS (COMPLETE ONLY WHEN COLLECTING FISH)		
				METHOD: 1. TRAP 2. SEINED 3. ELECTRO-FIS 4. OTHER*		
JENNIES	· · · · · · · · · · · · · · · · · · ·				HECK A BOX ONLY	
AMOL	FISH GRADE _	 \$	REMARKS: Trad Deshler will be picking up Feinales for Tetres tech			
X NECEMER	Lin	de la companya de la comp	Entered into Com, 10# 53630 Analyze	outer		
00FW REP. //	CANHITE COL CANARY C	MY TO FISH CULT	R	*EXPLAIN IN REMARKS		

#628	DATE 09	129 194		ANADA	OMOUS	ORECON		
Chivook	MO. DAY YR.			ADULT TRANSACTIO				
\bigcirc		394 OCK BROOD YEAR)	• 	\$		Fish & Wildlife		
, F	ATCHERY CODE	BC (TWO LETTERS)	NAME_	Big (1,	eek Hetchory (administrative uniti	<u></u>		
			FISH COP					
	L = L1V	/E	D - 0	IED	KILLED			
	TYPE of TRANSACTION							
1	t= COL- 2 = TRANS LECTED IN (FISH IN)	3 = TRANS 4 . OUT	RE- 5 - BUR LEASE	Y 6 - REN- 7 = S DER (FISH OUT	OLD 8 = PRO-9 GIVE 10*= OTHER CESS AWAY.	11 = LIVE 12 = FREEZ- SPAWN ER		
w HA	OM/TO Jetka	a Tech	15400		ionth Sult 100, Rec	198052		
0		NUMBER (not reruns)	RERUNS (for collections onty)	WEIGHT SAMPLE LBS./FISH		1		
	MALES			••••••••••••••••••••••••••••••••••••••				
F	EMALES SPAWNED .	······			OTHER*	ORMALIN, ETC.)		
SI	PAWNED FEMALES			12.1	TCOLLECTION ST			
EGGS FEMALES REMOVED INON-VIABLE EGGS TAKENI JACKS SUB-JACKS					METHOD: 1. TRAP 2. SEINED 3. ELECTRO-FISH 4. OTHER*			
	_	FISH GRADE	3			CK A BOX ONLY E PER SEASON		
					Tad Deshler will be p Stops Charcopsus up for Th	rickuis intra Tech		
\bigcirc	OOFW REP. 7	Kihi Posing	I all		Entered into Computer 10= 53628 Awalyze F154 For Ch	-		
	FC 6/84	CANAR	COPY TO FISH CULTL Y COPY TO RECEIVE I COPY TO HATCHERY	'EXPLAIN IN REM	ARKS			

э¥ Ж

TETRA TEC 15400 NE 90th, Redmond, Wasi (206) 883-1912 FAX (206) 881-1	hington 9809	52			С	H	AH	N	01	F	CL	JS	тс	סכ	۲. ۴	•	-				DOCUMENT
PROJECT NAME, LULIPEN (LULADIG SAMPLERS; (signaturo)	2	theman t	teo	1th	PAC	996	F.NO.	05	•	NUMBER OF CONTAINERS	ANAL VO.	20-11-12-12-12-12-12-12-12-12-12-12-12-12-	The Man	:/a	3/ \$/	7	7	7	7	7	//
	hler					MED	A	4		ц Ч	1	'å/	$\left \tilde{c} \right $	10) 3		'	' /	' I	/ /	/ /	//
SAMPLE ID	TIME	DATE	Air	Surface Water	Ground Water	Soil	Sediment	Fich Humanat	r	NUMBER		1	ಕ್ಗ	8		/.	/	/	/	/	REMARKS
KCMPI		9/22/94						X		1	×	×	X	Í	Í						
KCmp2								×		1	×	×	X	_							
KCmp3		+ $-$		<u> </u>	_		<u> . </u>	×		1	X	×	¥		<u> </u>				1		
<u>HCmp</u>	_	_ <u> _/</u>		<u> </u>			-	X X	<u> </u>		×	X	Y			<u> </u>		 			· · · · · · · · · · · · · · · · · · ·
HCopil		7/22/94			+	-	-	×	┝	\vdash	x	X	X						-	+	
IIImp2				+	+		 	1^		<u>⊦</u> ∙	1	×	⊢ ⊁			-	-			+	· ·
			1	+										-		<u> </u>			1		
· · ·			1	\mathbf{T}				1													
			 			<u> </u>	ŀ		<u> </u>	ļ	<u> </u>							<u> </u>			· · · · · · · · · · · · · · · · · · ·
	_			_	ļ	ļ	 			_					ļ	ļ			ļ		
					1		-		-	·			·		-					-	
		•	-	+		·	\vdash		\vdash						-			-			
,	- · · · ·					\vdash	\vdash	-	\vdash			\vdash		+		.				\vdash	······································
		-1	1	1		<u> </u>	†		†				<u> </u>	\dagger		† · ·					
<u> </u>				1	1				1	1				1	1	<u> </u>			1		· · · · · · · · · · · · · · · · · · ·
RELINQUISHED BY (signatur	(u)	DATE/TIME		TOTA	L NU	MBE	R OF	сот	NAIN	IERS		6		RECE	IVED	FORI	.AB B	Y (Si	gnatui	ю)	DATE/TIME
ECEIVED BY (signature)		DATE/TIME	RE	LINQ	UISHE	D BY	(signi	eture)		Т	DATE	TIME		CONE	ITION	OFO	ONT	ENTS	5		TEMPERATURE UPON RECEIPT
RELINQUISHED BY (signatur	ELINQUISHED BY (signature) DATE/TIME REC									-+	DATE	/TIME	╉	REM		<u> </u>		ـــــــــــــــــــــــــــــــــــــ	-		ssue
RECEIVED BY (signature)		DATE/TIME	ME	THO	OOFS	HIPN	IENT			-+	AIRBI	LL NC		,	-176	11 I	ſ	τ χ Γ	, ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· · · · · · · · · · · · · · · · · · ·		1 •hCi	opy	Pink	C					Ľ.										· · · ·	·····

.

•

TETRA TECH, INC. 15400 NE 90th, Suite 100 Redmond, Washington 98052 (206) 883-1912 FAX (206) 881-6997

CHAIN OF CUSTODY

.

DOCUMENT 10F1

ve	E (1) B E (1) B DATE DATE 13-3 Au 13-3 Au 13-3 Au 13-4 Au 13-4 Au 13-4 Au	ia. Iz	Surface Surface	<u>г. к</u> т	MED	Sediment V D 80.	03 50		ER OF CONTAINERS	ANNLYSIC	BELL FOR	7	1613	//	7	T	i	ber	fic Analytical
ve	Ellis DATE	ia. Iz	نب بھ 	<u>г. к</u> т	MED	A 			ER OF CONTAINERS	R AWLYEIG	BESH FOR	7	613A	Τ	/			7	
	DATE	Ŕ					÷ť		ER O	/	p /w	δ/.	-9 /						/ /
	152 8144		Ē	1		a di			NUMBER	A		-Epo	<u>e</u> /	/ /	/ /		' /		REMARKS
	152 8144		1			<u> </u>	X		ī	$\overline{\mathbf{v}}$	Υĺ	X	f—1		- <u> </u>	1	\uparrow	Í –	*atter tomognizing
			1	1			1 S T		ī	Ŷ	Ŷ	Ŷ		·			-	1	Somples, please send
	57 131			1			Ŷ	-	1	Ŷ	Ŷ	X				+	-	+	Hoz incor himante
	3/24		1		<u> </u>		Ŷ		ī	X	Ϋ́	Ŷ			-	\neg	1	1	in Parthelle Minne
	HAL Tau			1			X		Ť	Ŷ	X	Ŷ					-	1	Filma Welson Tan
	12/2+994			1			X		T	X	X	X				1.		1	Le con the Ale in
																			Hozyer to Tom Jah.
					T.											\neg		T	27
																	-	T	
																1			
																		5	,
					•														
																	1.	1	
																		Τ	
																			•
		•																	
																1-	1		
, DA גבו	TE/TIME	ŀ	TOTA	L NU	MBE	R OF	CONT	AIN	ERS		6	F	RECE	VED FO	RLA	BY (S	ignatur	e)	DATE/TIME
DA	TE/TIME	RE	LINCI	JISHE	DBY	(signa	ture)		T	ATE/	IME.	٦	COND	TION C	FCO	ITENT	S		TEMPERATURE UPON RECEIPT
DA	TE/TIME	RE	CEIVE	D BY	(signe	ture)			ī	ATE/	IME	┢	EMA	tks	Xes	xé	. CI	الد	to confirm rerein
DA	TE/TIME	ME	THO	OFS	HIPM	ENT			1	URBIL	L NO.	1		-	Ket	i II	2 10	chui	icul Scivices Agreenant
	יבו אס אם אם	DATE/TIME DATE/TIME DATE/TIME DATE/TIME					DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature)	DATE/TIME IDATE/TIME IDATE/TIME IDATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME RECEIVED BY (signature)	DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME RECEIVED BY (signature)	DATE/TIME TOTAL NUMBER OF CONTAINERS DATE/TIME RELINQUISHED BY (signature) DATE/TIME RECEIVED BY (signature)	DATE/TIME DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME RECEIVED BY (signature) DATE/TIME	DATE/TIME TOTAL NUMBER OF CONTAINERS 6 DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME RECEIVED BY (signature) DATE/TIME	DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME	DATE/TIME DATE/TIME RELINOUISHED BY (signature) DATE/TIME RELINOUISHED BY (signature) DATE/TIME CONDI	DATE/TIME TOTAL NUMBER OF CONTAINERS	DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME DATE/TIME CONDITION OF CON	DATE/TIME DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME	DATE/TIME DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME RELINQUISHED BY (signature) DATE/TIME DATE/TIME	DATE/TIME TOTAL NUMBER OF CONTAINERS 6 DATE/TIME RECEIVED BY (signature) DATE/TIME RECEIVED BY (signature) DATE/TIME RECEIVED BY (signature)

Distribution: Original Lab Cook Williams First Yole Tach Copy Pink Copy First First Con

	881-699																				
AMPLEDS: (signaturo)	Alum-te	the Ri	Vor (th	H2	at l	PRK 7	A C	96	8-	03	CONTAINERS	AVLALING		/		/	/	/	/		
contected D	esh	ler.					MED	ł A			<u>с</u> С	R R		/		/ /	/ /	/ /	/		
AMPLE ID		TIME		2	Burtace Weter	Ground	108	Bediment	#2-1		NUMBER O		0/100		5	/	/	/	.	//	REMARKS
DCmp1			12/6.7			•			Y		T	X	X	x					·		each bag contain
2 Cmp 2		<u>`</u>	to ikin						X		L	¥	×	×							8 fillets to be
DCmp3							<u> </u>	l.	X		1	×	X	┶							composited
				-			È	_	 												
																			•		<u>م</u> ر ا
					+			┣	<u> </u>				-		$\left - \right $						
						<u> </u>											<u> </u>				
				· · ·	<u> </u>				+		· · · ·	• • • • •						·			
,	· .				1		1	ţ													
											•										
			و مربعه							1											
		·					` 		Ļ												
····						1.0			 											L	
							<u> </u>	,	<u> </u>								· · · · ·				
			+					-	 				 							$ \vdash $	
		·	<u> </u>																<u> </u>	┝──┝	
																				┟╌┟╌	
UNQUISHED BY (sk	ngjure)		AJE/TURE		distant.							718	2		ECE	VED I	ORL	AB B	((Sia	nature)	DATE/TIME
ta l Reit	U.		15.55	· ·		· .		*		ITAIN											
CEIVED BY (signatur	e) [~] .	1	ATE/TIME.	ÐE	HNOU		PRY	(sign	ture)	1	זן	DATE	TIME	"][CONDI	TION	OFC	ONTE	INTS		TEMPERATURE UPON RECENT
LINQUISHED BY (sig	naturë)	1	ATE/TIME	RE	CEIVE	<u>D BY</u>	(aigni	ture)	-			MTE		Ť	REMAI	¥S S	Sen	J_	مله	fust	to Battelle as
CEIVED BY (signatur	9)		ATE/TIME	ME	THOD	QF S	HIPM	ENT				IRB	LNO.			Ś	pe	15	e k	11	earlier shipments.

.

and the second second

H-	TETRA TECH, 15400 NE 90th, Sui Redmond, Weshing (206) 883-1912 FAX (206) 881-699	le 100 Ion 98052	. *		-					•	èu	S	ГС	YDC	,		·			DOCU	MENȚ	()	
AMPLERS:	W. Col. K.	1. Hug Deak	an He	ea/H	PR	MEDI		· 0.	3	NUMBER OF CONTAINERS	AMALYERS	1		(a ^u)		$\left \right $	//	//	 -	7	t distante		
AMPLE ID		TIME		At Surface	Ground Weter	ŝoi	Sediment	标志。		NUMBER	ド	200	82.0	2/2 2/2	/ /					/	REMA	RKS	
SCM	P_{1-1}	and she	EE MA					X		1	χ	X		×		*				8	tist		1
SCMP	1-2		9.1				ľ	×		L	X	7	×	¥						8	fish		-
SCH	0-3	N. S. Carlos	12/21/44					X		1	X	X	X	X]			8 -	<u>6'sh</u>		
CCM	> 1		12/7/91		(*)			X			Y	_>	×	LXL			\vdash			_7_	fish		
SInd	1		1/11/95					X			X	×	×	X	<u> </u>				_		<u>firk</u>		
SInd	2	2.	1/1/195	2				X		1	X	×	X	×							to'sh	1 1	75
Ind.	3		1/1/45					X		1	X	X	¥	X	1-				_		<u>fish</u>		
s Ind	4		11/7/45			1		X		\square	X	Y	x	X					_		bit.		16. 14.6
5 Ind	5		Jr/ks					Y		1	X	X	X	X						<u> </u>	firly	14	
s Ind	6		Intes	42.14	195 - S. B.		N.	X	28 J	1	X	×	X	X		<u> </u>			_#		fish		
S Ind	7		1 riks					للأ	-		X	X	×	Y							fish		
					14 S.	1	\mathbf{P}					-								<u> </u>			
					剥荠	2.010																	
				<i>で</i> 消費	₹¶‡				-7-	\sim		-			1-							1.00	1
			建分裂的		能影	$\{ f_n \}$		+-54-0		· · ·		?		 -			┞		_			200	47 73 276 (d
ŝ.		1]				-		L	┟╌╷┝			┨						
	a conserve a state				15 A.S.	13				1. Q.C.	4910. 		×.			_			-		,	113-4	2.1
			. Starte	100				20	anger i	-			L	t		<u> </u>							
				國的			17-	1			<u> </u>			<u> </u> -			 				. 7.8 <u>7</u> 		
		No. A NUM	dat marships	1989 P	2	s i si	1	1				air.		<u>ان ا</u>					Щ				or ha
Tal	ED OX (Marany)		ATT The	1 1 1	IAL N								21	CONDITI	j.			nature,		DATE/TIM	NTURE UPI		
ECEIVED E	Y (aignature)			-13605) 	and the second				. `	<u> </u>	DATE				Un Ur	UNI	ENIS			I CINEL TELE		an ningdi	
ELINQUISH	IED BY (signating)	E	ATTIME		VÉD B	Y (+0)		-+	DAT	The second	Sin:	REMARK	(S	Bur	ser	d a	<u> </u>	quit	fu Sov		
ECEIVED E	BY (signature)		ETME .	METH	OD OF	SHIP	AENT			1	AIRE	LLNC	5.	14. ⁴	ŧ	1201	u VI	K	~5	120	şυγ	V	

∩opy Pink Copy

.

i≱ n

•

1.14470 - -

.

Redmond, Washington (206) 883-1912 FAX (206) 881-6997	98052			C		AI	IN	Oł	- '	ω	12	1 (00	Ε Υ.						DOCUME	ит <u>/ О/</u>
MPLERS: (Store ture)	River Hum	n H	/ <i>{</i> }}	PRO	AJEC 99	T NO.	- 0	3	TAINERS	ANAL YOUR		7	7	7	7	7	7	7	7	11	
Contact Tad De Sh/	er				MED	IA .			NOO =	14 R	/~√	3			/ .	/ ,					in the second
MPLE ID TIM		ž	Surface Weter	Ground	gol)	Sediment	Hist.		NUMBER OF CONTAINERS	/:	ð;	- 1	3	/							REMARKS
SINDA	3/17/						X		1	X	λ	x	Ĺ	(-	Í.	Ĺ	Í	ſ	<u> </u>		
Stud 9	Z/n/a			ļ		ļ	x		1	X	x	χ	 					·			
SInd 10	_2/8/1 3	1				 	X		/	X	X	۲	<u> </u>	<u> </u>	ļ	<u> </u>	L	ļ			
Stud II	2/0/15	í 		ļ	—	<u> </u>	X		1	ア	×	X								,	
Sindia						┼	X		1	X	<u>×</u>	×	<u> </u>				ļ	<u> </u>			2017
							-						┢		f—			<u> </u>			
									. <u> </u>					<u> </u>			· .				
· · · · · · · · · · · · · · · · · · ·						<u> </u>												<u> </u>			
							<u> </u>														
					1																
•					;																
			- X		4	1.15	ŀ		·						[<u> </u>					
																		[
																					The second
						ļ															
						<u> </u>	[
		4				<u></u> *							ļ	L	<u> </u>						
									-						L						12 A 70 A 10
LINGUISHED BY (algorito)	DATE/TIME	T	QTA	L MUN	19 E	ROF	CON	TAINE			5	T	JÉCEI	VED	FORL	ABB	t (Sig	nature	- 	DATE/TIME	
CEIVED BY (algneture)	CATETTIME	RE	INCU	(S ÇI	YR	(signe	kum)			ATE/	_	1	OND	TION	QFC	ONTE	NTS			TEMPERATUR	E URON RECEIPT
LINQUISHED BY (Monature)	DATE/TIME	L	EIVE							ATE	u.	*	REMAI	RIKS							
CEIVED BY (signature)	DATE/TIME	ME	пнор	OF S	HIPM	ENT				IRBIL	LNO.										
						_		2						1							5.00

.

.

•

l i

APPENDIX B

METALS DATA

METAL RESULTS FROM THREE COMPOSITES OF EIGHT CHINOOK SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Silver (A 7440-22	-		Arsenic 7440-38	(As)-ICP/I -2	MS	Barium (7440-39	• •		Cadmiur 7440-43	• •		Copper 7440-50		
Sample	Conc.	Conc.* (ug/g lipid)	Data qual.	Conc.	Conc.* (ug/g lipid)	Data qual.	Conc.	Conc.* (4g/g lipid)	Data qual.	Conc.	Conc.* (ug/g lipid)	Data qual.	Conc.	Conc.* (ug/g lipid)	Data qual.
KCMP1 KCMP2 KCMP3	0.002 0.001 0.001	0.07 0.08 0.18	-quar.	1.235 0.884 0.760	35,20 51.72 105.60	- <u>4</u>	0.050 0.039 0.036		U U U	0.005 0.004 0.004		ນ ບ ບ ບ	1.011 0.770 0.804	28.81 45.02 111.71	4000

Chemical	Mercury	(Hg)		Nickel (Ni)		Lead (Pi)		Antimon	y (Sb)		Seleniu	m (Se)			A	rsenic S	peciation		
CAS#	7439-97	-6		7440-02	-0		7439-92-	1		7440-36-	0		7782-49	-2			Inorganic		. I	Methylate	ed be
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.		
		(ug/g	Data		(ugig	Data		(ugig	Data		(ugig	Data		(ug/g	Data		(ug/g	Data		(ug/g	Data
Sample	(ug/g)	lipid)	qual.	(u g/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(4 g/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(ug/g)	lipid)	qual.
KCMP1	0.089	2.54		0.020		UJγ	0.004		BUJ _s	0.004		U	0.338	9.63		0.023	0.65	J ₆	0.038	1.09	
KCMP2	0.080	4.67		0.030	1.76	J ₇	0.010	0.61	J.	0.003		U	0.263	15.36		0.001		UJ6	0.078	4.56	ł
КСМРЗ	0.130	18.05		0.015	2.05	J ₇	0.009	1.25	Ja	0.003		U	0.241	33.50		0.015	2.11	J ₆	0.034	4.79	

* = lipid-normalized data presented only when a compound is detected.

B = Background levels may impact this data point.
 U = Compound was not detected at the detection limit shown.

 J_6 = Estimated value due to matrix spike recoveries not meeting QC criteria. J_7 = Estimated value due to accuracy of reference material analysis not meeting QC criteria.

J₃= Estimated value due to precision of duplicate analysis not meeting QC criteria.

METAL RESULTS FROM THREE COMPOSITES OF EIGHT COHO SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Silver (. 7440-22			Arsenic 7440-38	(As)-ICP/I -2	MS	Barium 7440-39	• •		Cadmiu 7440-43	• •	_	Copper 7440-50		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	1	Coac.	Conc.*	
Sample	(ug/g)	(ug/g lipid)	Data qual.	(#g/g)	(ug/g lipìd)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.	(ug/g)	(#g/g lipid)	Data qual.	(u g/g)	(ug/g lipid)	Data quai.
HCMP1	0.001	0.08		0.415	24.82		0.147	8.80		0.005	0.27		0.854	51.17	
HCMP2	0.001		U	0.344	71,72		0.082	17.05		0.004		U	0.829	172.67	
нсмрз	0.001		U	0.361	42.46		0.097	11.43		0.004		U	0.750	88.26	

Chemical	Mercury	(Hg)		Nickel (Ni)		Lead (Pt)		Astimony	y (Sb)		Seleniu	n (Sc)			A	rsenic S	peciation		
CAS #	7439-97-	6		7440-02	-0		7439-92-	1		7440-36-0	D		7782-49	+2			Inorganic			Methylate	xi bx
	Conc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Cenc.*		Conc.	Conc.*		Conc.		
Sample	(#g/g)	(ug/g lipid)	Data qual.	(4 g/g)	(ug/g lipid)	Data qual.	(#g/g)	(#g/g lipid)	Data cual.	(ug/g)	(4g/g lipid)	Data qual.	(# g/g)	(ug/g lipid)	Data qual.	(#g/g)	(ug/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.
HCMP1	0.045	2.67		0.043	2.55	J.7	0.003	- í	BUJ	0.003	.	υ	0.155	9.29		0.001		_	0.056	3.38	
HCMP2	0.048	10.04		0.025	5.13	J ₇	0.004		BUJ,	0.003		U	0.188	39.17		0.007	1.38	J ₆	0.029	6.07	
нсмрз	0.039	4.58		0.028	3.31	J ₇	0.009	1.03	J _k	0.003		U	0.162	19.11		0.001		UJ ₆	0.039	4.55	

. .

 $\frac{|10.0173}{9} = \frac{|0.029}{10} \frac{|0.029}{10} \frac{|0.029}{10} \frac{|0.028}{10} \frac{|0.028}{$

 J_6 = Estimated value due to matrix spike recoveries not meeting QC criteria.

 $J_{7}{=}$ Estimated value due to accuracy of reference material analysis not meeting QC criteria.

٨ .

 $J_{\rm S}=$ Estimated value due to precision of duplicate analyses not meeting QC criteria.

METAL RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Silver (2 7440-22	.		Arsenic 7440-38	(As)-ICP/I -2	MS	Barium 7440-39			Cadmius 7440-43			Copper 7440-50		•
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
	1	(ug/g	Data		(ug/g	Data		(ug/g	Data		(ug/g	Data	1	(ug/g	Data
Sample	(ug/g)	lipid)	quai,	(ug/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(ug /g)	lipid)	qual.	(ug/g)	lipid)	qual.
LSCMP1-1	0.001		U	0.151	12.95		0.098	8.35		0.009		U	0.745	63.65	
LSCMP1-2	0.001		U	0.133	16.78		0.087	10.96		0.008		U	0.577	73.09	
LSCMP1-3	0.001		U	0.143	13.24		0.064	5.93		0.008		U	0.772	71.45	
LSCMP2-1	0.001		UJ ₆	0.113	7.77		0.095	6.54		0.003		U	0.398	27.47	
LSCMP2-2	0.001		UJ6	0,181	8.77		0.185	8.97		0.004	0.20		0.458	22.25	
LSCMP2-3	0.001		UJ ₆	0.170	7.51		0.133	5.88		0.004		U	0.483	21.38	
LSCMP3-1	0.001		UJ6	0.098	6.93		0.156	11.04		0.004		υ	0.451	31.98	
LSCMP3-2	0.001		UJ6	0.178	6.17		0.080	2.76		0.003		U	0.433	15.02	
LSCMP3-3	0.001		UJ ₆	0.168	9.93		0.099	5.86		0.004	-	U	0,453	26.79	

Chemical	Mercury	/ (Hg)		Nickel	Ni)		Lead (P	b)		Antimon	y (Sb)		Seleniu	m (Se)			ŀ	Arsenic S	peciation		
CAS #	7439-97	-6		7440-02	-0		7439-92	-1		7440-36-	0		7782-49	9-2	· .		Inorganic			Methylat	ed
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.		
•		(ug/g	Data		(ug/g	Data		{ug/g	Data		(ug/g	Data		(ug/g	Data		(4 g /g	Data		(ug/g	Data
Sample	(ug/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(µg/g)	lipid)	qual.
LSCMP1-1	0.120	10.30		0.060	5.13		0.038		BU	0.004		U	0.257	21.99	J ₈	0.017	1.45		0.007	0.59	
LSCMP1-2	0.125	15.85		0.047	5,97	•	0.026		BU	0.004		U	0.263	33.27	Jg	0.024	3.02		0.004	0.53	
LSCMP1-3	0.140	12.92		0.040	3.74		0.035	_	BU	0.004		U	0.265	24.50	J ₈	0.038	3.55		0.007	0.69	
LSCMP2-1	0.154	10.63		0.010	0.67		0.008	0.54		0.0004	0.03		0.121	8.32		0.012	0.81		0.004	0.26	
LSCMP2-2	0.141	6.85		0.029	1.41		0.020	0.97		0.001	0.06		0.126	6.11		0.008	0.40		0.007	0.34	
LSCMP2-3	0.193	8.53		0.025	1.10		0.017	0.77		0.001	0.03		0.099	4.39		0.004	0.16		0.011	0.48	-
LSCMP3-1	0.189	13.41		0.018	1.26		0.008	0.59		0.0004	0.03		0.137	9,72		0.006	0.39		0.001		U
LSCMP3-2	0.170	5.91		0.010		U	0.006	0.20		0.001	0.02		0.096	3.32		0.001		U	0.011	0.38	
LSCMP3-3	0.145	8.57		0.010		U	0.007	0.40		0.001	0.04		0.155	9.17		0.003	0.15		0.007	0.43	

* == lipid-normalized data presented only when a compound is detected.

B = Background levels may impact this data point.

U = Compared was not detected at the detection limit shown. $J_6 \approx \text{Estimated value due to matrix spike recoveries not meeting QC criteria.}$ $J_8 = \text{Estimated value due to precision of duplicate analyses not meeting QC criteria.}$

METAL RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON COLUMBIA RIVER BI-STATE PROGRAM

Chemical	Silver (A	g)		Arsenic	(As)-ICP/M	1S	Barium (Ba)		Cadmium	(Cd)		Copper	(Cu)	
CAS #	7440-22-	4		7440-38-	2		7440-39-3	3		7440-43-9	9		7440-50	-8	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*	
Sample	(ug/g)	(ug/g lipid)	Data qual.	(u g/g)	(#g/g lipid)	Data qual.	(ug/g)	(#g/g lipid)	Data qual.	(ug/g)	(µg/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.
SIND1	0.001		U	1.793	82.63		0.133	6.14	J ₈	0.009		U	0.236	10.85	
SIND2	0.002		U	0.563	33.32		0.176	10.44	Jg	0.010		U	0.230	13.60	
SIND3	0.002		U	0.558	64.94		0.44	50.97	Ja	0.009		U	0.352	40.88	
SIND4	0.002		U	0.533	53.27		0.096	9.58	Ja	0.009		U	0.261	26.08	
SIND5	0.002		U	0.275	39.88		0.058	8.37	J _g	0.010		U	0.151	21.83	
SIND6	0.002		ប	0.485	19.70		0.149	6.04	Jg	0.010		υ	0.219	8.89	
SIND7	0.002		U	0.395	39.91		0.115	11.60	J ₈	0.010		U	0.189	19.12	
SIND8	0.002		U	0.357	40.56		0.067	7.56		0.009		U	0.226	25.70	
SIND9	0.001		U	0.669	1672.97		0.037	92.78		0.008		U	0.223	557.66	
SIND10	0. 0 01		U	0.748	534.30		0.051	36.14		0.008		U	0.198	141.70	
SIND11	0.001		U	0.240	66.68		0.039	10.81		0.008		U	0.207	57,54	
SIND12	0.001		U	0.311	75.90		0.046	11.20		0.008		U	0.193	47.15	

Chemical	Mercury	(Hg)		Nickel	(Ni)		Lead (Pt	o)		Assimon	y (Sb)		Scieniu	m (Se)			A	arsenic Sp	peciation		
CAS #	7439-97	-6		7440-02	0		7439-92-	-1		7440-36-	0		7782-49	-2			Inorganic			Methylate	:d
	Conc.	Conc.*		Conc.	Coac.*		Conc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.		
		(ug/g	Data		(#g/g	Data		(ug/g	Data		(#g/g	Data		(#g/g	Data		(ug/g	Data		(ug/g	Data
Sample	(u g/g)	lipid)	qual.	(# g/g)	lipid)	qual.	(4 g/g)	lipid)	quai.	(ug/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(u g/g)	lipid)	qual.	(4g/g)	lipid)	qual.
SIND1	0.067	3.08		0.065	3.00		0.023		BUJ	0.004		U	0.405	18.68		0.034	1.56		0.038	1.76	
SIND2	0.057	3.39		0.024	1.40		0.012		BUIs	0.005		U	0.312	18.45		0.011	0.63		0.023	1.38	
SIND3	0.045	5.28		0.587	68.30		0.032		BUJ,	0.004		U	0.490	56.92		0.047	5.43		0.019	2.20	
SIND4	0.049	4.86		0.040	4.03		0.030		BUJ ₈	0.004		U	0.368	36.78	,	0.045	4.45		0.013	1.27	
SIND5	0.053	7.68 ·		0.021		U	0.034		BUJ	0.005		U	0.280	40.54		0.050	7.31		0.007	1.00	
SIND6	0.056	2.29		0.043	1.76		0.029		BUI	0.005		U	0.440	17.87		0.047	1.93		0.009	0.37	
SIND7	0.061	6.13		0.071	7.22		0.019		BUJ	0.005		U	0.432	43.62		0.039	3.94		0.010	1.04	
SIND8	0.071	8.04		0.020		U	0.034		BU	0.004		U	0.528	59.96	J ₈	0.040	4.53		0.003	0.35	
SIND9	0.087	218,62		0.018		U	0.016		BU	0.004		U	0.428	1070.90	Js	0.043	108.57		0.010	26.16	
SIND10	0.111	79.04		0.016		U	0.014		BU	0.004		U	0.320	228.80	J,	0.033	23.40		0.130	93.21	
SIND11	0,049	13.55		0.017		υ	0.014		BU	0.004		U	0.368	102.18	Jg	0.039	10.76		0.009	2.64	
SIND12	0.053	12.81		0.018		U	0.020		BU	0.004		υ·	0.410	100.10	Ja	0.041	9.96		0.010	2.42	

* = lipid-normalized data presented only when a compound is detected.

•

.

$$\begin{split} B &= Background levels may impact this data point.\\ U &= Compound was not detected at the detection limit shown.\\ J_i &= Estimated value due to precision of duplicate analyses not meeting QC criteria. \end{split}$$

.

METAL RESULTS FROM THREE COMPOSITES OF EIGHT STEELHEAD COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Silver (4 7440-22			Arsenic 7440-38	(As)-ICP/I I-2	MS	Barium 7440-39			Cadmiur 7440-43-			Copper 7440-50		
	Conc.	Conc.*		Conc.	Conc.*		Coac.	Солс.*		Conc.	Conc.*		Conc.	Conc.*	
Sample	(u g/g)	(ug/g lipid)	Data qual.	(u g/g)	(ug/g lipid)	Data qual.	(ug/g)	(#g/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.
DCMP1	0.002		U	0.677	23.59		0.020		BUJa	0.011		U	0.784	27.32	-
DCMP2	0.002		U	0.753	18.55		0.021	0.51	1s	0.011		U	0.809	19.93	
DCMP3	0.002		U	0.703	14.58		0.008		BUJ ₈	0.012		U	0.650	13.48	

Chemical	Mercury			Nickel	(Ni)		Lead (Pi)		Antimon	y (Sb)		Seleniu	m (Se)		1	A	rsenic S	occiation		
CAS #	7439-97	-6		7440-02	-0		7439-92	-1		7440-36-	0		7782-49	9-2			Inorganic			Methylate	ed
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.		
Sample	(4 g/g)	(ug/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.	(4 g/g)	(ug/g tipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.	(ug/g)	(#g/g lipid)	Data qual.	(ug/g)	(ug/g lipid)	Data qual.	(uala)	(ug/g lipid)	Data
DCMP1	0.065	2.25	4	0.028	0.99	4-11	0.038		BUJ	0.005	npia)	II	0.405	14.12	qua.	0.018	0.62		(#g/g) 0.021	0.72	qual.
DCMP2	0.058	1.43		0.028	0.69		0.026	•	BUJ,	0.005		บ	0.438	10.79		0.001	0.03		0.033	0.82	
DCMP3	0.068	1.42		0.026		U	0.028		BUJ,	0.006		υ	0.444	9.21		0.001		U	0.031	0.64	

-24

1

METAL RESULTS FROM ONE COMPOSITE OF SEVEN CARP COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Silver (/ 7440-22			Arsenic 7440-38	(As)-ICP/. -2	MS	Barium 7440-39			Cadmiu 7440-43	• •		Copper 7440-50	(Cu)	
	Conc.				Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
Sampl e	(u g/g)	(ug/g lipid)	Data qual.	(#g/g)	(µg/g lipid)	Data qual.	(ug /g)	(ug/g lipid)	Data qual.	(4 g/g)	(ug/g lipid)	Data qual.	(u g/g)	(ug/g lipid)	Data qual.
CCMP1	0.002				5.06		0.102	2.33		0.012		U	1.237	28.31	

Chemical	Mercury			Nickel (Ni)		Lead (Pi))		Antimon	y (Sb)		Scieniu	m (Se)		1	A	Irsenic S	occiation		
CAS #	7439-97	-6		7440-02	-0		7439-92	-1		7440-36	0		7782-49	2			Inorganic		-	Methylate	cd
	Coac.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*		Conc.		
		(#g/g	Data		(ug/g	Data		(4g/g	Data		(ug/g	Data	ĺ	(ug/g	Data		(ug/g	Data		(ug/g	Data
Sample	(4 g/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(#g/g)	lipid)	qual.	(ug/g)	lipid)	qual.	(u g/g)	lipid)	qual.	(u g/g)	lipid)	qual.
CCMP1	0.145	3.31		0.030	0.69		0.028		BU	0.005		U	0.528	12.08	J _a	0.001	0.03		0.020	0.45	

.

APPENDIX C

SEMIVOLATILE ORGANIC DATA

SEMI-VOLATILE RESULTS FROM THREE COMPOSITES OF EIGHT CHINOOK SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical	Phenol			2-Chlorop	henol		1,4-Dichlo	robenzene		4-Methylp	henol	
CAS #	108-95-2			95-57-8			106-46-7			106-44-5		
• .	Conc.	Conc. * (mg/kg	Data ·	Conc.	Conc. * (mg/kg	Data	Conc.	Conc. * (mg/kg	Data	Conc.	Conc. * (mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(<i>u</i> g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
Kempl	49		BU	20		U	20	,	U	20		U
Kemp2	43		BU	10		U	10		U	10		U
Kcmp3	191	26.5		10	•	U	10 -		U	10		U

Chemical	N-nitroso-o	li-n-propyla	mine	Isophoron	e		1,2,4-Tric	hlorobenze	ne	Acenaphth	ene	
CAS #	621-44-5			78-59-1			120-82-1			83-32-9		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	qual.	(<i>u</i> g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
Kcmp1	20		U	20		U	20		٠U	20		U
Kcmp2	10		U	10		U	10		U	10	• •	U
Kcmp3	10		U	10		U	10		U	10		ប

Chemical	4-Nitropher	nol		2,4-Dinitr	otoluene		Pyrene			Chrysene			bis(2-Ethyl	nexyl)phtha	late
CAS #	100-02-7			121-14-2			129-00-0		,	218-01-9			117-81-7	•	
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
Kcmp1	20		U	20		U	20		U	20		U	64		BÜ
Kcmp2	10		U	10		U	10		U	10		U	79		BU
Kcmp3	10		U	10		<u> </u>	10		U	10		ប	38		BU

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.
 U = Compound was not detected at the detection limit shown.

SEMI-VOLATILE RESULTS FROM THREE COMPOSITES OF EIGHT COHO SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Phenol 108-95-2			2-Chlorop 95-57-8	henol		1,4-Dichle 106-46-7	orobenzene		4-Methylp 106-44-5	henol	
Sample	Conc, (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data quai.
Hcmp1	52		BU	10		U	10		U	10		U
Hcmp2	40		BU	10		U	10		U	10		U
Нстр3	61	7.2	J ₅	10		UJs	10		UJ_{S}	10		UJ ₅

Chemical CAS #	N-nitroso-0 621-44-5	li-n-propyla	mine	Isophoron 78-59-1	e		1,2,4-Tric 120-82-1	hlorobenze	ne	Acenaphth 83-32-9	ene	
Sample	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (µg/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.
Hcmp1	10		U	10		U	10		U	10		U
Hcmp2	10		U	10		U	10		U	10		U
Нстр3	10		UJ ₅	10		UJs	10		UJ ₅	10		UJ₅

Chemical	4-Nitrophe	nol		2,4-Dinitr	otoluene		Pyrene			Chrysene			bis(2-Ethyll	hexyl)phtha	late
CAS #	100-02-7			121-14-2			129-00-0			218-01-9			117-81-7		
	Conc.	Conc. *		Солс.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(4 g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	ipid)	qual.	(ug/kg)	lipid)	qual.
Hcmp1	10		U	10		U	10		U	10		U	49		BU
Hcmp2	10		U	10		U	10		U	10		U	61		BU
Нстр3	10		UJ,	10		UJ₅	10		UJ5	10		UI5	93		BUJ ₅

* = lipid-normalized data presented only when a compound is detected.

B = Background levels may impact this data point.U = Compound was not detected at the detection limit shown.

 J_5 = Estimated value due to surrogate spike recoveries not meeting QC criteria.

SEMI-VOLATILE RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 1 of 2) COLUMBIA RIVER BI-STATE PROGRAM

nar Naria

> . مرجز ع

Chemical	Phenol			2-Chlorop	henol		1,4-Dichle	orobenzene		4-Methylp	henol	
CAS #	108-95-2			95-57-8			106-46-7			106-44-5		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.
LSCMP1-1	24		BU	10		U	10		Ŭ	10		U
LSCMP1-2	24		BU	10		U	10		U	10	· ·	U
LSCMP1-3	18		BU	10		U	10		U	10		U
LSCMP2-1	10		U	10		U	10		U	10		Ŭ
LSCMP2-2	10		U	10		U	10		U	10		U.
LSCMP2-3	23	1.0		10		U	10		U	11	0.5	
LSCMP3-1	15	1.1		10		U	10		U	11	0.8	
LSCMP3-2	21	0.7	J ₅	10		ឃរ	10		UJ₅	10	.0.3	J5
LSCMP3-3	13		U	10		U	10		U	9	0.5	J

Chemical	N-nitroso-o	li-n-propyla	mine	Isophoron	e		1,2,4-Tric	hlorobenze	ne	Acenaphth	ene '	
CAS #	621-44-5			78-59-1			120-82-1			83-32-9		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
LSCMP1-1	10		U	10		U	10		U	10	•	U
LSCMP1-2	10		U	10		U	10		U	10		U
LSCMP1-3	10		U	10		U	10		U	10		U
LSCMP2-1	10		U	10		U	10	,	U	10	• ·	U
LSCMP2-2	10		U	10		U	10		U	10		U
LSCMP2-3	10		U	10		U	10		U	10		U
LSCMP3-1	10		U	10		U	10		U	10		U
LSCMP3-2	10		UJ₅	10		UJ5	10		UJ₅	10		UJ₅
LSCMP3-3	10		υ,	10		U	10	•	ບັ	10		บ่

.

* = lipid-normalized data presented only when a compound is detected.

B = Background levels may impact this data point.

 $\mathbf{U}=\mathbf{C}\mathbf{o}\mathbf{m}\mathbf{p}\mathbf{o}\mathbf{u}\mathbf{d}$ was not detected at the detection limit shown.

 J_1 = Value is below nominal reporting limit.

 J_5 = Estimated value due to surrogate spike recoveries not meeting QC criteria.

Chemical	4-Nitrophe	nol		2,4-Dinitr	otoluene		Pyrene			Chrysene			bis(2-Ethyl	hexyl)phtha	late
CAS #	100-02-7			121-14-2			1 29-00-0			218-01-9			117-81-7		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
LSCMP1-1	99	8.5		10		U	10		U	10		U	223		BU
LSCMP1-2	48	6.1		10		U	10		U	10		U	29		BU
LSCMP1-3	89	8.2		10		U	10		U	10		U	23		BU
LSCMP2-1	10		U	10		U	10		U	10		υ	61	-	BU
LSCMP2-2	10		U	10		U	10		U	10		U	781	37.9	
LSCMP2-3	10		U	10		U	10		U	10		U	116		BU
LSCMP3-1	10		U	10		U	10		U	10		U	22		BU
LSCMP3-2	10		UJ5	10		IJ₅	10		UJ₅	- 10		UJ₅	1101	38.2	Js
LSCMP3-3	10		U	10		U	10		ับ	· 10		ບັ	74		BU

SEMI-VOLATILE RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 2 of 2) COLUMBIA RIVER BI-STATE PROGRAM

* = lipid-normalized data presented only when a compound is detected.

B = Background levels may impact this data point. U = Compound was not detected at the detection limit shown.

 J_5 = Estimated value due to surrogate spike recoveries not meeting QC criteria.

SEMI-VOLATILE RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 1 of 2) COLUMBIA RIVER BI-STATE PROGRAM

ಸ್ಟುವಲ್

ч <u>г</u>

. -.

Chemical	Phenol			2-Chlorop	henol		1,4-Dichlo	robenzene		4-Methylp	henol	
CAS #	108-95-2			95-57-8			106-46-7			106-44-5		
	Conc.	Солс. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
SIND1	16		BU	10		U	10		·U	10		U
SIND2	12		BU	10		U	10		U	10		U
SIND3	13		BU	10		U	10		U	10		U
SIND4	14		BU'	10		U	10		U	10 ·		U
SIND5	12		BU	10		U	10		U	10		U
SIND6	11		BU	10		U	10		U	10		U
SIND7	. 12		BU	10		U	10		U	10		U
SIND8	19	•	BU	10		U	10		U	15	1.7	
SIND9	17		BU	10		U	10		U	18	45.0	
SIND10	14		BÜ	10		U	10		U	12	8.6	
SIND11	13		BU	10		U	10		U	12	3.3	
SIND12	21		BU	10		U	10		U	9	2.2	J

Chemical	N-nitroso-o	li-n-propyla	mine	Isophoron	e		1,2,4-Tric	hlorobenze	ne	Acenaphth	ene	
CAS #	621-44-5		• .	78-59-1			120-82-1			83-32-9		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
SIND1	10		U	10		U	10		U	10		U
SIND2	10		U	10		U	10		U	10		U
SIND3	10		U	10		U	10		U	10		U
SIND4	10		U	10		U	10		U	10		U
SIND5	10		U	10		ប	10		U	10		ប
SIND6	10		U	10		U	10		U	10		U
SIND7	10		U	10		U	10		U	10		U
SIND8	10		U	10		U	10		U	10		U
SIND9	10		U	10		U	10		U	10		U
SIND10	10		U	10		U	10		U	10		U
SIND11	10		U	10		U	10		U	10		U
SIND12	10		U	10		U	10		U	10		U

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.

U = Compound was not detected at the detection limit shown.

 $J_1 =$ Value is below nominal reporting limit.

Chemical	4-Nitropher	nol		2,4-Dinitr	otoluene		Ругепе		_	Chrysene			bis(2-Ethyll	hexyl)phtha	late]
CAS #	100-02-7			121-14-2			129-00-0			218-01-9			117-81-7		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
1		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.
SIND1	69	3.2		10		U	10		U	10		U	25		BU
SIND2	69	4.1		10		U	10		U	10		U	. 26		BU
SIND3	24	2.8		10		U	10		U	10		U	62		BU
SIND4	89	8.9		10		U	10		U	10		U	47		BU
SIND5	71	10.3		10		U	10		U	10		U	30		BU
SIND6	87	3.5		10		U	10		U	10		U	16		BU
SIND7	119	12.0		10		U	10		U	10		บ	59		BU
SIND8	10		U	10		U	10		U	10		U	32		BU
SIND9	10		U	10		U	10		U	10		U	42		BU
SIND10	10		U	. 10		U	10		U	10		U	24		BU
SIND11	10		U	10		U	10		U	10		U	136		BU
SIND12	10		U	10		<u> </u>	10		U	10		U	42		BU

.

SEMI-VOLATILE RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 2 of 2) COLUMBIA RIVER BI-STATE PROGRAM

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.
 U = Compound was not detected at the detection limit shown.

è

SEMI-VOLATILE RESULTS FROM THREE COMPOSITES OF EIGHT STEELHEAD COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	Phenol 108-95-2			2-Chlorop 95-57-8	henol		1,4-Dichlo 106-46-7	orobenzene		4-Methylp 106-44-5	henol	÷
Sample .	Conc. (ug/kg)	Conc. Conc. * (mg/kg Data. (ug/kg) lipid) qual.			Conc. * (mg/kg lipid)	Data qual.	Conc. (ug/kg)	Conc. * (mg/kg lipid)	Data qual.	Conc.	Conc. * (mg/kg lipid)	Data qual.
DCMP1	41		BU	10		U	10		U	12	0.4	
DCMP2	35		BU	10		U	10		U	9	0.2	J
DCMP3	29		BU	10		U	10		U	11	0.2	-

Chemical	N-nitroso-o	li-n-propyla	mine	Isophoron	e			hlorobenze	ne	Acenaphth	ene	
CAS #	621-44-5			78-59-1			120-82-1			83-32-9		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample .	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
DCMP1	10		U	10		U	10		U	10		U
DCMP2	10		U	10		U	10		U	10		U
DCMP3	10		U	10		U	10		U	10		U

Chemical	4-Nitropher	nol		2,4-Dinitr	otoluene		Pyrene			Chrysene			bis(2-Ethyll	hexyl)phtha	late
CAS #	100-02-7			121-14-2		ı	129-00-0			218-01-9			117-81-7		
	Conc.				Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(µg/kg)	lipid)	mg/kg Data		lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
DCMP1	25	0.9		10		U	10		U	10		U	20		BU
DCMP2	23	0.6		10		U	10		U	10		U	55		BU
DCMP3	28	0.6		10		U	1Q		. U	10		U	19		BU

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.

U = Compound was not detected at the detection limit shown.

 $J_1 =$ Value is below nominal reporting limit.

SEMI-VOLATILE RESULTS FROM ONE COMPOSITE OF SEVEN CARP COLUMBIA RIVER BI-STATE PROGRAM

.

7

Chemical	Phenol			2-Chlorop	henol		1,4-Dichle	orobenzene		4-Methylp	henol	
CAS #	108-95-2			95-57-8			106-46-7			106-44-5		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(<i>u</i> g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
CCMPI	18		BU	20		U	20		U	20		U
Chemical	N-nitroso-o		mine	Isophoron	e		1,2,4-Tric	hlorobenze	ne	Acenaphth	ene	
			mine	Isophoron 78-59-1	e		1,2,4-Tric 120-82-1	hlorobenze	ne	Acenaphth 83-32-9	ene	
Chemical	N-nitroso-o		mine	1 1	е Сонс. *			hlorobenze Conc. *	ne		ene Conc. *	
Chemical	N-nitroso-0 621-44-5	li-n-propyla	mine Data	78-59-1		Data	120-82-1		ne Data	83-32-9		Data
Chemical	N-nitroso-0 621-44-5	li-n-propyla Conc. *		78-59-1	Сонс. *	Data qual.	120-82-1	Conc. *		83-32-9	Conc. *	Data qual.

Chemical	4-Nitrophe	nol		2,4-Dinitr	otoluene		Pyrene			Chrysene			bis(2-Ethyll	exyl)phtha	late
CAS #	100-02-7	100-02-7 Conc. Conc. *		121-14-2			129-00-0			218-01-9			117-81-7		
	Conc.	Conc. *		Conc.	Conc. *		Conc.	Conc. *	-	Conc.	Conc. *		Conc.	Conc. *	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(4 g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(<i>u</i> g/kg)	lipid)	qual.
CCMP1	106	2.4		20		U	20		U	20		U	23		BU

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.
 U = Compound was not detected at the detection limit shown.

APPENDIX D

PESTICIDE/PCB DATA

PESTICIDE/PCB RESULTS FROM THREE COMPOSITES OF EIGHT CHINOOK SALMON COLUMBIA RIVER BI-STATE PROGRAM

۲

Chemical	Hexachlorot	utadiene		Hexachlor	obenzene		alpha-BHC			gamma-BHO	3		Heptachlor			Aldrin			beta-BHC			Methyl para	thion	
CAS #	87-68-3			118-74-1			319-84-6			58-89-9			76-44-8			309-00-2			319-85-7			298-00-0		
	Conc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	•	Conc.	Conc.*		Conc,	Conc.*		Conc.	Conc.*		Conc,	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	quat.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual,	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual,	(ug/kg)	lipid)	qual.
KCMP1	0.02		U.	0.02		U	0.04		U	0.04		U	0.04		U	0.04		U	0.04		U	0.89		U
KCMP2	0.02		U	0.02		U	0.04		U	0.04		U	0.04		U	0.04		U	0.04		U	0.89		U
	0.02	,	U	0.02			0.04		ບື	0.04		υ	0.04		U	0.04		U	0.04		U	0.89		U

																			•						
Chemical	delta-BHC			Heptachic	r Epoxide		Endosulfan			gamma-Ch	lordane		alpha-Chier			p.p'-DDE			Dieldrin			Endrin			Ţ.
CAS #	319-86-8			1024-57-3	1		959-98-8			5566-34-7			5103-71-9			72-55-9			60-57-1			72-20-8			
· · ·	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*		Conc.	Conc.*		÷.
		(mg/kg	Data		(mg/kg	Data	J	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	f
Sample	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(#g/kg)	lipid)	quai.	ŕ
KCMPI	0.04		U	0,04		U	0.04		U	0.04		U	0.04		U	11.33	0.32		0.09		U	0.09		U	ĥί.
ксмр2	0.04		U	0.04		U	0.04		υĊ	0.04		U	0.04		U	4.57	0.27		0.09		U	0.09		U	i.
KCMP3	0.04	¥*	U	0.04		U	0.04	-	U	0.04		U	0.04		U	9.67	1.34		0.09		U	0.09		U	2

Chemical	p,p'-DDD			Endosulfa	n II		p,p'-DDT			Endrin Ald	chyde		Mirex			Endosulfan			Methoxych	ler		Endrin Keto	n¢	
CAS#	72-54-8			33213-65-	9		50-29-3			7421-93-4			2385-85-5			1031-07-8			72-43-5	•		53494-70-5		
	Conc.	Conc.*		Conc.	Coac.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*	
	[(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	•	(mg/kg	Data	· ·	(mg/kg	Data .		(mg/kg	Data
Sample	(µg/kg)	lipid)	qual,	(u g/kg)	lipid)	qual.	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(µg/kg)	lipid)	qual.	(ug/kg)	lipid)	વૃપ્રશ્રી.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
KCMPI	5.67	0.16		0.09		U	3.07	0.09		0.09		U	0.09		U	0.09		·U	0,44		U	0.09		U
KCMP2	2.13	0.12		0.09		U	0.80	0.05		0.09		U	0.09		U	0.09		U	0.44		U	0.09		U
КСМР3	3.33	0.46		0.09		U	0.53	0.07		0.09		U	0.09		U	0.09		U	0.44		U	0.09		U

Chemical	Arochlor 10)16		Arochior 1221 A 1110-428-2 11			Arochler 12	32		Arochier 1	242		Arochior 1	248		Arochier 1	254		Arochlor 1	260		Toxaphene		_
CAS #	12674-11-2			Conc. Conc.* C			1114-116-5			5346-921-9			1267-229-0	5		1109-769-1	L .		1109-682-5	5		8001-35-2		
	Conc.	Conc.*		Conc.	Cost.*		Cenc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg) ·	lipīd)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	çu al.	(u g/kg)	Lipid)	qual.	(ug/kg)	lipid)	qual,	(u g/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.
KCMP1	1.78		U	1.78		U	1.78		U	1,78		·U	1.78		Ű	1.78		U	14.88	0,42		8.89		U
KCMP2	0.89		U	0.89		ប	0.89		U	0.89		υ	0.89		U	0.89		U	2.77	0.16		4.44		U
КСМР3	0.89		U	0.89		U	0.89		U	0.89		υ	0.89		U	0.89		U	12.25	1.70		4.44		U

÷

Igid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

PESTICIDE/PCB RESULTS FROM THREE COMPOSITES OF EIGHT COBO SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical	Hexachioro	butzdicae		Hexachion	obenzene		aipha-BHC			gamma-BH	с		Heptachlor			Aldrin			beta-BHC			Methyl para	thion	
CAS#	87-68-3			118-74-1			319-84-6			58-89-9			76-44-8			309-00-2			319-85-7			298-00-0		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*		Coac.	Conc.*		Conc.	Conc.*		Cosc.	Conc.*		Coac.	Conc.*		Conc.	Coec.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		1 0 0	Data		(mg/kg	Da
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(4 g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(#g/kg)	lipid)	qu
HCMP1	0.02		U	0.02		U	0.04		U	0.04		U	0.04		U	0.04		U	0.04		U	0.89		U
HCMP2	0.02		U	0.02		บ	0.04		U	0.04		ឋ	0.04		U	0.04		U	0.04		U	0.89		U
нсмрз	0.02	•	U	0.02		บ	0.04		U	0.04		ប	0.04		U·	0.04		U.	0.04		ប	0.89		U
Chemical	deita-BHC			Heptachlo	r Epoxide		Endosulfan	I		gamma-Chi	ordanc		alpha-Chio	rdane		p,p'-DDE			Dieldrin			Endrin		
CAS #	319-86-8			1024-57-3	3		959-98-8			5566-34-7			5103-71-9			72-55-9			60-57-1			72-20-8		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Cenc.*		Conc.	Cooc.*		Conc.	Conc.*		Ceec.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	D
Sample	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	quai.	(4 g/kg)	lipid)	qual.	(ug/kg)	tipid)	qual.	(#g/kg)	lipid)	વૃક્ષની.	(#g/kg)	lipid)	qual.	(# g/kg)	lipid)	લ્પ્સાં.	(ug/kg)	lipid)	QU
HCMP1	0.04		Ū.	0.04		U	0.04		U	0.04		U	0.04		U	4.51	0.27		0.09		U	0.09		U
HCMP2	0.04		U	0.04		U	0.04		U	0.04		υ	0.04		U	2.26	0.47		0.09		U	0.72	0.15	
нсмр3	0.04		U	0.04		U	0.04		U	0.04		U	0.04		U	2.33	0.27		0.09		U	0.09		U
Chemical	p,p'-DDD			Endesulfa	дΠ		p,p'-DDT			Endrin Alde	ehyde		Mirex			Endosulfan	Sulfate		Methoxych	ilor		Endrin Ket		
CAS #	72-54-8			33213-65	.9		50-29-3			7421-93-4			2385-85-5			1031-07-8			72-43-5			53494-70-5		
	Ceac.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Conc."		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Cooc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	· ·	(mg/kg	Data		(mg/kg	D
Sample	(ug/kg)	tipid)	qual.	(ug/kg)	lipid)	લુલ્લો.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	વૃષયો.	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(#g/kg)	Lipid)	æ
HCMPI	1.40	0.08		0.09		U	0.60	0.04		0.09		υ	0.09		U	0.09		U	0.44		U	0.09		U
HCMP2	0.09		υ	0.09		U	1.07	0.22		0.09		υ	0.09		U	0.09		U	0.44		Ų	0.09		U
	1.53	0.18		0.09		- *	1.07	0.13		0.09			0.09		n	0.09		R	0.44		U	0.09		ប

Chemical	Arochlor 1	016		Arochlor	1221		Arochler 1	232		Arochior I	242		Arochlor 1	248		Arochlor 1	254		Arochior 1	260		Toxaphene		
CAS #	12674-11-2 1110-428-2 Conc. Conc.* Cenc. Cenc.*				1114-116-5			5346-921-9			1267-229-	ś		1109-769-1			1109-682-;	5		8001-35-2				
	Coac.	Conc.*		Cenc.	Cenc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Couc.*		Coac.	Conc.*		Coac.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	quai.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(µg/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	quat,	(# g/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.
HCMP1	1.78		U	1.78		U	1.78		U	1.78		υ	1.78		υ	1.78		U	4.08	0.24		8.89		Ũ
HCMP2	0.89		U	0.89		U	0,89		U	0.89		U	0.89		U	0.89		U	2.09	0.44	1	4.44		U
нсмрз	0.89		บบ	0.89		U	0.89		U	0.89		U	0.89		U	0.89		U	2.99	0.35		4.44		U

Ipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

.

PESTICIDE/PCB RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 1 of 2)
COLUMBIA RIVER BI-STATE PROGRAM

Chemical	Hexachlor	robutadiene		Hexachlo	orobenzene		alpha-BHC			gamma-BH	AC		Heptachlor	<i>i</i>	,	Aldrin			beta-BHC		···· ,	Methyl para	rathion	
CAS#	87-68-3	•		118-74-1			319-84-6			. 58-89-9			76-44-8		,	309-00-2			319-85-7		,	298-00-0		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Cone,	Ceac,*	,	Conc.	Conc.*		Conc,	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data	1.	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	f:	(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(# g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
LSCMPI-1	0.01		U	1.53	0.13		0.01		υ	0.01		U	0.01		U	0.01		U	0.01		U	0.22		U
LSCMP1-2	0.01		U	0.20	0.03		0.01		υ	0.01		U	0.01		υ	0.01		ບໍ່	0.01		υľ	0.22		U
LSCMP1-3	0.01		U	0.30	0.03		0.01		U	0.01		U	0.01		ប	0.01		U	0.01,	•	ប	0.22		U
LSCMP2-1	0.01		Ü	0.32	0.02		0.02		U	0.02		U	0.02		U	0.02		U	0.02		U	0.44		U
LSCMP2-2	0.01		U	0.66	0.03		0.02		υ	0.02		U	0.02		υ	0.02		U	0,02		υ	0.44		U
LSCMP2-3	0.01		υ	0.24	0.01	•	0.02		υ	0.02		υ	0.02		υ	0.02		υ	0.02		υ	0.44		U
LSCMP3-1	0.01		U	0.25	0.02		0.02		U	0.02		U	0.02		U	0.02		U	0.02		U	0.44		U
LSCMP3-2	0.01		U	0.68	0,02	,	0.02		U	0.02		U	0.02		υ	0.02		U	0.02		υľ	0.44		U
LSCMP3-3	0.01		U	0.32	0.02		0.02		U	0.02		υ	0.02		υ ΄	0.02		U	0.02		υ	0.44		U

Chemica)	delta-BHC			Heptachl	er Epoxide		Endosulfan	1 I		gamma-Chi	dordane		alpha-Chlor	rdane		p.p -DDE			Dieldrin			Endrin		*	
CAS#	319-86-8			1024-57-3	3		959-98-8			5566-34-7			5103-71-9			72-55-9			60-57-1			72-20-8			
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	· ·	Conc.	Conc.*		Cone,	Conc.*		1
i i		(mg/kg	Data		(mg/kg	Data	· ·	(mg/kg	Data		(mg/kg	Data	ł	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data	Har. Her
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(u g/kg)	tipid)	qual.	
LSCMP1-1	0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	36,23	3.10		0.02		U	0,02		U	
LSCMP1-2	0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	31,83	4.03		0.02		U	0.02		U.	1
LSCMP1-3	0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	30.22	2.80		0.02		្ប	0.02		U	1
LSCMP2-1	0.02		U	0.02		U	0.02		·U	0.02		U	0.02		U	7.50	0.52		0.04		U	0.04		U	1
LSCMP2-2	0.02		U	0.02		U	0.02		U	0.02		U	0.02		U	28.03	1.36		0.04		U	0.04		U	ł
LSCMP2-3	0.02		U	0.02		U	0.02		U	0.02		U	0.02		U	24.32	1.08		0.04		·U	0.04		U	6
LSCMP3-1	0.02		U	0.02		U	0.02		U	0.02	· · · · · · · · · · · ·	U	0.02		U	27.07	1.92		0.04		U	0.04		U	1
LSCMP3-2	0.02		U	0.02		U	0.02		U	0.02		U	0.02		U'	44.63	1.55		0.04		U	0.04		U	Ŕ
LSCMP3-3	0.02		U	0.02		U	0.02		U	0.02		U	0.02		ບໍ່	28.10	1.66		0.04		U	0.04		U	£.

.

= lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

PESTICIDE/PCB RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 2 of 2) COLUMBLA RIVER BI-STATE PROGRAM

.

Chemical	p,p'-DDD			Endosulfa	a II		p,p'-DDT			Endrin Ald	chyde		Mirex			Endosulfar	Sulfate		Methoxych	der	-	Endrin Keu	ODC	
CAS#	72-54-8			33213-65	9	_	50-29-3			7421-93-4			2385-85-5			1031-07-8			72-43-5			53494-70-5	j j	
	Cosc.	Conc.*		Cose,	Conc.*		Conc.	Coac.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Coac,	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u gikg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	વૃપ્રત્રી,	(#g/kg)	lipid)	qual.
LSCMP1-1	5.87	0.50		0.02		υ	0.42	0.04		0.02		U	0.02	•	U	0.02		U	0.11		U	0.02		U
LSCMP1-2	4,43	0,56		0.02		υ·	0.43	0.05		0.02		U	0.02		U	0.02		ប	0.11		U	0.02		U
LSCMP1-3	6.29	0.58		0.02		U	0.48	0.04		0.02		U	0.02		U	0.02		ប	0.11		U	0.02		U
LSCMP2-1	5.18	0.36	•	0.04		U	1.23	0.08		0.04		U	0.04		U	0.04		U	0.22		U	0.04		U
LSCMP2-2	10.43	0.51		0.04		ប	2.15	0.10		0.04		U	0.04		U	0.04		U	0.22		U	0.04 .		U
LSCMP2-3	9.05	0,40		0.04		U	0.02		U	0.04		U	0.04		U	0.04		U	0.22		U	0.04		υ
LSCMP3-1	7.60	0.54		0.04		Ü	2.45	0.17		0.04		U	0.04		υ	0.04		U	0.22		U	0.04		υ
LSCMP3-2	18.37	0.64		0.04		U	6.93	0.24		0.04		U	0.04		U	0.04		U	0.22		U	0.04		U
LSCMP3-3	11.67	0.69		0.04		U	4.57	0.27		0.04		U	0.04		U	0.04		U	0.22		U	0.04		U

Chemical	Arochier 1 12674-11-3			Arocalor 1110-428			Arechior 1 1114-116-2			Arochlor 1 5346-921-9			Arochlor 1267-229-			Arochier 1 1109-769-			Arochler I			Toxaphene		
CAS#	12074-11 Conc.	Cente.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*		Coac.	E Coac.*		1109-682-: Conc.	Conc.*		8001-35-2 Conc.	Conc.*	
Sample	(# g/kg)	(mg/kg lipid)	Data qual,	(ug/kg)	(mg/kg lipid)	Data quai.	(# g/kg)	(mg/kg lipid)	Data qual.	(ug/kg)	(mg/kg lipid)	Data qual,	(ug/kg)	(mg/kg lipid)	Data qual.	(ug/kg)	(mg/kg lipid)	Data qual.	(ug/kg)	(mg/kg lipid)	Data qual.	(#g/kg)	(mg/kg lipid)	Data qual,
LSCMP1-1	1.11		U	1.11		U	3.11		U	1.11		U	18.33	1.57		1.11		U	49.17	4.20		5.56		Ŭ
LSCMP1-2	1.11		U	1.11		U	1.11		U	1.11		U	11.47	1.45		1.11		U	34.00	4.30		5.56		U
LSCMP1-3	1.11		U	1.11		U	1.11		υ	1.11		U	10.86	1.01		1.11		U	34.49	3.19		5.56		U
LSCMP2-1	2.22		U	2.22		U	2.22		υ	2.22		U	2.22		U	2.22		U	13.87	0.96		11.11		υ
LSCMP2-2	2.22		U	2.22		U	2.22		U	2.22		U	2.22		U	2.22		U	39.62	1.92		11.11		υ
LSCMP2-3	2.22		U	2.22		U	2.22		U	2.22		U	11.6	0.51		2.22		U	45.37	2.01		11.11		U
LSCMP3-1	2.22		U	2.22		υ	2.22		U	2.22		U	2.22		υ	2.22		U	28.6	2.03		11.11		U
LSCMP3-2	2.22		U	2.22		ប	2.22		U	2.22		U	2.22		υ	2.22		U	57.66	2.00		11.11		U
LSCMP3-3	2.22		U	2.22		U	2.22		U	2.22		U	2,22		υ	2,22		U	29.14	1.72		11.11		U

* = lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

PESTICIDE/PCB RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 1 of 2) COLUMBIA RIVER BI-STATE PROGRAM

.

.

Chemical	Hexzchlor	robutadiene		Hexzchlo	robenzene		alpha-BHC			gamma-BH	íC		Heptachler	;		Aldrin			beta-BHC			Methyl para	athion	
CAS#	87-68-3			118-74-1			319-84-6			58-89-9			76-44-8			309-00-2			319-85-7			298-00-0		
· ·	Canc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Сопс.	Conc."		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(# g/kg)	lipid)	qual.
SINDI	0.01		U	0.53	0.02		0.11	0.01		0.01		U	0.01		U	0.01		U	0.01		U	0.22		U
SIND2	0.01	•	U	0.20	0.01		0.01		U	0.01		U	0,01		ប	0.01		U	0.01		ប	0.22		U
SIND3	0.01		U	0.17	0.02		0.02	0.002		0.01		U	0.01		U	0.01		U	0.01		U	0.22		U
SIND4	0.09	0.01		0.46	0.05		0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	0.22		U.
SIND5	0.06	0.01		0.27	0.04		0.01		U	0.01		U	0.01	•	ប	0.01		U	0.01		บ่	0.22		U
SIND6	0.11	0.004		1.01	0.04		0.13	0.01		2.26	0.09		0.01		U	0.01		U	0.01		U	0.22		U
SIND7	0.06	0.01	1	0.48	0.05		0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	0.22		U
SIND8	0.46	0.05	1	0,70	0.08		0.04	0.005		0.02		U	0.02		U	0.02		U	0.02		U	0.44		U
SIND9	0.51	1.28	1	0.12	0.30		0.02		U	0.02		U	0.02		ย '	0.09	0.23		0.02		υ	0.44		U
SIND10	0.36	0.26	1	0.01		U	0.02		U	0,02		U	0.02		U '	0.02		U	0.02		U	0.44		U
SINDI I	0.58	0.16	1	0.50 ·	0.14		0.02	0.01		0,02		U	0.02		บ '	0.12	0.03		0.02		U	0.44		U
SIND12	0.49	0.12		0.07	0.02		0.02		Ū.	0.24	0.06		0.02		บ '	0.02		U	0.02		U	0.44		U

Chemicat	delta-BHC	/		Heptachlo	r Epoxide		Endosulfan	1		gamma-Chl	ordane		alpha-Chio	rdane		p,p'-DDE			Dieldrin			Endrin		
CAS#	319-86-8			1024-57-3			959-98-8			5566-34-7			5103-71-9			72-55-9			60-57-1	•		72-20-8		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	i i	(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	quat.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
SIND1	0.01		υ	0.01		U	0.01		U	Q.Q1		U	0.01		U	76.60	3.53		0.02		U	0.02		U.
SIND2	0.01		U	0.01		U	10.01		U	0.01	•	U	0.01		U	33.88	2.00		0.02		U	0.02		U
SIND3	0.01		U	0.01		υ	0,01		U	0.01		υ	0.01		U	27.22	3.17		0.02		U	0.02		U
ŞIND4	0.01		ប	0.01		ប	0.01		U	0.01		U	0.01		U	38.95	3.90		0.02		U	0.02		U
SIND5	0.01		U	0.01		U	0.01		U	0.01		U	0.01		U	22.57	3.27		0.02		U	0.02		U
SIND6	0.01		U.	0.01		υ	0.01		U	0.01		U	0.01		U	60.50	2.46		0.02		U	0.02		U
SIND7	0.01		U	0.01		บ	0.01		U	0.01		υ	0.01		U	47.27	4.77		0.02		ប	0.02		U
SIND8	0.02		U	0.02		บ	0.02		U	0.02		U	0.02		U	52.93	6.01		0.04		U	0.04		U
SIND9	0.02		U	0.02		υ	0.02		U	0.02		U	0.02		U	13.17	32.93		0.04		U	0.04		U
SIND10	0.02		U	0.02		U	0.02		U	0.02		ń	0.02		U	29.63	21.16		0.04		U	0.04		U
SIND11	0.02		U	0.02		U	0.02		U	0.02		U	0.02		U	59.16	16.43		0.04		U	0.04		U
SIND12	0.02		U	0.02		U	0.02		U	0.02		U	0,02		ប	34.97	8.53		0.04		U	0.04		U

= lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

.

.

PESTICIDE/PCB RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 2 of 2) COLUMBIA RIVER BI-STATE PROGRAM

.....

Chemical CAS#	p,p'-DDD 72-54-8			Endosulfa 33213-65-			p,p'-DDT 50-29-3			Endrin Ald 7421-93-4	ichyde -		Mirex 2385-85-5			Endosulfas 1031-07-8	a Sulfate		Methoxych 72-43-5	lor		Endrin Ke 53494-70-:		
	Conc.	Conc.*		Conc.	Conc.*	•	Conc.	Conc.*		Conc.	Coac.*		Cenc.	Conc.*		Conc.	Conc.*		Coac.	Conc.*		Conc.	Couc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		{mg/kg	Data	1	(mg/kg	Data
Sanaple	(# g/kg)	Hipid)	qual.	(#g/kg)	lipid)	qual.	(ug/kg)	(ipid)	qual.	(u g/kg)	lipid)	લ્પરાં.	(#g/kg)	lipid)	qual.	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
SIND1	8.09	0,37		0.02		U	1.03	0.05		0.02		U	0.02		U	0.02		υ	0.11		U	0.02		U
SIND2	8.48	0.50		0.02		U	1.2	0.07		0.02		U	0.02		U	0.02		U	0.11		U	0.02		υ
SIND3	3.80	0.44		0.02		U	0.36	0.04		0.02		U	0.02		U	0.02		U	0.11		U	0.02		U
SIND4	6,74	0.67		0.02		U	0.09	0.01		0.02		U	0.02		U	0.02		ប	0.11		U	0.02		U
SIND5	2.56	0.37		0.02		U	0.48	0.07		0.02		U	0.02		U	0.02		ប	0,11		U	0.02		U
SIND6	0.69	0.03		0.02		U	0.12	0.005		0.02		U	0.02		บ่	0.02		ប	0.11		U	0.02		U
SIND7	6.33	0.64		0.02		U	0.28	0.03		0.02		ប	0.02		U	0.02		U	0.11		U	0.02		U
SIND8	10.48	1.19		0.04		U	1.37	0.16		0.04		U	0.04		U	0.04		U	0.22		U	0.04		U
SIND9	3.68	9.20		0.04		U	1.09	2.73		0.04		U	0.04		U	0.04		U	0.22		U	0.04		U
SIND10	4.60	3.29		0.04		U	1.16	0.83		0.04		U	0.04		U	0.04		U	0.22		U	0.04		ប
SIND11	9.99	2.78		0.04		U	2.84	0.79		0.04		U	0.15	0.04		0.04		U	0.22		U	0.18	0.05	
SIND12	9.32	2.27		0.04		U	2.78	0.68		0.04		U	0.51	0.12		0.04		U	0.22		ប	0.04		ប

Chemical	Arochlor 1			Arochlor			Arochlor I	232		Arochior 1	242		Arochior 1	248		Arochlor I	254		Arochlor 1	260		Toxapheae		
CAS#	12674-11-2	2		1110-428	-2		1114-116-5	ii		5346-921-9)		1267-229-	ŝ		1109-769-1			1109-682-	5		8001-35-2		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Conc."		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data '		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	tipid)	qual.	(#g/kg)	lipid)	વ્યારો.	(# g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(# g/kg)	lipid)	વ્યરો.	(u g/kg)	lipid)	gual.	(ug/kg)	lipid)	qual.	(4 g/kg)	lipid)	વૃધ્યત્રે.
SIND1	1.13		Ŭ	1.11		U	1.11		U	1.11		U	25.14	1.16		1.11		U	59.67	2.75		5.56		Ų
SIND2	1.11		U	1.11		U	1.11		U	1.11		U	18.17	1.08		1.11		U	26.33	1.56		5.56	•	U
SIND3	1.11		U	1.11		U	1.11		U	1.11		U	13.33	1.55		1.11		U	22.50	2.62		5.56		U
SIND4	1.11		U	1.11		U	1.11		U	1.11		U	17.67	1.77		I.11		U	40.00	4.00		5.56		U
SIND5	1.11		U	1.11		U	1.11		U	1.11		U	10.07	1.46		1.11		U	26.62	3.86		5.56		U
SIND6	1.11		U	1.11		U	1.11		U	1.11		ប	27.67	1.12		1.11		U	86.50	3.52		5.56		U
SIND7	1.11		U	1.11		U	1.11		U	1.11		ប	23.00	2.32		1.11		U	75.33	7.61		5.56		U
SIND8	2.22		U	2.22		U	2.22		U	2.22		U	2,22		U	2.22		υ	54.39	6.18		11.11		U
SIND9	2.22		U	2.22		U	2.22		U	2.22		ប	2.22		U	2.22		υ	32.78	81.95		11.11		U
SIND10	2.22		U	2.22		U	2.22		U	2.22		U	2.22		U	2.22		υ	40.37	28.84		11.11		U
SINDII	2.22		U	2.22		U	2.22		U	2.22		U	2.22		U	2.22		U	61.10	16.97		n.n		ប
SIND12	2.22		U	2.22		U.	2.22		U	2.22		ប	2,22		U	2.22		U	30,70	7.49		11.11		U

.

Finid-normalized data presented only when a compound is detected,
 U = Compound was not detected at the detection limit shown.

PESTICIDE/PCB RESULTS FROM THREE COMPOSITES OF EIGHT STEELHEAD COLUMBIA RIVER BI-STATE PROGRAM

r

~

i sh

Chemical	Hexachlorol	butadiene		Hexachlor	obenzene		alpha-BHC			gamma-BH	С		Heptachlor			Aldrin			beta-BHC			Methyl para	thion	
CAS#	87-68-3			118-74-1			319-84-6			58-89-9			76-44-8			309-00-2			319-85-7			298-00-0		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*	
		(mg/kg	Data		{mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	•	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual,	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.
DCMPI	0.02		U	0.55	0.02		0.04		U	0.04		U	0.04		U	0.04		Û	0.04		U	0.89		U
	0.17		BU	0.45	0.01		0.04		U	0.04		U	0.04		U	0.04		U	0.04		U	0.89		U
DCMP3	0.31	0.01	•	2.2	0.05		0.22	0.005		0.04	•	U	0,04		υ·	0,04		U	0.04		U	0.89		U

Chemical	delta-BHC	-	,		or Epoxide		Endosulfan	1		gamma-Chl	Jordane	~~~ ,	aipha-Chior	ordane		p.p'-DDE			Dieldrin			Endrin			đ.
CAS#	319-86-8		'	1024-57-3	٤		959-98-8			5566-34-7		'	5103-71-9		'	72-55-9		'	60-57-1		'	72-20-8			d.
	Conc.	Conc."	,	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	,	Conc.	Conc.*	···· ,	Conc.	Conc.*		Æ
1 1	i	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data	1	(mg/kg	Data 👌	đ E
Sample	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	<u>ت</u> دار
DCMP1	0.04		U	0.04		U	0.04		U	0.04		U	0.04		υ	1.55	0.05		0,09		υ	0.57	0.02		1 T
DCMP2	0.04		U '	0.04		U '	0.04		U	0.04		_ບ '	0.04		υ	1.35	0.03	'	0.09		บ '	0.09		Ų	43
DCMP3	0.04			0.04		U	0.04		U	0.04		บ ′	0.04		יט		0.08	,	(0.09		υ '	0.09		U	ſ

Chemical	p.p'-DDD	>		Endosulfa	ю II		p,p'-DDT			Endrin Alde	hyde		Mirex			Endosulfan	Sulfate		Methoxycl			Endrin Keto			
CAS#	72-54-8			33213-65	.9		50-29-3			7421-93-4			2385-85-5			1031-07-8			72-43-5			53494-70-5			i i
1	Conc.	Conc.*		Conc.	Cenc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		È
		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data			Data		(mg/kg	Data	•	(mg/kg	Data		' (mg/kg	Data		(mg/kg	Data	, × 1
Sample	(ug/kg)	🗢 lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(#g/kg)	lipid)	વપ્રશ્વો.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	<i>.</i> '
DCMP1	1.15	0.04		0.09		U	2.2	0.08		0.09		U	0.09		U	0.09		U	0.44 .		U	0.41		BU	
DCMP2	3.4	0.08		0.09		U	4.13	0.10		0.09		U	0.09		U	0.09		U	0.44		U	0.09		ប	
DCMP3	2.73	0.06		0.09		U	3.19	0.07		0.09		U	0.09			0.09		U	0.44			0.09		U	
8t																									

Chemical	Arochlor 10	16		Arochior	1221		Arochior 12	232		Arochlor 1	242		Arochior 1			Arochlor 12			Arochlor 1	260		Toxaphene		
CAS #	12674-11-2			1110-428-	2		1114-116-5			5346-921-9)		1267-229-6	i	.	1109-769-1			1109-682-5	i		8001-35-2		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc."		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	· ·	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(ug/kg)	lipid)	qual.	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(ug/kg)	lipid)	વ્યવા.	(ug/kg)	lipid)	qual.	(#g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual,
DCMP1	4.44		U	4.44		U	4.44		U	4.44		U	4,44		U	4.44		U	3.51	0.12		22.22		U
DCMP2	4.44		U	4.44		U	4.44		U	4.44		U	4.44		U	4.44		U	3.61	0.09		22.22		u į
DCMP3	4.44		U	4.44		U	4.44		U	4.44		U	4.44		U	4.44		U	8.07	0.17		22.22		U

 $\sigma^{*} = i \text{ lipid-normalized data presented only when a compound is detected.$ B = Background levels may impact this data point.U = Compound was not detected at the detection limit shown.

PESTICIDE/PCB RESULTS FROM ONE COMPOSITE OF SEVEN CARP COLUMBIA RIVER DI-STATE PROGRAM

Chemical	Hexachloro	butadiene		Hexachior	robenzene		alpha-BHC			gamma-BH	C		Heptachlor			Aldrin			beta-BHC			Methyl para	uthion	
CAS #	87-68-3			118-74-1			319-84-6			58-89-9			76-44-8			309-00-2	_		319-85-7	-		298-00-0		
	Conc.	Copc.*		Coac.	Coac.*		Conc.	Conc.*		Conc.	Conc.*		Coac.	Conc."		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data
Sample	(#g/kg)	lipid)	qual.	(4 g/kg)	lipid)	વૃધ્યને.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u g/kg)	lipid)	qual,	(u g/kg)	lipid)	વ્યથે.	(ug/kg)	lipid)	qual.
CCMP1	0.02	0.0005		0.83	0.02		0.21	0.005		0.23	0.01		0.01		U	0.01		U	0.01		Ü	0.22		U

	delta-BHC			Heptachlo	r Epoxíde		Endosulfan	1		gamma-Chi	ordane		aipha-Chilor	dane		p,p'-DDE			Dieldrin			Endrin		
CAS#	319-86-8			1024-57-3			959-98-8			5566-34-7			5103-71-9			72-55-9			60-57-1			72-20-8		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Coac.*		Conc.	Conc.*		Conc.	Conc.		Conc.	Conc.*	
		(mg/kg	Data	ł	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		{mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data :
Sample	(u g/kg)	lipid)	çual.	(#g/kg)	lipid)	guzt,	(# g/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(4g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.
CCMP1	0.01			0.01		U	0.01		υ	0.01		U	0.01			131.4	3.01		0.02		U	0.02	-	υ

Chemical	p,p'-DDD			Endesulfa	a II		p,p'-DDT			Endrin Alde			Mircx			Endosulfan	Sulfate	101 m	Methoxychi	or		Extrin Ket	200	
CAS #	72-54-8			33213-65-	9		50-29-3			7421-93-4			2385-85-5			1031-07-8			72-43-5			53494-70-5		
	Совс.	Conc.*		Coac.	Conc.*	-	Conc.	Coac.*		Conc.	Coac.*		Cooc.	Conc.*		Cooc.	Conc.*		Coac.	Conc.*	_	Conc.	Conc.*	
		(mg/kg	Data	ļ	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	1	(mg/kg	Data		(mg/kg	Data
Sample	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(u g/kg)	lipid)	qual.	(ug/kg)	lipid)	લ્પથી.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	વૃષ્ણથી.	(#g/kg)	lipid)	qual.	(Hg/kg)	lipid)	qual.
CCMPI	5.86	0.13		0.02		Ŭ	0.02		U	0.02		บ	0.02		U	0.02		U	0,11		U	0.02		U

Arochler 10												Arochlor 1	248		Arochior 12	254		Arochior 1	260		Toxaphene		
12674-11-2			1110-428-	2		1114-116-5			5346-921-9			1267-229-6			1109-769-1			1109-682-5			8001-35-2		
Conc.	Cenc.*		Conc.	Conc.*		Cooc.	Conc.*		Coac.	Conc.*		Conc.	Conc.*		Conc.	Coac.*		Conc.	Conc,*		Conc.	Conc.*	
1	(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data		(mg/kg	Data	l	(mg/kg	Data
(ug/kg)	lipid)	quai.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(u gi kg)	lipid)	qual.	(ug/kg)	lipid)	qual.	(ug/kg)	lipid)	લ્પર્ચી.	(u g/kg)	lipid)	qual.	(4 g/kg)	lipid)	quai.
1.11		U	1.11		υ	1,11		U	1,11		υ	50.5	1.16		1.11		ប	138	3.16		5.56		Ŭ
	12674-11-2 Conc. (ug/kg) 1.11	Arochlor 1016 12674-11-2 Cone, Cenc.* (mg/kg (ug/kg) lipid) 1.11	Arochlor 1016 12674-11-2 Cone. Conc.* (mg/kg Data (ug/kg) ipid) qual. 1.11 U	Arochlor 1016 Arochlor 12574-11-2 1110-428- Conc. Conc.* Conc. (mg/kg Data (ug/kg) lipid) qual. (ug/kg)	Arochlor 1016 Arochlor 1221 12574-11-2 1110-428-2 Conc. Conc.* Conc. Conc.* (mg/kg Data (ug/kg) lipid)	Arochlor 1016 Arochlor 1221 12674-11-2 1110-428-2 Conc. Conc.* (mg/kg Data (ug/kg) lipid) qual. (ug/kg)	Arochlor 1016 Arochlor 1221 Arochlor 12 12574-11-2 1110-428-2 1114-115-5 Conc. Conc. * Conc. (mg/kg Data (mg/kg Data (ug/kg) lipid) qual. (ug/kg) lipid) qual. (ug/kg)	Arochlor 1016 Arochlor 1221 Arochlor 1232 12574-11-2 1110-428-2 1114-116-5 12676-11-2 1110-428-2 1114-116-5 Conc. * Conc. * Conc. * (mg/kg Data (mg/kg (ug/kg) lipid) qual. (ug/kg)	Arochlor 1016 Arochlor 1221 Arochlor 1232 12574-11-2 1110-428-2 1114-116-5 Conc. Conc.* Conc. (mg/kg Data (mg/kg Data (ug/kg) lipid) qual. (ug/kg) lipid) qual.	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 12 12574-11-2 1110-428-2 1114-116-5 5346-521-9 Conc. Conc.* Conc. Conc. (mg/kg Data (mg/kg Data (ug/kg) lipid) qual. (ug/kg) lipid) qual. (ug/kg)	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 12574-11-2 1110-425-2 1114-116-5 534-5921-9 Conc. Conc.* Conc. Conc. Conc. (mg/kg Data (mg/kg Data (mg/kg Init4) (ug/kg) lipid) qual. (ug/kg) lipid) qual. (ug/kg) lipid)	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 12574-11-2 1110-428-2 1114-115-5 5346-921-9 Conc. Conc.* Conc. Conc. (mg/kg Data (mg/kg Data (ug/kg) lipid) qual. (ug/kg) lipid) qual.	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 121 12574-11-2 1110-428-2 1114-116-5 33345-921-9 1267-229-6 Conc. Conc.* Conc. Conc. Conc. Conc. Conc. (mg/kg Data (mg/kg Data (mg/kg Data (mg/kg Data (ug/kg) lipid) qual. lipid) qual. lipid) qual. lipid) qual. lipid) qual. lipid) lipid)	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 12674-11-2 1110-428-2 1114-116-5 5346-921-9 1267-229-6 Conc. Conc.* Conc. Conc. Conc.* Conc. (mg/kg Data (mg/kg Data (mg/kg Data (mg/kg) lipid) (ug/kg) lipid) qual. (ug/kg) lipid) qual. (ug/kg) lipid)	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 12574-11-2 1110-428-2 1114-116-5 5336-921-9 1267-229-6 Conc. Conc.* Conc. Conc. Conc.* Conc. (mg/kg Data (mg/kg Data (mg/kg Data (mg/kg Data (mg/kg lipid) qual. (ug/kg) lipid) qual. ug/kg lipid) lipid) lipid) lipid)	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1 12674-11-2 1110-428-2 1114-116-5 5346-921-9 1267-229-6 1109-769-1 Conc. Conc.* Conc.<* Conc.<* Conc.<* Conc. Conc.	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 12574-11-2 1110-428-2 1114-115-5 5346-921-9 1267-229-6 1109-769-1 Conc. Conc.* Conc.*	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 12674-11-2 1110-428-2 1114-116-5 5346-521-9 1267-229-6 1109-769-1 Conc. Conc.* Conc.* Conc. Conc. Conc.* Conc. Conc.	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 12 12674-11-2 1110-428-2 1114-116-5 536+921-9 1267-229-6 1109-769-1 1109-769-1 1109-652-3 Conc. Conc.* Conc. Conc.	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 12574-11-2 110-425-2 1114-116-5 534921-9 1267-239-6 11109-769-1 11109-682-5 Conc. Conc.* Conc.* Conc. Conc.* Conc.*	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 12674-11-2 1110-428-2 1114-116-5 5346-921-9 1267-229-6 1109-769-1 1109-682-5 Conc. Conc.* Conc. Conc. </th <th>Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Toxaphene 12674-11-2 110-428-2 114-116-5 336921-9 1267-239-6 1109-769-1 1109-682-5 800-13-5-2 Conc. Conc.* Conc. Co</th> <th>Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Tozzphene 12574-11-2 1110-428-2 1114-116-5 5346-921-9 1267-229-6 1109-769-1 1109-682-5 8001-35-2 8001-35-2 Cone. Cone.* Cone. Cone. Cone.* Cone. Cone.</th>	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Toxaphene 12674-11-2 110-428-2 114-116-5 336921-9 1267-239-6 1109-769-1 1109-682-5 800-13-5-2 Conc. Conc.* Conc. Co	Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Tozzphene 12574-11-2 1110-428-2 1114-116-5 5346-921-9 1267-229-6 1109-769-1 1109-682-5 8001-35-2 8001-35-2 Cone. Cone.* Cone. Cone. Cone.* Cone. Cone.

* = lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

1 .

.

APPENDIX E

DIOXIN/FURAN DATA

DIOXIN/FURAN RESULTS FROM THREE COMPOSITES OF EIGHT CHINOOK SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #		2,3,7,8-TCDD 746-01-6			-PeCDD -4		1,2,3,4,7	7,8-HxCDI 3-6	5	1,2,3,6,7	7,8-HxCDI 5-7)	1,2,3,7,8	,9-HxCDD -3)
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.									
KCMP1 KCMP2 KCMP3	0.64 0.05 0.08	0.02	U U	0.45 0.16 0.20	0.01	Ŭ U	0.26 0.08 0.10	0.005	บ บ	0.26 0.19 0.20	0.01	บ · บ	0.32 0.12 0.10	0.01	บ บ

Chemical CAS #	1,2,3,4,6 35822-46	,7,8-HpCl -9	DD	OCDD 3268-87-9	9,		2,3,7,8-1 51207-31			1,2,3,7,8 57177-41			2,3,4,7,8 57117-31		
	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data
Sample ·	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(n g/kg)	lipiđ)	qual.
KCMP1	0.52	0.01		3.15	0.09		0.94	0.03		0.32		U	0.29		U
KCMP2	0.20		U	0.70		U	1.2	0.07		0.12	0.01		0.17	0.01	
KCMP3	0.20		U	0.40		U	2.7	0.38		0.08		U	0.20		U

Chemical CAS #	1,2,3,4,7 70648-26	7,8-HxCD 5-9	F	1,2,3,6,7	,8-HxCDI -9	F	1,2,3,7,8	8,9-HxCDF 1-9	2	2,3,4,6,7 60851-34	/,8-HxCDF -5		1,2,3,4,6 67562-39	,7,8-HpCI)F
Sample	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
KCMP1 KCMP2 KCMP3	0.12 0.08 0.09	0.005	ប ប .	0.10 0.07 0.06	0.004	ับ บ	0.28 0.09 0.10	0.01	BU U	0.19 0.15 0.08			0.18 0.09 0.10		BU U U

. ·

Chemical CAS #	1,2,3,4,7 55673-89	,8,9-HpCl -7	DF	OCDF 39001-02	1-0		TEC (FU	ILL)		TEC (HA	ALF)		TEC (ZE	ERO)	
Sample	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (µg/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
KCMP1 KCMP2 KCMP3	0.25 0.07 0.10	0.004	U U	0.23 0.40 0.25	0.02 0.03	U .:	1.29 0.97 0.81		,	1.03 0.85 0.52			0.77 0.72 0.23		

* = lipid-normalized data presented only when a compound is detected. B = Background levels may impact this data point.

.

U = Compound was not detected at the detection limit shown. .

DIOXIN/FURAN RESULTS FROM THREE COMPOSITES OF EIGHT COHO SALMON COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	2,3,7,8-1 1746-01-			1,2,3,7,8 40321-76			1,2,3,4,7 39227-28	,8-HxCDI -6)	1,2,3,6,7 57653-85	,8-HxCDI -7)	1,2,3,7,8 19408-74	,9-HxCDE -3)
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (µg/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
HCMP1 HCMP2 HCMP3	0.89 0.03 0.05	0.05 0.01 0.01		1.31 0.05 0.04		บ บ บ	0.08 0.04 0.05		U U U	0.51 0.09 0.06	0.03 0.02	U.	0.10 0.04 0.05	0.01	บ บ

Chemical CAS #	1,2,3,4,6 35822-46	5,7,8-НрС -9	DD	OCDD 3268-87-	9		2,3,7,8-7 51207-31		_	1,2,3,7,8			2,3,4,7,8 57117-31		
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
HCMP1 HCMP2 HCMP3	0.47 0.16 0.08	0.03	BU BU	0.88 0.50 0.17		U U BU	0.94 0.50 0.59	0.06 0.10 0.07		1,10 0.07 0.10	0.07 0.01	U	0.09 0.07 0.11	0.01 0.01	υ

Chemical CAS #	1,2,3,4,7 70648-26	,8-HxCD	F	1,2,3,6,7 57117-44	,8-HxCDF -9		1,2,3,7,8 72918-21	,9-HxCDF -9		2,3,4,6,7 60851-34	,8-HxCDF -5		1,2,3,4,6 67562-39	,7, 8-HpC D -4	F
Sample	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.
HCMP1 HCMP2 HCMP3	0.10 0.03 0.10	0.01	U U	0.63 0.02 0.04	0.04	U	0.15 0.03 0.04		U U U	0.06 0.08 0.09	0.02 0.01	-	0.38 0.03 0.07	0.02	บ บ

.

	1,2,3,4,7 55673-89		OF	OCDF 39001-02	-0		TEC (FU	LL)		TEC (HA	LF)		TEC (ZE	RO)	
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc, (ng/kg)	Conc.* (µg/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
	0.10 0.03 0.06			0.56 0.07 0.10	0.03	U U	1.91 0.66 0.47			1.54 0.49 0.37	•.		1.16 0.33 0.27		

.

* = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.

U = Compound was not detected at the detection limit shown. .

DIOXIN/FURAN RESULTS FROM THREE COMPOSITES OF EIGHT STEELHEAD COLUMBIA RIVER BI-STATE PROGRAM

Chemical	2,3,7,8-7			1	-PeCDD		1	,8-HxCDI)	1	,8-HxCDI)		,9-HxCDD)
CAS #	1746-01-	6		40321-76	-4		39227-28	5-6		57653-85	i- 7		19408-74	-3	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
DCMP1	0.01		U	0.14		U	0.05	0.002		0.13		U	0.12		U
DCMP2	0.13		U	0.17		U	0.15		U	0.16		U	0.18		U.
DCMP3	[·] 0.14					U	0.13		U	0.14		U	0.15		U

Chemical CAS #	1,2,3,4,6 35822-46	,7,8-HpCl -9	DD	OCDD 3268-87-	9		2,3,7,8-1 51207-31			1,2,3,7,8 57177-41			2,3,4,7,8 57117-31		
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.
DCMP2	0.15 0.15 0.12	0.01	ช บ	0.32 0.33 0.41		บ บ บ	0.23 0.21 0.27	0.01 0.01 0.01		0.13 0.22 0.18	0.005 0.004	U	0.10 0.19 0.19		บ บู่ 24 บ

Chemical CAS #	1,2,3,4,7 70648-26	7,8-HxCD1 5-9	F	1,2,3,6,7 57117-44	',8-HxCDF -9	1	1,2,3,7,8	.9-HxCDF -9	2	2,3,4,6,7 60851-34	,8-HxCDF -5		1,2,3,4,6 67562-39	,7,8-HpCL -4)F *
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
DCMP1 DCMP2	0.10 0.21		U U	0.14 0.20		BU U	0.12 0.31		U U	0.12		U U	0.12		บ บ
DCMP3	0.27 .					Ŭ	0.25		Ū	0.19	•	Ū	0.22		Ū

Chemical CAS #	1,2,3,4,7	,8,9-HpC	DF	OCDF 39001-02	2-0		TEC (FI	Л .L)		TEC (H	ALF)		TEC (ZE	RO)	
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual,	Conc. (ng/kg)	Conc.* (µg/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.
DCMP1 DCMP2 DCMP3	0.16 0.20 0.33		บ บ บ	0.08 0.23 . 0.09		U U U	0.24 0.49 0.54	-		0.15 0.26 0.29			0.05 0.02 0.04		

* = lipid-normalized data presented only when a compound is detected. B = Background levels may impact this data point. U = Compound was not detected at the detection limit shown.

.

.

DIOXIN/FURAN RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 1 of 2) COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	2,3,7,8-1 1746-01-			1,2,3,7,8 40321-76	-PeCDD		1,2,3,4,7	7,8-HxCDI 3-6	D	1,2,3,6,7 57653-85	,8-HxCDL i-7)	1,2,3,7,8 19408-74	,9-HxCDI -3	,
Sample	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc. (ng/kg)	Conc.* (ug/kg lipid)	Data qual.	Conc.	Conc.* (ug/kg lipid)	Data qual.
LSCMP1-1 LSCMP1-2 LSCMP1-3	0.77 0.14 0.22		U U U	0.55 0.38 0.42		U U U	0.16 0.14 0.16		U U U	0.17 0.14 0.17		U U U	0.19 0.17 0.19		บ บ บ
LSCMP2-1 LSCMP2-2 LSCMP2-3	0.22 0.73 0.51		ប ប ប	0.64 1.24 0.70		ប ប ប	0.21 1.02 0.59	0.01	บ บ	0.35 1.06 0.61	0.02	U U	0.15 1.21 0.7		บ บ บ
LSCMP3-1 LSCMP3-2 LSCMP3-3	0.17 0.44 0.24		U U U	0.34 0.51 0.27		บ บ บ	0.21 0.38 0.14		บ บ บ	0.21 0.39 0.14		U U U	0.25 0.45 0.16		ប ប ប .

Chemical		7,8-HpCl	DD	OCDD	•		2,3,7,8-1			1,2,3,7,8			2,3,4,7,8		•
CAS #	35822-46	-9		3268-87-	9		51207-31			57177-41			57117-31	-4	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc,	Conc.*	
		(µg/kg	Data		(ug/kg	Data	1	(ug/kg	Data	1	(ug/kg	Data		(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
LSCMP1-1	0.18		U	0.28		U	0.87	0.07		0.76		U	0.30		υ
LSCMP1-2	0.15		U	0.20		U	0.81	0.10		0.54		U	0.21		ប
LSCMP1-3	0.16		U	0.34		ប	1.06	0.10		0.74		U	0.19	•	U
LSCMP2-1	0.61		U	3.26	0.22		0.88	0.06		1.66	0.11		0.19		U
LSCMP2-2	0.90	0.04		2.47	0.12		1.13	0.05		1.63		U	0.87		U
LSCMP2-3	0.48	0.02		1.13		U	1.66	0.07		2.82		U	0.43		U
LSCMP3-1	0.24		U	0.11		U	0.98	0.07		0.82		U	0.15		U
LSCMP3-2	0.89	0.03		3.01	0.10		2.42	0.08		1.82	0.06		0.66		U
LSCMP3-3	0.24		U	0.45		U	1.53	0.09		0.75	0.04		0.13		ប

* = lipid-normalized data presented only when a compound is detected. U = Compound was not detected at the detection limit shown.

DIOXIN/FURAN RESULTS FROM NINE COMPOSITES OF EIGHT LARGESCALE SUCKER (Page 2 of 2) COLUMBIA RIVER BI-STATE PROGRAM

Chemical	1,2,3,4,7 70648-26	,8-HxCD	F	1,2,3,6,7	,8-HxCDF		1,2,3,7,8	8,9-HxCDI	7	2,3,4,6,7	,8-HxCDF		1,2,3,4,6	6,7,8-HpCI	ĴF
CAS #	70648-26 Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	<u></u>	Conc.	Conc.*		Conc.	Conc.*	
		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
LSCMP1-1	0.22		U	0.20		U	0.70	0.06		0.20		υ	0.15		U
LSCMP1-2	0.16		U	0.16		U	0.23		U	0.17		U	0.13		U
LSCMP1-3	0.23		U	0.22		U	0.62	0.06		0.19		U	0.14		U
LSCMP2-1	0.24		U	0.84	0.06		1.81	0.12		0.64	0.04		0.25		U
LSCMP2-2	0.99		U	1.59	0.08		1.25		U	0.94		U	0.61		U
LSCMP2-3	1.69		U	1.70		U	1.33		U	1.27		U	0.37		U
LSCMP3-1	0.70		U	0.67		U	0.45		Ū	0.37		U	1.81	0.13	
LSCMP3-2	1.42		U	1.31		Ú	1.58		U	1.18		U	2.67	0.09	
LSCMP3-3	0.47		U	0.44		U	0.13		U	0.30		U	0.19		U

Chemical		7,8,9-HpC	DF	OCDF			TEC (FL	TEC (FULL)			TEC (HALF)			RO)	•
CAS #	55673-89			39001-02									· · ·		
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
LSCMP1-1	0.22		U	0.18		U	1.52			0.84			0.17		
LSCMP1-2	0.18		U,	0.17		U	0.67		•	0.38			0.09		
LSCMP1-3	0.15		U	0.25		U	0.88			0.54			0.20	`	
LSCMP2-1	0.24		U	0.16		U	1.24			0.90			0.56		
LSCMP2-2	0.86		U	0.87	0.04		2.81			1.55			0.28		
LSCMP2-3	0.41		U	0.48		U	2.19			1.18			0.17		
LSCMP3-1	0.27	• .	U	5.96	0.42		0.89			0.52			0.14		
LSCMP3-2	0.39		U	1.63	0.06		2.13			1.28			0.43		
LSCMP3-3	0.32		U	0.25	0.01		0.82			0.50			0.19		

* = lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

DIOXIN/FURAN RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 1 of 2) COLUMBIA RIVER BI-STATE PROGRAM

Chemical	2,3,7,8-1			1	-PeCDD			,8-HxCDI	5		,8-HxCDI	>	1	3,9-HxCDI)
CAS #	1746-01-	6		40321-76	j-4		39227-28	3-6		57653-85	5-7		19408-74	-3	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data	· ·	(ug/kg	Data	1	(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(<i>n</i> g/kg)	lipid)	qual.
SIND1	0.28		U	0.20		U	0.37		Ü	0.34		U	0.44		U
SIND2	0.23		U	0.32		U	0.15		U	0.16		U	0.18		U.
SIND3	0.20		U .	0.18		U	0.20		U	0.21		U	0.24		U
SIND4	0.19		U	0.31		U	0.15		U	0.16		U	0.18		U
SIND5	0.31	•	U	0.25		U	0.27		U	0.29		ប	0.32		U
SIND6	0.32		U	0.33		U	0.22		U	0.23		U	0.26		U
SIND7	0.22		U	0.20		U	0.19		U	0.19		U	0.23		U
SIND8	0.21		U	0.22		U	0.14		U	0.13		ប	0.17		U
SIND9	0.18		U	0.18		U	0.21		U	0.21		U	0.26	•	U
SIND10	0.09		U	0.13		U	0.13		U	0.13		υ	0.16		U
SIND11	0.12		U	0.14		U	0.11		U	0.11		U	0.13		U
SIND12	0.10		U	0.17		U	0.08		U	0.08		U	0.10		U

Chemical	1,2,3,4,6	,7,8-HpC	DD	OCDD			2,3,7,8-	ICDF		1,2,3,7,8	-PeCDF		2,3,4,7,8	-PeCDF	
CAS #	35822-46	-9		3268-87-	9		51207-33	-9		57177-41	-6		57117-31	-4	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Сопс.*	
•		(ug/kg	Data		(u g/kg	Data		(ug/kg	Data		(u g/kg	Data		(ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
SIND1	0.48	0.02		1.40		BU	5.70	0.26		1.14		U	0.40		U
SIND2	0.20		U	0.47		U	4.46	0.26		0.50	0.03		0.14		U
SIND3	0.23		U	1.02		BU	1.70	0.20		0.41	•	U	0.12		U
SIND4	0.14		U	0.30		U	4.30	0.43		0.32		U	0.12		U
SIND5	0.15		U	0.53		U	1.61	0.23		0.22		U	0.11		ប
SIND6	0.25		U	0.58		U	5.94	0.24		0.83		U	0.19		U
SIND7	0.15		U	0.35		U	2.63	0.27		0.66		U	0.12		U
SIND8	0.39	0.04		0.85		U	2.70	0.31		0.33		U	0.08	0.01	
SIND9	0.20		U	0.35		U	0.22	0.55		0.09		U	0.13		U
SIND10	0.44		U	0.26		U	0.51	0.36		0.14		U	0.07		U
SIND11	0.31		U	1.21	0.34		1.10	0.31		0.14		U	0.06		U
SIND12	0.32		U	2.89	0.70		1.38	0.34		0.19		U	0.08		U

IntDiz 10:32 0 12.69 0.70
 * = lipid-normalized data presented only when a compound is detected.
 B = Background levels may impact this data point.
 U = Compound was not detected at the detection limit shown.

.

DIOXIN/FURAN RESULTS FROM TWELVE INDIVIDUAL WHITE STURGEON (Page 2 of 2) COLUMBIA RIVER BI-STATE PROGRAM

z

and no serves a

Chemical	1,2,3,4,7	,8-HxCD	F	1,2,3,6,7	,8-HxCDI		1,2,3,7,8	3,9-HxCDI	7	2,3,4,6,7	,8-HxCDF		1,2,3,4,6,7,8-HpCDF		
CAS #	70648-26	i-9		57117-44	-9		72918-21	l-9		60851-34	-5		67562-39	-4	
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	
		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(ug/kg	Data		(u g/kg	Data
Sample	(n g/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
SIND1	0.73		U	7.75		U	0.87	0.04		0.41	0.02		1.06	0.05	
SIND2	0.20		U	0.38		U	0.59	0.03		0.24		U	0.18		U
SIND3	0.19		U	0.19		U	0.19		U	0.16		U	0.14		U
SIND4	0.16		U	0.14		U	0.36	0.04		0.18		U	0.21		U
SIND5	0.25		U	0.24		U	0.17		U	0.14		U	0.20		U
SIND6	0.24		U	0.23		U	0.51	0.02		0.13		ប	0.16		U
SIND7	0.20		U	0.22		U	0.36	0.04		0.14		U	0.13		U
SIND8	0.18		U	0.17		U	0.36	0.04		0.14		U	0.17		U
SIND9	0.14		U	0.12		U	0.20		U	0.15		U	0.17		U
SIND10	0.11		U	0.11		U	0.25		U	0.09		U	1.64	1.17	
SIND11	0.09		U	0.08		U	0.10		U	0.15		Ú	0.14		U
SIND12	0.09		U	0.08		U	0.17	0.04		0.09		U	0.13		U

Chemical	1,2,3,4,7	,8,9-HpC	DF	OCDF	·····		TEC (FL	JLL)		TEC (HA	ALF)		TEC (ZE	RO)	
CAS #	55673-89	-7		39001-02	-0										
	Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*		Conc.	Conc.*	•
-		(ug/kg	Data		(ug/kg	Data	.	(ug/kg	Data		(ug/kg	Data		(ug/kg ·	Data
Sample	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
SIND1	0.32		U	0.67	0.03		2.42	•		2.01			1.59		
SIND2	0.24		U	0.20		U	1.13			0.83			0.53		
SIND3	0.11		U	0.22	•	U	0.69	,		0.43			0.18		
SIND4	0.12		U	0.15		U	1.00	•		0.74			0.48		
SIND5	0.14		U	0.23		U	0.84			0.51			0.17		
SIND6	0.17		U	0.25	•	U	1.42			1.04			0.66		·
SIND7	0.11		U	0.20		U	0.86			0.59			0.32		
SIND8	0.26		U	0.24		U	0.78		_	0.57			0.35		
SIND9	0.17		U	0.26		U	0.50			0.26			0.02		
SIND10	0.63		U	5.78	4.13		0.38			0.23			0.07		
SIND11	0.07		U	0.06		U	0.42			0.27			0.11		
SIND12	0.11		U	0.46	0.11		0.45			0.30			0.16		

. . .

* = lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.

.

DIOXIN/FURAN RESULTS FROM ONE COMPOSITE OF SEVEN CARP COLUMBIA RIVER BI-STATE PROGRAM

Chemical CAS #	1746-01-6			40321-76-4 39227-28-6 57653-85-7 1							1,2,3,7,8,9-HxCDD 19408-74-3				
	Conc. Conc.* (ug/kg Data			Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
CCMP1	1.14 U			1.14		U	0.45 0.01 1.91 0.04			0.20 U					

Chemical CAS #	1,2,3,4,6 35822-46	,7,8-HpC -9	DD	OCDD 3268-87-	9		2,3,7,8-TCDF 51207-31-9			1,2,3,7,8-PeCDF 57177-41-6			2,3,4,7,8 57117-31		
	Conc. Conc.* (ug/kg Data			Сопс.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data
Sample	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
CCMP1	3.90 0.09			5.14	0.12		4.36	0,10		4.62	0.11		0.71		U

Chemical CAS #	70648-26-9			1,2,3,6,7,8-HxCDF 57117-44-9			1,2,3,7,8,9-HxCDF 72918-21-9			2,3,4,6,7 60851-34			1,2,3,4,6 67562-39	,7,8-HpCI -4)F
	Conc. Conc.* (ug/kg Data		Conc.	Conc.* (ug/kg	Data	Conc. Conc.* (ug/kg Data		Data	Conc.	Conc.* (ug/kg	Data	Conc.	Conc.* (ug/kg	Data	
Sample	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
CCMP1	1.43		U	1.65		U	3.32		U	6.77	0.15		0.35		Ū

Chemical	1,2,3,4,1	1,2,3,4,7,8,9-HpCDF					TEC (FU	JLL)		TEC (HA	LF)		TEC (ZE	RO)	
CAS #	55673-89	55673-89-7			2-0										
	Conc. Conc.*			Conc.	Conc.*										
		(ug/kg	Data		(ug/kg	Data	1	(ug/kg	Data		(ug/kg	Data	1	(ug/kg	Data
Sample	(n g/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.	(ng/kg)	lipid)	qual.
CCMP1	0.28	0.28 U		0.18		U	4.36		2.99			1.62			

.

* = lipid-normalized data presented only when a compound is detected.
 U = Compound was not detected at the detection limit shown.