

page 1

UNFOOD

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a baseline and monitoring methodology
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

page 2

SECTION A. General description of project activity

A.1. Title of the <u>project activity</u>:

Timbues cogeneration project Version: 2.3 Date: 13/07/2010

A.2. Description of the project activity:

Noble Argentina SA (hereafter referred as "Noble") is a commodity trader based in Argentina that offers a range of agricultural commodity products, as well as logistics and technical services. The company has been operating for slightly more than 5 years and within that period has grown to become the 10th ranked exporter of soybean, corn and wheat from Argentina.

Noble completed the construction of a new soybean crushing facility in its existing port terminal in Timbues, Santa Fe Province, Argentina, that is capable of processing up to 8,000 tonnes of soybeans per day and includes soya crushing, soybean dehulling, storage and handling facilities. It expands the capabilities of the company's existing grain river port terminal beyond origination, port services and exporting of grain, to include crushing and exporting product.

1. Purpose of project activity

a) The scenario prior to the start of the project activity

The soya bean crushing plant is a Greenfield project hence no steam or electrical power was consumed at the site prior to the implementation of the project activity.

b) Purpose of the project

The project activity aims to minimize the use of fossil fuel by installing a Greenfield renewable cogeneration plant (electricity and steam) fired by biomass residues (wood waste and wood residues as off-cuts) coming from wood and wood related industries (the 'project activity'). The biomass residues would, if not used by the project activity, be burned on the field or left on site to decay, but not used for energy production. The project is to be implemented in two phases. In phase 1, a first biomass boiler complemented by a fossil fuel boiler will deliver steam to the turbine. In Phase 2, a second identical biomass boiler unit will be installed to ensure up to 100% of renewable energy production at the site. The fossil fuel boiler will remain as a backup during maintenance or emergency downtime of the biomass boilers or to guarantee stable steam throughput.

c) The baseline scenario

In the absence of the project activity, the electricity would be supplied by the national grid. In the project activity, the grid will be used as backup therefore the full power capacity can be delivered by the grid.

The steam would be generated by two conventional natural gas fired steam boilers.

page 3

2. Contribution to Reduction of GHGs

The project activity will contribute to the mitigation of climate change by offsetting the carbon intensive power generation from the grid and by avoiding the use of fossil fuel for steam generation. It leads to the reduction of Greenhouse Gas (GHG) emissions, which in the absence of the proposed project activity would have been released from the combustion of fossil fuel.

3. Contribution of the project activity to sustainable development

A. Economical aspect

<u>Job creation</u>: The operation of a biomass system is technically more challenging than a conventional system and will result in the creation of an estimated 14 durable, long-term employment for its operation (1 Chief, 1 supervisor, 8 Utilities operators, 4 for water plant) and 20 part-time permanent jobs for the collection, processing and transport of the biomass. During construction about 100 temporary jobs will also be created (construction workers, electricians and other workers).

<u>Contribution to the conservation of natural resources:</u> The gradual shift from carbon-intensive gas/fuel oil towards biomass demonstrates the social responsibility of Project Participant in using cleaner technology in-line with the sustainable development policies of Argentina. This brings direct benefits to achieving sustainable development (continuous Improvement in the Quality of the Environment)

<u>Technology transfer</u>: The energy generation from biomass is new in the soya bean industry in Argentina and the project is a first of its kind. As such, Noble searched for the Best Available Technology and selected a European technology. The technology will be imported from Belgium while proper training will be provided by the supplier in order to ensure a smooth operation of the facility.

B. Social criteria

The project will provide employment for a lower stratum of society and provide them with a steady long term income. The top management of Noble is very much concerned with the social impacts of its activities, especially on the local population. Noble aims to continue to support the local community with its new project.

C. Environmental aspect

An environmental study was conducted¹ which revealed that there are no negative impacts associated with the implementation of the project. On the contrary, the study revealed that the project activity would alleviate air pollution and reduce GHG emission associated with the burning of fossil fuel as follows:

¹ See EIA of crushing plant

page 4

UNFOOD

Positive impacts associated with the project include:

- Reduction of air contamination associated with the burning of fossil fuel
- Generation of clean (renewable and carbon neutral) energy
- Reduction of fossil fuel use
- Use of ashes as non-chemical soil conditioner

A.3. <u>Project participants:</u>

Name of Party involved (*) ((host) indicates a host Party)	Private and/or public entity (ies) project participants (*) (as applicable)	Kindly indicate if the Party wishes to be considered as project participant (Yes/No)	
Argentina (host)	Private entity: Noble Argentina S.A.	No	
United Kingdom	Private entity: Noble Carbon Credits Limited	No	

A.4. Technical description of the project activity:

A.4.1. Location of t	he <u>project activity</u> :	
A.4.1.1.	Host Party(ies):	

Argentina

A.4.1.2.	Region/State/Province etc.:

Department of Santa Fe

A.4.1.3. City/Town/Community etc.:

Timbúes

A.4.1.4. Details of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

The project activity is located within an industrial zone in Timbúes. The details of the project activity location are given below.

Location	Brigadier Estanislao López 8514, Timbúes, Santa Fe, Argentina	
Latitude	32° 36' 24,64" S	
Longitude	60 ^a 46' 21,68" W	

page 5

UNFOOD

Location map of the project site is given below.

Figure 1: map of Argentina

Figure 2: map of Rosario

Figure 3: aerial view of the Noble port terminal

page 6

A.4.2. Category(ies) of project activity:

The project activity falls under the Sectoral Scope 01: Energy industries (renewable -/non-renewable sources)

A.4.3. Technology to be employed by the <u>project activity</u>:

Environmentally friendly technology

Cogeneration systems offer considerable environmental benefits when compared with purchased electricity and onsite-generated heat. By capturing and utilizing heat that would otherwise be wasted from the production of electricity, cogeneration systems require less fuel than equivalent separate heat and power systems to produce the same amount of energy. Because less fuel is combusted, greenhouse gas emissions, such as CO₂, as well as criteria air pollutants like NO_x and SO₂, are reduced.

The use of biomass fuels in cogeneration, rather than natural gas or coal, further reduces CO_2 emissions from heat and power production. In addition to displacing the emissions of purchased fossil fuels that would otherwise be needed to separately generate thermal energy (rather than using captured waste heat), biomass residues are considered a net zero emitter of CO_2 when used as a fuel for electricity and heat generation.

Because CO_2 is captured from the atmosphere by plants and trees during their growth, when it is released again during combustion it is reentering the carbon cycle, not being newly created. If plant materials are then re-grown over a given period of time, the re-growth of new biomass takes up as much CO_2 as was released from the original biomass through combustion. This process results in a cycle in which biomass fuels are considered to emit a total of zero net CO_2 emissions and are classified as green power when used to generate electricity.

The use of biomass residues in modern boilers also reduces the environmental hazards associated with the combustion of fossil fuels that emits pollutants such as carbon dioxide, nitrous oxides, sulfur oxides, carbon monoxide, particulates, organic compounds, trace metals, etc. Biomass is a low sulfur fuel - contributing much less than fossil fuels to the acid rain phenomenon². The technology selected by the project participant is designed and manufactured by a reputable European supplier specialized in biomass boiler and having their proprietary technologies. The biomass boiler is to be manufactured by Vyncke, a Belgium based company operating since 1912. The company offers extensive experience in combustion technology, boiler construction and automated management and control systems for Waste to Energy systems; from design, engineering, manufacturing, installation and commissioning to training and aftersales service³.

UNFEEC

 $^{^{2}}$ $\,$ BIOMASS COGENERATION IN ASEAN, GHG MITIGATION POTENTIAL AND THE BARRIERS

Dr. Ludovic Lacrosse, Arul Joe Mathias, EC-ASEAN COGEN Programme, Asian Institute of Technology, Bangkok, UNIDO Expert Group Meeting on Industrial Energy Efficiency, Cogeneration and Climate Change, 2-3 December 1999, Vienna, http://www.unido.org/fileadmin/import/userfiles/ploutakm/asean.pdf

³ Vyncke Energietechniek: <u>www.vyncke.be</u>

page 7

UVECCO

Contribution to technology and know-how transfer

The technology selected for the project activity is not available in the Host Country and will be imported from European countries (Annex 1) which will contribute to the transfer of environmentally safe and sound technology to Argentina.

The following aspects are contributing to the transfer of technology and know-how:

- The technology is imported from Europe (Belgium)
- Collaboration with local companies for the construction of the balance of plant and erection of the equipment
- Training of local staff during commissioning (operation and maintenance)
- Building of local know-how about the technology: the operators will be trained to such technology

Purpose of project activity

The project activity consists of two high pressure steam boilers fired by biomass and one backup fossil fuel boiler to supply steam to the turbine.

- a) Scenario prior to the start of the project activity: The project activity is part of a Greenfield soya crushing plant hence no equipments were installed prior to the start of the project activity.
- b) The project is utilising a steam turbine type of cogeneration, fed by steam boilers.
 - The main components of the project are detailed in the diagram here below and consist of:
 - 1. Biomass boilers (2 units)
 - 2. Backup fossil fuel boiler (1 unit)
 - 3. Steam turbine and alternator (1 unit)

Figure 4: Main components of the Project Activity

page 8

The plant is designed to produce 10.7 MWe and up to 123 tph of low pressure steam at MCR^4 to cover the energy needs of the soya bean crushing plant. The electricity and steam will be used onsite (captive energy plant).

Outputs of project activity	Value	Unit	Reference
Availability	7,920	hours	Plant design ⁵
	(330 days * 24 hours)		
Process Steam 1 (12 bara)	10,327	kW	Heat Balance Diagram ⁶
Process Steam 2 (7.5 bara)	81,747	kW	Heat Balance Diagram
Electricity	10,700	kW	Heat Balance Diagram

Operating boilers	mode	of	Biomass boiler 1	Biomass boiler 2	Backup fossil fuel boiler
Phase 1			In service	Not built	In service
Phase 2			In service	In service	Backup

<u>1. Biomass boiler specifications (2 units)</u>	Description
Biomass combustion systems	Duplex Water-cooled step grate type. DWS-48- CLC with extended drying zone FWT-22-CLC
Operating pressure	43 bar(g)
Design capacity (steam)	60 ton/h
Feed water temperature	109 °C
Boiler efficiency (average LHV basis)	75%
Supplier	Vyncke Energietechniek N.V.(Belgium).

Design fuel specifications at the boiler inlet	Minimal	Maximal ⁷	Nominal
LHV (kcal/kg)	2,100	3,000	2,400
Moisture content, wt.%	30	45	40
Ash content, wt.%	-	5	-

The fuel to be used is readily available biomass residues (wood waste and wood residues as woodchips) coming from agriculture, forestry and related industries.

⁴ Maximum Continuous Throughput (MCR)

⁵ See Enclosure 1: page 30

⁶ See Enclosure 3: 10.7 MW Biomass Plant, Heat Balance Diagram: design guarantee point

 $^{^{7}}$ For wood waste fuels with > 45 % moisture content, the boiler output capacity will reduce.

page 9

UNFOOD

2. <u>Fossil fuel boiler specifications (one unit)</u>	
Gas/fuel oil combustion system	A-Type Water tube steam generator.
Operating pressure	$43 \operatorname{bar}(g)$
Design capacity	60 ton/h
Feed water temperature	119 °C
Boiler efficiency ⁸	92 % LHV
Supplier	Nebraska Boiler (USA).

3. <u>Steam turbine specifications</u>	
Туре	Backpressure turbine
Model	MB420, multi stage steam turbine with medium inlet
	steam conditions.
Installed capacity	10.948 MW
Guaranteed bleed steam capacity	12 Tph at 10.7 bar(g) and 262.1C temperature
Guaranteed exhaust steam capacity	110.577 tph at 6 bar(g) and 209.2C temperature.
Supplier	Jebsen & Jessen / NG Metalurgica Ltda

Figure 5: overview of biomass boiler

⁸ EB48, annex 12, option F (default value)=92%

. . . .

page 10

• •

1.4.

c) The baseline scenario: please refer to section B.4

4 1

Years	Estimation of annual emission reductions in tonnes of
	CO ₂ e
2010 (year 1)	43,316
2011 (year 2)	43,316
2012 (year 3)	123,502
2013 (year 4)	123,502
2014 (year 5)	123,502
2015 (year 6)	123,502
2016 (year 7)	123,502
2017 (year 8)	123,502
2018 (year 9)	123,502
2019 (year10)	123,502
Total estimated reductions (tonnes of CO ₂ e)	1,074,648
Total number of crediting years	10
Annual average of the estimated reductions over the crediting period	107,464

...

The project will not receive public funding from Parties included in Annex 1 of the Convention.

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

Methodology

"Consolidated methodology electricity generation from biomass residues" Reference: ACM0006 (Version 09, EB48)

"Consolidated baseline methodology for grid-connected electricity generation from renewable sources" (ACM0002, version 10); is used for the determination of the Combined Margin

Tools

- 1) "Combined tool to identify the baseline scenario and demonstrate additionality Reference: EB 28, Annex 14 (Version 02.2)
- 2) "Tool to calculate baseline, project and/or leakage emissions from electricity consumption": EB39, Annex 7 (Version 01)
- "Tool to calculate project or leakage CO₂ emissions from fossil fuel combustion" Reference: EB 41, Annex 11 (Version 02)
- 4) "Tool to calculate the emission factor for an electricity system": Version 01.1, EB35, Annex 12

page 11

UNFOOD

B.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity:</u>

The project activity is a Greenfield project hence the selected approach from paragraph 48 of the CDM modalities and procedures is "Emissions from a technology that represents an economically attractive course of action, taking into account barriers to investment".

Methodology ACM0006 page 3, stipulates that "*This methodology is applicable to biomass residue fired electricity generation project activities, including cogeneration plants*" and that the project activity may include "*The installation of a new biomass residue fired power plant at a site where currently no power generation occurs (Greenfield power projects*)" to which the project activity fully complies.

Further requirements are also fulfilled by the proposed project activity⁹:

Requirement for the methodology	Fulfilled by the proposed activity
No other biomass types than biomass residues, as	The project will use only biomass residues coming
defined above, are used in the project plant and	from wood and wood related industries ¹⁰ . No fossil
these biomass residues are the predominant fuel	fuel will be co-fired in the biomass boilers. Steam
used in the project plant (some fossil fuels may be	generated from a separate gas/fuel oil boiler will be
co-fired);	diverted to the steam turbine of the project activity
	(backup boiler).
For projects that use biomass residues from a	The biomass used is coming from wood waste and
production process (e.g. production of sugar or	wood residues that are generated by industrial
wood panel boards), the implementation of the	activities and that would normally be discarded, or
project shall not result in an increase of the	dumped and left to decay, or eventually burned in
processing capacity of raw input (e.g. sugar, rice,	an uncontrolled manner. Therefore, there will be no
logs, etc.) or in other substantial changes (e.g.	change in the processing capacity of the raw input.
product change) in this process	
The biomass residues used by the project facility	The biomass residues will be stored onsite for a
should not be stored for more than one year;	few days only (5,000 MT storage).
No significant energy quantities, except from	Transportation and shredding are the only two
transportation or mechanical treatment of the	energy consumers required for the preparation of
biomass residues, are required to prepare the	the fuel prior combustion.
biomass residues for fuel combustion, i.e. projects	
that process the biomass residues prior to	
combustion (e.g. esterification of waste oils)	

⁹ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 3)

 $^{^{10}}$ The supply of biomass residues will be in compliance with the National Law 26 331 relating to the protection of native forest.

page 12

UNFOOD

Conclusion

The proposed Project Activity meets all applicability requirements of the selected approved methodology and therefore the methodology is applicable to the project.

B.3. Description of the sources and gases included in the project boundary:

In the determination of the baseline and project emissions, the following emission sources are included:

	Source	Gas	Incl./Excl	Justification
	Electricity	CO ₂	Included	Main emission source.
	generation (Grid)	CH ₄	Excluded	Excluded for simplification. This is conservative.
		N ₂ O	Excluded	Excluded for simplification. This is conservative.
	Heat generation	CO_2	Included	Main emission source.
	(Fossil fuel steam	CH ₄	Excluded	Excluded.
	boiler)	N ₂ O	Excluded	Excluded for simplification. This is conservative.
	Uncontrolled	CO_2	Excluded	It is assumed that CO ₂ emissions from surplus biomass
eline	burning or decay of surplus biomass			residues do not lead to changes of carbon pools in the LULUCF sector
Base	residues	CH ₄	Excluded	Methane avoidance is not considered in the project activity as this source is not included in the project boundary.
		N ₂ O	Excluded	Excluded for simplification. This is conservative. Note also that emissions from natural decay of biomass are not included in GHG inventories as anthropogenic sources.
	On-site fossil fuel	CO_2	Included	May be an important source of emissions
	and electricity consumption due to	CH ₄	Excluded	Excluded for simplification. This emission source is assumed to be very small.
	the project activity (stationary or mobile)	N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
٨	Off-site	CO_2	Included	May be an important emission source
vity	transportation of	CH ₄	Excluded	Excluded for simplification. This emission source is
cti	biomass residues			assumed to be very small.
et a		N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
oje	Combustion of	CO ₂	Excluded	It is assumed that CO2 emissions from surplus biomass
Pı	biomass residues			do not lead to changes of carbon pools in the LULUCF

¹¹ As permitted by the methodology, <u>the project participant has decided to exclude CH_4 emissions from the project boundary for both baseline and project emissions</u>

UNFOOL

CDM – Executive Board

page 13

for electricity and /			sector.
or heat generation	CH ₄	Excluded	Not included in the baseline scenario
	N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
Storage of biomass residues	CO ₂	Excluded	It is assumed that CO2 emissions from surplus biomass residues do not lead to changes of carbon pools in the LULUCF sector.
	CH ₄	Excluded	Excluded for simplification. Since biomass residues are stored for not longer than one year, this emission source is assumed to be small.
	N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.

Project boundaries

The spatial extend of the project boundary encompasses:

- Biomass cogeneration plant includes the biomass reception/storage/processing area, 2 biomass boilers, 1 fossil fuel boiler and the turbo-alternator.
- Vehicles used for the biomass transportation to the site
- Site(s) where the biomass residues would have been left to decay or dumped
- National grid

page 14

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

>>

The **ACM0006** / **Version 09** methodology (page 4) states that *Project participants shall identify the most plausible baseline scenario and demonstrate additionality using the latest approved version of the "Combined tool to identify the baseline scenario and demonstrate additionality" version 02.2, agreed by the CDM Executive Board.*

As per EB meeting report 41 Annex 12, the steps 1 & 2 of the combined tool described above shall be presented here, the subsequent steps of the tool will be presented in Section B.5.

STEP 1. Identification of alternative scenarios

In applying *Step 1a* of the tool, realistic and credible alternatives should be separately determined regarding:

- How **power** would be generated in the absence of the CDM project activity;
- What would happen to the **biomass residues** in the absence of the project activity;
- How the **steam** would be generated in the absence of the project activity.

Step 1a Define alternative scenarios to the proposed CDM project activity

For **power** generation, the realistic and credible alternatives may include, *inter alia*:

Alternative	Description	Comment
P1	The proposed project activity not undertaken as	This alternative is theoretically possible
	a CDM project activity.	but not realistic.
P2	The continuation of power generation in an	This alternative is not realistic.
	existing biomass residue fired power plant at the	This is a Greenfield project and
	project site, in the same configuration, without	therefore there is no existing power
	retrofitting and fired with the same type of	plant at the site.
	biomass residues as (co-)fired in the project	
	activity.	
P3	The generation of power in an existing captive	This alternative is not realistic.
	power plant, using only fossil fuels.	This is a Greenfield project and
		therefore there is no existing power
		plant at the site nor is there any available
		cogeneration plant supplying energy
		nearby the project activity site.
P4	The generation of power in the grid.	Credible alternative.
		Grid is available at the project site. It
		was the scenario planned at the time of
		approval of the soya crushing plant.
P5	The installation of a new biomass residue fired	This alternative is not realistic.
	power plant, fired with the same type and with	There is no biomass cogeneration in the
	the same annual amount of biomass residues as	region of the project activity. As well it

page 15

	the project activity, but with a lower efficiency	is not a common practice to use biomass
	of electricity generation (e.g. an efficiency that	in the sova industry
	is common practice in the relevant industry	
	sector) than the project plant and therefore with	
	a lower power output than in the project case.	
P6	The installation of a new biomass residue fired	This alternative is not realistic
10	nower plant that is fired with the same type but	There is no biomass cogeneration in the
	with a higher annual amount of highers	region of the project activity. As well it
	residues as the project activity and that has a	is not a common practice to use biomass
	lower efficiency of electricity generation (e.g.	in the sove industry
	an efficiency that is common practice in the	in the soya metastry
	relevant industry sector) than the project	
	activity. Therefore, the power output is the same	
	activity. Therefore, the power output is the same	
D7	as in the project case.	
Ρ/	fine d a server fine d switch the server terms and switch	This is a Council and and
	the same arrows arrows of his mass residues as	therefore there is no existing neuron
	the surface activity but with a large offician as	therefore there is no existing power
	the project activity, but with a lower efficiency	plant at the site.
	of electricity generation (e.g. an efficiency that	
	is common practice in the relevant industry	
	sector) than the project plant and therefore with	
	a lower power output than in the project case.	
P8	The retrofitting of an existing biomass residue	This alternative is not realistic.
	fired power that is fired with the same type but	This is a Greenfield project and
	with a higher annual amount of biomass	therefore there is no existing power
	residues as the project activity and that has a	plant at the site.
	lower efficiency of electricity generation (e.g.	
	an efficiency that is common practice in the	
	relevant industry sector) than the project	
	activity.	
P9	The installation of a new fossil fuel fired	This alternative is not realistic.
	captive power plant at the project site.	The plant requires both steam and
		electricity. It is therefore non-
		economical to setup a separate heat and
		power plant compared to a combined
		heat and power.
P10	The installation of a new single- (using only	This alternative is not realistic.
	biomass residues) or co-fired (using a mix of	There is no biomass cogeneration in the
	biomass residues and fossil fuels) cogeneration	region of the project activity. There is no
	plant with the same rated power capacity as the	biomass cogeneration in the region of
	project activity power plant, but that is fired	the project activity. As well it is not a
	with a different type and/or quantity of fuels	common practice to use biomass in the
	(biomass residues and/or fossil fuels). The	soya industry.
	annual amount of biomass residue used in the	
	baseline scenario is lower than that used in the	
	project activity;	
P11	The generation of power in an existing fossil	This alternative is not realistic:
	fuel fired cogeneration plant co-fired with	This is a Greenfield project and

) - version

UNFEEL

page 16

biomass residues, at the project site therefore there is no existing power plant at the site
--

If the proposed project activity is the **cogeneration** of power and heat, project participants shall define the most plausible baseline scenario for the generation of heat. For **heat** generation, realistic and credible alternative(s) may include, *inter alia*:

Alternative	Description	Comment
H1	The proposed project activity not undertaken as	This alternative is theoretically possible
	a CDM project activity	but not realistic.
H2	The proposed project activity (installation of a	This alternative is not realistic.
	cogeneration power plant), fired with the same	The proposed project activity is a first of
	type of biomass residues but with a different	kind in the soya industry in Argentina.
	efficiency of heat generation (e.g. an efficiency	As well it is not a common practice to
	that is common practice in the relevant industry	use biomass in the soya industry
	sector)	
H3	The generation of heat in an existing captive	This alternative is not realistic.
	cogeneration plant, using only fossil fuels	This is a Greenfield project and
		therefore there is no existing power
		plant at the site.
H4	The generation of heat in boilers using the same	This alternative is not realistic.
	type of biomass residues	The proposed project activity is a first of
		kind in the soya industry in Argentina.
		There are no biomass boilers in the
		region of the project activity. As well
		the plant requires both steam and
		electricity. It is therefore non-
		economical to setup a separate heat plant
		compared to a combined heat and
117		power.
HS	The continuation of heat generation in an	<u>I his alternative is not realistic.</u>
	existing biomass residue fired cogeneration	This is a Greenfield project and
	plant at the project site, in the same	nerefore there is no existing power
	the same type of biomass residues as in the	plant at the site.
	project activity	
Н6	The generation of heat in boilers using fossil	Credible alternative
110	fuels	This the current common practice in the
		sova industry and was the scenario
		planned at the time of approval of the
		sova crushing plant.
H7	The use of heat from external sources, such as	This alternative is not realistic.
	district heat	The project activity site is located in a
		remote area where there is no district
		heat available.
H8	Other heat generation technologies (e.g. heat	This alternative is not realistic.
	pumps or solar energy)	Steam is produced in a reliable manner
		with boilers only

page 17

H9	The installation of a new single- (using only biomass residues) or co-fired (using a mix of	<u>This alternative is not realistic.</u> The proposed project activity is a first of
	biomass residues and fossil fuels) cogeneration	kind in the soya industry in Argentina.
	plant with the same rated power capacity as the	This is a Greenfield project.
	project activity power plant, but that is fired	
	with a different type and/or quantity of fuels	
	(biomass residues and/or fossil fuels). The	
	annual amount of biomass residue used in the	
	baseline scenario is lower than that used in the	
	project activity	
H10	The generation of power in an existing fossil	This alternative is not realistic.
	fuel fired cogeneration plant co-fired with	This is a Greenfield project and
	biomass residues, at the project site.	therefore there is no existing power
		plant at the site.

The type of biomass utilized in the project activity falls under 'biomass residues' from agriculture, forestry and related industry. In particular the boiler(s) are designed to burn wood chips originated from forestry residues left on the fields (off-cuts) or from pruning activities (from surrounding municipalities). These residues/of-cuts are shredded on the collection site and transported to the project activity. Noble will procure all its biomass externally. Indeed the soya crushing plant is not generating any residues suitable for combustion (hulls residues are typically sold as animal feed or landfilled).

Hence for the use of **biomass residues**, the realistic and credible alternative(s) may include, *inter alia*:

Baseline	Description	Project Activity
scenario		
B1	The biomass residues are dumped or left to	Credible Alternative
	decay under mainly aerobic conditions. This	There is a large amount of biomass residues
	applies, for example, to dumping and decay of	unutilized and left to decay on the field.
	biomass residues on fields.	
B2	The biomass residues are dumped or left to	This alternative is not realistic.
	decay under clearly anaerobic conditions. This	The residues are stockpiled or left to decay
	applies, for example, to deep landfills with	on the fields
	more than 5 meters. This does not apply to	
	biomass residues that are stock-piled or left to	
	decay on fields.	
B3	The biomass residues are burnt in an	Credible Alternative
	uncontrolled manner without utilizing it for	There is a large amount of biomass residues
	energy purposes.	unutilized and left to decay on the field.
B4	The biomass residues are used for heat and/or	This alternative is not realistic.
	electricity generation at the project site	This is a Greenfield project and therefore
		there is no existing heat and/or electricity
		plant using biomass at the site.
B5	The biomass residues are used for power	This alternative is not realistic.
	generation, including cogeneration, in other	There is no biomass power plant in the
	existing or new grid-connected power plants	region
B6	The biomass residues are used for heat	This alternative is not realistic.

page 18

	generation in other existing or new boilers at other sites	There is no biomass boilers in the region
Β7	The biomass residues are used for other energy purposes, such as the generation of biofuels	This alternative is not realistic. Wood chips is not appropriate for biofuel production
B8	The biomass residues are used for non-energy purposes, e.g. as fertilizer or as feedstock in processes (e.g. in the pulp and paper industry)	This alternative is not realistic. There are no other applications for the biomass residues which are left on the field or landfilled

Outcome of Step 1a: list of plausible alternative scenarios to the project activity:

Based on the above, two alternatives for the baseline scenario are identified:

#	Scenario	Description
Alternative 1	Scenario 2 which is a combination of: P4 + H6 + (B1 or B3)	"The power generated by the project plant would in the absence of the project activity be purchased from the grid. The biomass residues would in the absence of the project activity be dumped or left to decay or burnt in an uncontrolled manner without utilizing it for energy purposes. The steam would in the absence of the project activity be generated in boilers fired with fossil fuels"
Alternative 2	P1+H1 + (B1 or B3)	"The project activity not undertaken as CDM"

Step 1b Consistency with mandatory applicable laws and regulations

The use of natural gas fuel for the generation of steam is consistent with the mandatory laws and regulations of Argentina¹² while emissions are in accordance with the Argentina national and provincial standards. Hence, the use of gas is a common practice in Argentina¹³ and more specifically in the soya industry.

Hence both alternatives are realistic and in compliance with local laws and regulations.

STEP 2. Barrier analysis

This Step will identify barriers and assess which alternatives are prevented by barriers.

Step 2a. Identify barriers that would prevent the implementation of alternative scenarios.

¹² LEY GENERAL DEL AMBIENTE, Government of Argentina

¹³ Argentina is the largest natural gas producer in South America (source: <u>www.eia.doe.gov</u>)

page 19

Lack of prevailing practice:

Alternative 1:

For the purpose of establishing first of its kind, we define:

- 1) Project technology = power supplied from the grid + fossil fuel fired steam boilers;
- 2) Applicable geographical region = province of Santa Fe

Supply of power from the grid and fossil fuel fired steam boilers are the common practice in the soya industry therefore there is no barrier that prevent the implementation of this alternative

 \rightarrow No barrier

Alternative 2:

For the purpose of establishing first of its kind, we define:

- 1) Project technology = steam turbine¹⁴ cogeneration fired with biomass residues;
- 2) Applicable geographical region = province of Santa Fe

The outcome of the common practice analysis illustrated by table B.5.4, demonstrates clearly that:

- 1) No biomass cogeneration is currently in commercial operation in the soya industry
- 2) Biomass cogeneration has not been proposed in another CDM project activity in the Santa Fe province and published in the CDM-PDD by a DOE for public comments

Step 2b. Eliminate alternative scenarios which are prevented by the identified barriers

	Lack of prevailing practice	Alternative prevented by barrier?
Alternative 1	No	No
Alternative 2	Significant	No

Outcome of step 2b: alternative scenario to the project activity that is not prevented by any barriers:

#	Scenario	Description
Alternative 1	Scenario 2 which is a combination of: P4 + H6 + (B1 or B3)	"The power generated by the project plant would in the absence of the project activity be purchased from the grid. The biomass residues would in the absence of the project activity be dumped or left to decay or burnt in an uncontrolled manner without utilizing it for energy purposes. The steam would in the absence of the project activity be generated in boilers fired with fossil fuels"
Alternative 2	P1+H1 + (B1 or B3)	"The project activity not undertaken as CDM"

¹⁴ Medium pressure (42.9 bara), medium size (10MWe), non-condensing steam turbine

page 20

Despite the significant barrier arising from 'lack of prevailing practice', the PP decided to apply as well step 3 to identify the baseline and demonstrate the additionality.

STEP 3: Investment Analysis

This step serves to determine which of the alternative scenarios in the short list remaining after step 2 is the most economically or financially attractive. For this purpose, an investment comparison analysis is conducted for the remaining alternative scenarios after step 2.

The investment analysis reveals that the project activity is not economically or financially attractive without the revenue from the sale of certified emission reductions (CERs).

The combined tool requires the PP to identify the financial/economic indicator, such as IRR, most suitable for the project type and decision context. Accordingly, PP has identified Project IRR as the financial indicator. Project IRR is one of the most frequently used financial indicators by banks and investors alike to evaluate the financial attractiveness of a project activity.

The project IRR needs to be compared with a benchmark¹⁵ to prove the financial unattractiveness of the project. The Combined Tool stipulates that the benchmark/discount rates shall be derived from *inter alia* "Government/official approved benchmark where such benchmarks are used for investment decisions" Besides, the 'Guidance on the Assessment of Investment Analysis' issued by EB in its 41st meeting requires that "*In the cases of projects which could be developed by an entity other than the project participant the benchmark should be based on publicly available data sources which can be clearly validated by the DOE*". Hence, when the Combined Tool and Guidance are read together, the selected benchmark should satisfy three conditions: it should be Government/official approved; it should be used for investment decisions; and it should be publicly available data source so that DOE can validate.

Guidance on the Assessment of Investment Analysis states that, "In cases where a benchmark approach is used the applied benchmark shall be appropriate to the type of IRR calculated. Local commercial lending rates or weighted average costs of capital (WACC) are appropriate benchmarks for a project IRR".

Accordingly, PP has selected the local commercial lending rate as the benchmark. The commercial lending rate in Argentina as of December 2007 was $12\%^{16}$. This rate has been chosen as the benchmark.

This benchmark satisfies all the three conditions listed above:

- The lending rate of commercial banks is based on the state rate and hence it is official rate;
- The benchmark is *used* by commercial banks *to take a financing decision* in as much as a project which cannot service the interest does not merit consideration by bank; and
- The benchmark is *publicly available* data source and *verifiable by DOE*.

The benchmark of 12% chosen, therefore, fulfils all the criteria laid down by the Combined Tool¹⁷ and is considered conservative. The project developer has selected this rate as the benchmark as this covers the cost of the loan and also provides a return on equity (which is much riskier than term loan).

¹⁵ Because one of the baseline is electricity from the grid, a benchmark analysis is appropriate (EB51, annex 58, point 16 and see also AM_CLA_0125).

¹⁶ Source: Monetary Report, December 2007 (p.7); see Enclosure 24

page 21

Table B.5.2: Parameters for financial	Unit	Value	
Biomass Boiler(s) & Turbine	Phase 1	US\$	\$16,079,700
	Phase 2	US\$	\$10,825,500
Financing pattern	Equity	%	30
	Debt	%	70
Interest (LIBOR, 6 months + 4.25%)		%	7.5%
Repayment Holiday		Year	1.5
Repayment period		Year	8
Design Soya bean throughout per year		MT/year	2,640,000
Power saved		MWh	79,200
Specific power requirement per MT of soya		kWh	30.00
Specific steam requirement per MT of soya		tonne	0.250
Cost of Gas per 1,000 M ³		US\$	120.0
Cost of biomass per Mt (delivered at th	ne gate)	US\$	30.00
Electricity tariff		USD/MWh	116
O&M costs (non fuel) per MWh		USD/MWh	26.0
Depreciation civil works		%	2
plant and machinery		%	10
Tax	%	35	

Financial indicator for the project activity has been computed based on the following broad parameters:

All the input values have been based on quotations/purchase orders, sanction letters, or standard publications available at the time of decision. References to the support documents are provided in the spread sheet (reference is provided beside each assumptions).

The income statement of the project and the project IRR has been computed based on the above input parameters. In computing the project IRR, profit after tax, depreciation, interest on term loan and salvage value have been taken as cash inflow and the entire project cost as cash outflow as suggested by the Guidance on the Assessment of Investment Analysis. The IRR has been computed for a period of 20 years with a salvage value added at the end of the project lifetime. Based on the above assumptions, the project IRR works out to be 2.61% against the benchmark return of 12%.

The IRR estimate is quite conservative in the sense that the escalation in O&M expenses has been taken constant as against the inflation rate of 8.8% in 2008. If provisions are made for this, IRR will come down.

The robustness of this conclusion was tested by subjecting critical parameters to reasonable variations. Guidance on the Assessment of Investment Analysis defines critical assumptions as those which constitute more than 20% of total project costs or total project revenue and reasonable variation has been defined as a range of +10% and -10%¹⁸. Three factors were identified as critical: project cost, fuel cost and O&M cost (though O&M cost does not account for 20% of total project revenue).

¹⁷ And also the *Guidance on the Assessment of Investment Analysis*, Point No.11 (page No.3)

¹⁸ EB51, Annex 58, points 17 & 18

page 22

The impact of a 'reasonable variation' in these three parameters on the project IRR have been worked out and the results are shown in tables B.5.3.

Table B.5.3:	Sensitivity	analysis	of IRR
--------------	-------------	----------	--------

Factors	-10%	0%	+10%	Benchmark
Project activity cost	3.61%		1.58%	
Fuel cost (NG)	-0.05%	2.61%	4.62%	12%
O&M cost	3.75%		1.17%	
With CDM	12.14%			12%

It could be seen from the above that even under the most optimistic conditions, the project IRR will not cross the benchmark. The financial unattractiveness of the project is thus evident.

The project, therefore is not a business-as-usual scenario and hence additional. The CDM benefits will enable the project to improve its return and become viable, as evidenced from the fact that with CDM benefits, the project will earn a return of 12.09%.

The conclusion of the investment analysis does not change even under sensitivity analysis.

Hence the selected baseline is alternative 1.

The amount of steam and electricity required for the operation of the plant are based on the specific energy requirements per tonne of soya bean processed. Electricity is required at every stage of the process (soya preparation, crushing, dehulling, extraction, storage and handling facilities) while steam is mainly used by solvent extraction process and for the soya bean dryer during the harvesting season.

Table B.4.1: Key parameters of selected baseline				
Soya crushing plant				
Processing capacity at MCR	8,000	tonnes soybean/day		
Availability	7,920	hours/year (330 days/year)		
Specific energy requirements ¹⁹	irements ¹⁹			
Steam	0.250	tonne steam/tonne soybean		
Electricity	30.00	kWh/tonne soybean		
Source of energies				
Steam	Natural gas	Plant connected to the existing natural gas distribution network		
Electricity	National grid	Plant connected to the national grid		

¹⁹ See Enclosure 1: Investment proposal document

page 23

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality):

Prior consideration of CDM

Annex 46 of EB 41 states that all projects with a start date before 2 August 2008, for which the start date is prior to the date of publication of the PDD for global stakeholder consultation, should demonstrate that the CDM was seriously considered in the decision to implement the project activity. Such demonstration requires the following elements to be satisfied:

- (a) The project participant must indicate awareness of the CDM prior to the project activity start date, and that the benefits of the CDM were a decisive factor in the decision to proceed with the project. Evidence to support this would include, *inter alia*, minutes and/or notes related to the consideration of the decision by the Board of Directors, or equivalent, of the project participant, to undertake the project as a CDM project activity.
- (b) The project participant must indicate, by means of reliable evidence, that continuing and real actions were taken to secure CDM status for the project in parallel with its implementation. Evidence to support this should include, *inter alia*, contracts with consultants for CDM/PDD/methodology services, Emission Reduction Purchase Agreements or other documentation related to the sale of the potential CERs (including correspondence with multilateral financial institutions or carbon funds), among others

Noble decided in December 2007 to set up a Greenfield soya crushing plant. The energy needs were originally based on grid electricity and natural gas for steam generation with conventional boilers.

Driven by the recommendations of Noble Carbon²⁰ (a subsidiary of Noble Group specialised in the development of emission reductions projects) and Vyncke Energietechniek²¹, the design of the energy centre has been switched to renewable energy by using a combined heat and power (CHP) plant. With the income generated from carbon credits, the project became financially attractive and was therefore approved by Noble if developed as a CDM project. The board resolution confirming the investment for the biomass CHP was passed on 27th February 2008. A copy of the resolution will be made available to the DOE during validation.

As soon as January 2008, Noble entered in discussions with various CDM consultants and selected Kyoto Energy with whom the contract was signed on 25th July 2008.

The contract for the biomass boiler was awarded to Vyncke Energietechniek N.V. on 16 April 2008, which is considered as the start date of the project activity. Construction works commenced in July 2008 while the delivery of equipment started in January 2009. The first phase of the project activity will be in commercial operation by early 2010.

²⁰ Noble Carbon is a major player in the market for emission reduction certificates or "carbon credits" and one of world's largest suppliers of registered CERs.

²¹ Vyncke Energietechniek: <u>www.vyncke.be</u>

page 24

From the foregoing, it should be evident that the project activity has conformed to both the conditions stipulated vide Annex 46 of EB 41 with respect to the demonstration of serious consideration of CDM benefits.

Table B5.1: Prior consideration of the CDM		Reference document
Proposal from biomass boiler supplier	16/01/2008	Enclosure 15
Initial discussion with Carbon Consultant	21/01/2008	Enclosure 12
Board resolution	27/02/2008	Enclosure 22
Purchasing agreement for biomass boiler	16/04/2008	Enclosure 23
Engagement of CDM consultant	25/07/2008	Enclosure 11
Stakeholder consultation	8/10/2008	Enclosure 13
Notification to the Host DNA	09/10/2008	Enclosure 10
Initial inquiries from DOEs for validation	17/02/2009	Enclosure 14
ERPA	27/11/2009	Enclosure 21
Expected commercial operation start date	July 2010	

STEP 4: Common practice analysis

The previous steps are complemented with an analysis of the extent to which the proposed project type has already diffused in the relevant sector and geographical area. This test is a credibility check to demonstrate additionality.

The soya industry in Argentina plays a major role in the local economy of Argentina and especially in the Santa Fe province where over 37 million tonnes of soya is produced annually (said amount varying according to weather conditions). Altogether in Santa Fe, 12 soya crushing plants hold the market. These players represent almost 80% of all crushing plants in Argentina. The remaining 20% are small crushers scattered around the country, and therefore, not on a comparative scale. Of the 80%, only two are using fossil fuel based cogeneration. Some plants, such as Vicentin are not only crushing soya beans but also sunflower, thus using its own sunflower seed as biomass along with fuel oil and natural gas. The Project Activity is not generating combustible biomass residues and hence needs to rely on external supply of biomass which is an obstacle for the development of such project.

As the below table shows, at the time of decision to proceed with the project activity (2008), the industry was mainly relying on grid power supply and fossil fuel boilers for steam as evidenced by the survey of the current practice detailed in the table here below (survey made by the project participant).

page 25

#	Company	Location	Tonnes/day	Fossil fuel used	Grid	Fossil	Biomass
		(Santa Fe province)	_		+	fuel	Cogen
					Boilers	Cogen	
1	Bunge	San Geronimo	2,000	Fuel Oil + NG	Yes	No	No
2	Bunge	Puerto San martin	8,000	Fuel Oil + NG	Yes	No	No
3	Terminal 6	Puerto San martin	19,000	Fuel Oil + NG	Yes	No	No
4	Buyatti	Puerto San martin	3,000	Fuel Oil + NG	Yes	No	No
5	Nidera	Puerto San martin	2,200	Fuel Oil + NG	Yes	No	No
6	Cargill	Puerto San martin	9,000	Fuel Oil + NG	Yes	No	No
7	Cargill	VG Galvez	13,000	Fuel Oil + NG	Yes	No	No
8	Molinos	San Lorenzo	17,000	Fuel Oil + NG	No	Yes	No
9	Vicentin	San Lorenzo	16,000	Fuel Oil + NG	Yes	No	No
10	Vicentin	Ricardone	5,500	Fuel Oil + NG	No	Yes	No
				+Sunflower			
				hulls			
11	Dreyfus	General Lagos	12,000	Fuel Oil + NG	Yes	No	No
12	Dreyfus	Timbues	6,000	Fuel Oil + NG	Yes	No	No

<u>Table B.5.4</u>: current practice of soya crushing plant in the province of Santa Fe (Argentina)

Table B.5.4 demonstrates that there are no other biomass cogeneration plants in commercial operation in the soya industry in the province of Santa Fe.

In a large context, the use of biomass cogeneration as fuel in Argentina is a new concept and the project activity is a first of its kind as described above. Renewable energy producers are concentrating mainly on hydroelectric power from major plants. Argentina possesses multiple underutilized potentials for generating heat and electricity from hydro and wind power but also from solar, biomass and geothermal sources²².

Conclusion

Since all conditions of the "Combined tool to identify the baseline scenario and demonstrate additionality" are satisfied, the proposed project activity is additional.

²² Energy-policy Framework Conditions for Electricity Markets and Renewable Energies, 23 Country Analyses, Eschborn, September 2007, GTZ, Federal Ministry for Economic Cooperation and Development

page 26

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

This section describes the project emissions, baseline emissions, leakage and emissions reductions based on *scenario 2* of ACM0006 v09.

Emission reductions

The emission reduction ER_y by the project activity during a given year y is the difference between the emission reductions through substitution of electricity generation with fossil fuels ($ER_{electricity,y}$), the emission reductions through substitution of heat generation with fossil fuels ($ER_{heat,y}$), project emissions (PE_y), emissions due to leakage (L_y) and, where this emission source is included in the project boundary and relevant, baseline emissions due to the natural decay or burning of anthropogenic sources of biomass residues ($BE_{biomass,y}$), as follows:

$ER_{y} = H$	$ER_{heat,y} + ER_{electricity,y} + BE_{biomass,y} - PE_y - L_y$	Equation 1 ²³
Where	Description	Unit
ER_y	Emissions reductions of the project activity during the year y	tCO ₂ /year
ER _{electricity,y}	Emission reductions due to displacement of electricity during the year y	tCO ₂ /year
$ER_{heat,y}$	Emission reductions due to displacement of heat during the year y	tCO ₂ /year
$BE_{biomass,y}$	Baseline emissions due to natural decay or burning of anthropogenic	tCO ₂ /year
	sources of biomass residues during the year y	
PE_y	Project emissions during the year y	tCO ₂ /year
L_y	Leakage emissions during the year y	tCO ₂ /year

Project emissions

Project emissions are calculated as follows:

$PE_y = PET_y$	$_{y} + PEFF_{y} + PE_{EC,y} + GWP_{CH4} * (PE_{Biomass,CH4,y} - PE_{WW,CH4,y})$	Equation 2 ²⁴
Where	Description	Unit
PET _y	CO_2 emissions during the year y due to transport of the biomass	tCO ₂ /year
	residues to the project plant	
PEFFy	CO ₂ emissions during the year y due to fossil fuels co-fired by the	tCO ₂ /year
	generation facility or other fossil fuel consumption at the project site	
	that is attributable to the project activity	
$PE_{EC,y}$	CO_2 emissions during the year y due to electricity consumption at the	tCO ₂ /year
	project site that is attributable to the project activity	
GWP_{CH4}	Global Warming Potential for methane valid for the relevant	tCO ₂ /year
	commitment period	
PE _{Biomass,CH4,y}	CH ₄ emissions from the combustion of biomass residues during the	tCH₄/year
	year y	

²³ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 25)

UNFEEC

²⁴ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 27)

page 27

PE _{WW,CH4,y}	CH ₄ emissions from the waste water generated from the treatment of	tCO ₂ /year
	biomass residues in the year y (tCH ₄ /yr)	

a) Carbon dioxide emissions from combustion of fossil fuels for transportation of biomass residues to the project plant (*PETy*)

The project activity is to use biomass residues (wood waste and wood residues as woodchips) coming from wood and wood related industries. This biomass is transported to the site and not generated on-site. Therefore, the CO_2 emissions resulting from the transportation of the biomass residues to the project shall be calculated.

The biomass will be transported by a third party company therefore the approach based on the basis of distance, number of trips and vehicle type is selected by the project participant (Option 1)²⁵.

At the time of writing the PDD, the biomass suppliers have not yet been selected. Sources of biomass have been identified in the Santa Fe province and also in the surroundings provinces of Misiones, Corrientes and Entre Rios.

PET _y :	$= N_y * AVD_y * EF_{km}, CO_{2,y}$	Equation 3
Where	Description	Unit
PET _y	CO_2 emissions during the year y due to transport of the biomass residues	tCO ₂ /year
	to the project plant	
Ny	Number of truck trips during the year y	-
AVD _y	Average round trip distance (from and to) between the biomass residue	km
	fuel supply sites and the site of the project plant during the year y	
EF _{km,CO2y}	Average CO ₂ emission factor for the trucks measured during the year y	tCO ₂ /km

b) Carbon dioxide emissions from on-site consumption of fossil fuels (PEFF_y)

 $PEFF_y$ is the quantity of CO₂ emitted from on-site consumption of fossil fuel and is calculated using the "Tool to calculate project or leakage CO₂ emissions from fossil fuel combustion"²⁶

<u>Project plant fossil fuel consumption:</u> (FF_{project plant, i,y})

There is no co-firing of fossil fuel in the biomass boiler however the main source of fossil fuel consumption at the project plant is associated with the steam that is generated in a separate fossil fuel boiler ($Q_{FF,y}$) and diverted to the turbine of the project activity (only during phase 1 of the project activity).

As per the general guidance²⁷ for all scenario of the methodology, the fuel combustion associated with such steam quantities should be included in $FF_{project plant,i,y}$ and should be calculated by dividing the quantity of diverted steam by the efficiency of the steam boiler.

²⁵ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 24)

²⁶ Tool to calculate project or leakage CO2 emissions from fossil fuel combustion Version 02, EB 41 Report Annex 11, option B has been selected

²⁷ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 : General guidance for all scenarios (page 40)

page 28

FF _{project plant}	Equation 4	
Where	Description	Unit
FF _{project plant,y}	Quantity of fuel type <i>i</i> combusted in the project plant during the year <i>y</i>	m ³ /year
Q _{FF,y}	Steam quantity generated by the fossil fuel boiler	GJ/year
^E boiler,FF	Efficiency of the fossil fuel boiler	-
NCV _{i.y}	Weighted average net calorific value of the fuel type <i>i</i> in year <i>y</i>	GJ/m ³
i	Fuel type combusted	

Project site fossil fuel consumption: (FF_{project site, i,y})

The fossil fuel consumption of the project activity $FF_{project site, i,y}$ is attributable to the on-site transport of biomass with mechanical shovels using diesel.

Hence;

$PEFF_y = \sum_i (F)$	F _{project plant,i,y} * NCV _{i,y} * EF _{CO2,i})	Equation 5
+ ∑ _i (F	$F_{\text{project site,i,y}} * \text{NCV}_{i,y} * \text{EF}_{\text{CO2,i}}$	
Where	Description	Unit
PEFF _y	CO_2 emissions from onsite fossil fuel combustion in the project activity during the year <i>y</i>	tCO ₂ /year
FF _{project plant, i,y}	Quantity of fuel type <i>i</i> combusted in the project plant during the year <i>y</i>	m ³ /year
FF _{project site, i,y}	Quantity of fuel type i combusted at the project site for other purposes that are attributable to the project activity during the year y	m ³ /year
NCV _{i,y}	Weighted average net calorific value of the fuel type i in the year y	GJ/m ³
EF _{CO2,i}	Is the weighted average CO2 emission factor of fuel type i in the year y	tCO ₂ /GJ
i	Fuel type combusted (diesel or natural gas)	

c) CO₂ emissions from electricity consumption ($PE_{EC,y}$)

Project emissions from on-site electricity consumption ($PE_{EC,y}$) is calculated using the latest approved version of the "*Tool to calculate baseline, project and/or leakage emissions from electricity consumption*". Scenario A is applied: Electricity from the grid" (no captive power plant is installed at the site)²⁸.

²⁸ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 29), point c)

page 29

$PE_{EC,y} = EC_{PI,y} * EF_{EL,y} * (1 + TDL_y)$			
Where	Description	Unit	
PE _{EC,y}	Project emissions from electricity consumption in year y	tCO ₂ /year	
EC _{PJ,y}	Quantity of electricity consumed by the project electricity consumption source <i>j</i> in year <i>y</i>	MWh/year	
$EF_{EL,y}$	Emission factor for electricity generation for source <i>j</i> in year <i>y</i>	tCO ₂ /MWh	
TDLy	Average technical transmission and distribution losses for providing electricity to source $l^{29} \rightarrow neglected$	-	

Option A1 has been selected to calculate $EF_{EL,y}$. Hence the combined margin emission factor of the national grid is used based on the procedures in the latest approved version of the tool to calculate the emission factor for an electricity system. ($EF_{EL,i/k/l,v} = EF_{grid,CM,v}$).

$PE_{EC,y} = EC_{PJ,y} * EF_{grid,CM,y}$		Equation 6
Where	Description	Unit
PE _{EC,y}	Project emissions from electricity consumption in year y	tCO ₂ /year
EC _{PJ,y}	Quantity of electricity consumed by the project electricity consumption from grid in year <i>y</i> (MWh/yr)	MWh/year
EF _{grid,CM,y}	Combined margin emission factor for the national grid for year y	tCO ₂ /MWh
	(ex-ante option)	

d) Methane emissions from combustion of biomass residues (PE_{Biomass,CH4,y}):

This source of emissions has been excluded from the project boundary (see section B.3).

\rightarrow PE_{Biomass,CH4,y} = 0

e) Methane emissions from waste water treatment (PE_{WW,CH4})

No water is used in the treatment/preparation of biomass, hence:

$\rightarrow PE_{WW,CH4} = 0$

Hence:

 $PE_y = PET_y + PEFF_y + PE_{EC,y}$

Equation 7

²⁹ As per ACM0006, general guidance (page 40), it is assumed that transmission and distribution losses in the electricity grid are not influenced significantly by the project activity. They are therefore neglected.

page 30

Emission reductions due to displacement of electricity (ER_{electricity,y})

Emission reductions due to the displacement of electricity are calculated by multiplying the net quantity of increased electricity generated with biomass residues as a result of the project activity (EGy) with the CO₂ baseline emission factor for the electricity displaced due to the project $(EF_{electricity,y)}$, as follows³⁰:

Step 1: Determination of EF_{electricity,y}

The project activity displaces electricity from other grid connected sources (P4) and the power generation of the project activity is less than 15 MW. The emission factor for the displacement of electricity corresponds to the grid emission factor $EF_{electricity,y} = EF_{grid,y}$ and should be calculated as a combined margin (CM), following the guidance in the section "Baselines" in the "Consolidated baseline methodology for grid-connected electricity generation from renewable sources" (ACM0002);

Step 2: Determination of EG_y

EGy corresponds to the net quantity of electricity generation in the project plant: EGy=EGproject plant, y

	$ER_{electricity,y} = EG_{project \ plant,y} * EF_{grid,y}$	Equation 8
Where:	Description	Unit
ER _{electricity,y}	Emission reductions due to displacement of electricity during the year	tCO ₂ /yr
	у	
EG _{project plant,y}	Net quantity of electricity generation as a result of the project activity	MWh
	during the year y	
EFgrid,y	CO ₂ emission factor for the electricity national grid of Argentina	tCO ₂ /MWh
	during the year y (<i>ex-ante option</i>)	

Emission reductions due to displacement of heat (steam)

The emission reductions due to displacement of heat $(ER_{heat,y})$ shall be calculated as follows:

As the baseline scenario is the generation of heat in boilers using fossil fuels (H6), baseline emissions are calculated by multiplying the savings of fossil fuels with the appropriate CO_2 emission factor.

Emission reductions from savings of fossil fuels are determined by dividing the quantity of generated heat that displaces heat generation in fossil fuel fired boilers (Q_y) by the efficiency of the boiler that would be used in the absence of the project activity (ε_{boiler}) and by multiplying with the CO₂ emission factor of the fuel type that would be used in the absence of the project activity for heat generation ($EF_{CO2,BL,heat}$) as follows:

³⁰ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 31,equation 8)

page 31

	$ER_{heat,y} = (Q_y / e_{boiler}) * EF_{CO2,BL,heat}$	Equation 9
Where	Description	Unit
$ER_{heat,y}$ 31	Baseline emissions due to displacement of heat during the year y	tCO2/year
$Q_{,y} = Q_{,project}$	All heat generated by the cogeneration project plant that would in the	TJ/year
32 plant, y	absence of the project activity be generated in fossil fuel fired boilers.	
EF _{CO2,BL,heat}	CO2 emission factor of the fossil fuel type used for heat generation in	tCO2/TJ
	the absence the project activity	
\mathcal{E}_{boiler}	Energy efficiency of the boiler that would be used in the absence of the	-
	project activity to generate heat	

Baseline emissions due to natural decay or uncontrolled burning of anthropogenic sources of biomass residues

 $BE_{Biomass,y} = 0$ as this source is not included in the project boundary (see section B3)

Leakage

In the absence of the project activity the biomass residues are dumped or left to decay or burnt in an uncontrolled manner without utilizing it for energy purposes. In this case, the project participant shall demonstrate that the use of the biomass residues does not result in increased fossil fuel consumption elsewhere. For this purpose, project participants shall assess as part of the monitoring the supply situation for the types of biomass residues used in the project plant. Three options are available as per methodology³³.

To do so at validation stage, option L₃ was selected.

L3: The project participant shall demonstrate that suppliers of the type of biomass residue in the region of the project activity are not able to sell all of their biomass residues. For this purpose, project participants shall demonstrate that the ultimate supplier of the biomass residue (who supplies the project) and a representative sample of suppliers of the same type of biomass residue in the region had a surplus of biomass residues (e.g. at the end of the period during which biomass residues are sold), which they could not sell and which is not utilized. Letters from 3 local suppliers are available to confirm that each of them have a surplus of biomass residues which is currently not utilised³⁴.

The geographical boundary of the region used to assess the leakage effect is located within a radius of 200 km from the project activity site and includes partly the provinces of Santa Fe, Entre Rios, Córdoba and Buenos Aires. This geographical boundary is fixed for the entire crediting period.

UNFEEL

³¹ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 31,equation 26)

³² ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 31,equation 27)

³³ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 52&53, options L1, L2 and L3)

³⁴ See enclosures 16 to 18

page 32

UNFOOD

→ $L_y = 0$ (for ex-ante calculation)

If the project participant cannot demonstrate that the use of biomass does not result in leakage, a leakage penalty will be apply as per methodology³⁵.

$ER_y = ER_{heat,y} + ER_{electricity,y} + \frac{BE_{biomass,y}}{E} - PE_y - Ly$	Equation 10

Data / Parameter:	GWP _{CH4}
Data unit:	tCO2e/tCH4
Description:	Global warming potential for CH4
Source of data used:	IPCC
Value applied:	21
Justification of the	Shall be updated accordingly to any future COP/MOP decisions
choice of data or	
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	-

B.6.2. Data and parameters that are available at validation:

Data / Parameter:	$EF_{grid,CM,y} = EF_{grid,y}$
Data unit:	tCO ₂ /MWh
Description:	Combined margin emission factor for the grid in year 2008
Source of data to be	Secretaria de Energia,
used:	http://energia3.mecon.gov.ar/contenidos/verpagina.php?idpagina=2311
	Ex-ante option (0.5/0.5 weights)
Value applied:	0.442
Description of	As per "Tool to calculate the emission factor for an electricity system"
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	-
be applied:	
Any comment:	-

³⁵ ACM0006 / Version 09 Sectoral Scope: 01 EB 48 (page 53, formula 47)

page 33

B.6.3. Ex-ante calculation of emission reductions:

Emission reductions (illustrated for year 1)

$ER_y = ER_{heat,y} + ER_{electricity,y} + BE_{biomass,y} - PE_y - L_y$			Equation 1
Where	Description	Value	Unit
ER_y	Emissions reductions of the project activity during the year y	43,316	tCO ₂ /yr
$ER_{electricity,y}$	Emission reductions due to displacement of electricity during the	35,006	tCO ₂ /yr
	year y		
$ER_{heat,y}$	Emission reductions due to displacement of heat during the year y	95,170	tCO ₂ /yr
$BE_{biomass,y}$	Baseline emissions due to natural decay or burning of	0	tCO ₂ /yr
	anthropogenic sources of biomass residues during the year y		
PE_{y}	Project emissions during the year y	86,860	tCO ₂ /yr
L_{y}	Leakage emissions during the year y	0	tCO ₂ /yr

Emission reductions due to displacement of heat (steam)

$ER_{heat,y} = (Q_y / e_{boiler}) * EF_{CO2,BL,heat}$			Equation 9
Where	Description	Value	Unit
$ER_{heat,y}$	Baseline emissions due to displacement of heat during the year y	95,170	tCO2/yr
$Q_{,y} = Q_{,project}$ plant, y	All heat generated by the cogeneration project plant that would in the absence of the project activity be generated in fossil fuel fired boilers.	1,561	TJ/year
$EF_{CO2,BL,heat}$	CO2 emission factor of the fossil fuel type used for heat generation in the absence the project activity	56.1	tCO2/TJ
E _{boiler}	Energy efficiency of the boiler that would be used in the absence of the project activity to generate heat	92.0%	-

Emission reductions due to displacement of electricity (ER_{electricity.y})

$ER_{electricity,y} = EG_{project \ plant,y} \cdot * EF_{grid,y}$			Equation 8
Where:	Description	Value	Unit
ER _{electricity,y}	Emission reductions due to displacement of electricity during	35,006	tCO ₂ /year
	the year y		
EGproject plant,y	Net quantity of electricity generation as a result of the project	79,200	MWh/year
	activity during the year y		
EFgrid,y	CO ₂ emission factor for the electricity national grid of	0.442	tCO ₂ /MWh
	Argentina during the year y		

UNFOOD

CDM – Executive Board

page 34

Project emissions

$PE_{v} = PET_{v} + PEFF_{v} + PE_{EC,v} + GWP_{CH4} * (PE_{Biomass,CH4,v} - PE_{WW,CH4,v})$		Equation 2	
Where	Description	Value	Unit
PE _y	Project emissions during the year y	86,860	tCO ₂ /year
PET _y	CO_2 emissions during the year y due to transport of the	3,082.4	tCO ₂ /year
	biomass residues to the project plant		
PEFFy	CO ₂ emissions during the year y due to fossil fuels co-fired by	83,773	tCO ₂ /year
	the generation facility or other fossil fuel consumption at the		
	project site that is attributable to the project activity		
$PE_{EC,y}$	CO_2 emissions during the year y due to electricity	4.1	tCO ₂ /year
	consumption at the project site that is attributable to the		
	project activity		
GWP_{CH4}	Global Warming Potential for methane valid for the relevant	21	tCO ₂ /year
	commitment period		
PE _{Biomass,CH4,y}	CH ₄ emissions from the combustion of biomass residues	0	tCH4/year
	during the year y		
PE _{WW,CH4,y}	CH ₄ emissions from the waste water generated from the	0	tCO ₂ /year
	treatment of biomass residues in the year y (tCH ₄ /yr)		

Carbon dioxide emissions from combustion of fossil fuels for transportation of biomass residues to the project plant (*PETy*)

$PET_{y} = N_{y} * AVD_{y} * EF_{km}, CO_{2,y}$			Equation 3	
Where		Value	Unit	
PET _y	CO_2 emissions during the year y due to transport of the	3,082.4	tCO ₂ /year	
	biomass residues to the project plant			
N _y	Number of truck trips during the year y	7,264.3	-	
AVD _y	Average round trip distance (from and to) between the biomass	400	km	
	residue fuel supply sites and the site of the project plant during			
	the year y			
EF _{km,CO2,y}	Average CO ₂ emission factor for the trucks measured during	1.061^{36}	kgCO ₂ /km	
	the year y			

Carbon dioxide emissions from on-site consumption of fossil fuels (*PEFF*_y)

$PEFF_{y} = \sum_{i} (FF_{project \ plant, i, y} * NCV_{i, y} * EF_{CO2, i})$			Equation 5
+ \sum_{i} (FF _{project site}	$_{x,i,y} * \text{NCV}_{i,y} * \text{EF}_{\text{CO2},i}$		
Where	Description	Value	Unit
PEFF _y	CO_2 emissions from onsite fossil fuel combustion in the project activity during the year <i>y</i>	83,773	tCO ₂ /year

 36 $\,$ Calculated by using an estimated average diesel consumption of $\,$ 0.4 l/km for a 25 MT truck

page 35

FFproject plant, i,y	Quantity of fuel type natural gas combusted in the	38,206,464	m ³ /year
	project plant during the year y		
FFproject site, i,y	Quantity of fuel type diesel combusted at the project	95.04	m ³ /year
	site for other purposes that are attributable to the		
	project activity during the year y		
NCV _{NG,y}	Weighted average net calorific value of the fuel type	0.0390	GJ/m ³
-	natural gas in the year y		
NCV _{diesel,y}	Weighted average net calorific value of fuel type	35.8	GJ/m ³
	diesel in the year y		
EF _{CO2,NG}	Is the weighted average CO2 emission factor of fuel	0.056	tCO ₂ /GJ
	type natural gas in the year y		
EF _{CO2,diesel}	Is the weighted average CO2 emission factor of fuel	0.074	tCO ₂ /GJ
	type diesel in the year y		

Calculation of FF_{project plant,y}

$FF_{\text{project plant},y} = \sum_{i} \{ Q_{FF,y} / (NCV_{i,y} * \boldsymbol{\varepsilon}_{\text{builter}, FF}) \}$			Equation 4
Where	Description	Value	Unit
FF _{project plant,y}	Quantity of fuel type <i>natural gas</i> combusted in the project plant during the year y	38,206,464	(m ³ /year)
Q _{FF,y}	Steam quantity generated by the fossil fuel boiler	1,489,000	(GJ/year)
Eboiler,FF	Efficiency of the fossil fuel boiler	92.0%	-
NCV _{i.y}	Weighted average net calorific value of the fuel type <i>i</i> in year <i>y</i>	0.0390	GJ/m ³

Fuel combustion associated with the diverted steam quantities generated from the fossil fuel boiler during phase 1 is calculated from the net steam energy divided by the boiler efficiency:

Assumptions	Value	Unit	Comments
Steam quantity (outlet of boilers)	96,078/2 ³⁷	kW	Heat & Mass diagram (enclosure 4)
Steam characteristics (superheated)			
- pressure	42.9	bar _a	Heat & Mass diagram
- temperature	405	С	Heat & Mass diagram
- enthalpy	3,220.2	kJ/kg	Heat & Mass diagram
Boiler efficiency (Nebraska A-type)	92.0%	%	EB48, Annex 12, default value
FFproject plant, i,y	1,489	TJ/year	Calculated

 $^{^{37}}$ During phase 1, max. 50% of the energy is supplied by the fossil fuel boiler. The steam quantity is corrected to take into consideration the feed water and blow-down enthalpies

page 36

Calculation of FF_{project site, i,y}

It consists of diesel consumed by mechanical equipment for on-site transport of biomass.

	Consumers description	Fuel type	Value	Unit
FF _{project site} , i,y	Shovel to move woodchips from ware house to the biomass boiler hoper (12 liter/hour x 7,920)	Diesel	95.04	m ³ /year

CO₂ emissions from electricity consumption ($PE_{EC,y}$)

$PE_{EC,y} = EC_{PJ,y} * EF_{grid,CM,y}$			Equation 6
Where	Description	Value	Unit
PE _{EC,y}	Project emissions from electricity consumption in year y	4.1	tCO ₂ /year
EC _{PJ,y}	Quantity of electricity consumed by the project electricity consumption from grid in year <i>y</i> (MWh/yr)	9.6	MWh/year
EF _{grid,CM,y}	Combined margin emission factor for the national grid for year y	0.442	tCO ₂ /MWh

B.6.4	B.6.4 Summary of the ex-ante estimation of emission reductions:					
>>	>>					
YEAR	Estimation of project activity emissions (tCO _{2e})	Estimation of baseline emissions (tCO _{2e})	Estimation of leakage (tCO _{2e})	Estimation of overall emission reductions (tCO _{2e})		
1	86,860	130,176	0	43,316		
2	86,860	130,176	0	43,316		
3	6,674	130,176	0	123,502		
4	6,674	130,176	0	123,502		
5	6,674	130,176	0	123,502		
6	6,674	130,176	0	123,502		
7	6,674	130,176	0	123,502		
8	6,674	130,176	0	123,502		
9	6,674	130,176	0	123,502		
10	6,674	130,176	0	123,502		
Total	227,112	1,301,760	0	1,074,648		

page 37

B.7. Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:

Data / Parameter:	$BE_{r} = BE_{r}$ (ID1)		
Data / Tarameter.	$\frac{DT_{K,Y} - DT_{T,K,Y}}{DT_{T,K,Y}}$		
Description:	Quantity of biomass residue type k combusted in the project plant during		
	the year y		
Source of data to be used:	On-site measurements		
Description of measurement	The amount of biomass combusted is estimated from the amount of		
methods and procedures to	biomass delivered to the project site.		
be applied:	Each truck entering the project activity will be weighted at the gate by the		
	use of a weighbridge.		
	The moisture will be recorded in order to calculate the dry weight.		
Monitoring frequency	Continuously, prepare annually an energy balance.		
QA/QC procedures to be	• The quantity shall be crosschecked with the quantity of electricity		
applied:	and heat generated and the fuel purchase receipts (if available).		
11	• An energy balance for the verification period will be undertaken		
	considering the stocks of biomass at the beginning and end of		
	and varification pariod and the biomass nurshase receipts		
	each vernication period and the biomass purchase receipts.		
	• The monthly stock of blomass will be recorded by using the best		
	available methods (trapezoidal method for volume		
	determination).		
	 Data is recorded manually in a data log file 		
	• Uncertainly level of data: low		
	• Calibration as per manufacturer's recommendation or at least		
	once a year		
Any comment:			

Data / Parameter:	Moisture content of the biomass residues (ID2)
Data unit:	% Water content
Description:	Moisture content of each biomass residue type k
Source of data to be used:	On-site measurements
Description of measurement	By using a moisture analyser
methods and procedures to	
be applied:	
Monitoring frequency	The moisture content of the biomass type k from each truck transported to
	the project site will be tested (internal laboratory) on a continuous basis
	i.e. measurements taken from each truck delivered. The mean values will
	be calculated at least annually
QA/QC procedures to be	• Moisture content is recorded manually in a data log file
applied:	• Uncertainly level of data: low
	• Maintenance and calibration as per manufacturer's specifications
	or at least every year
Any comment:	

page 38

UNFOOD

Data / Parameter:	AVD _y (ID3)
Data unit:	km
Description:	Average round trip distance (from and to) between the supply sites and
	the project site
Source of data to be used:	Records by the project participant of the origin the biomass.
Description of measurement	For each supply site, the distance between the source of the biomass and
methods and procedures to	the plant will be estimated by using GIS mapping software or a GPS. The
be applied:	mean value of km travelled by trucks that supply the biomass plant will
	be calculated based on the amount of trips for each site and the
	corresponding distance.
Monitoring frequency	Continuously, each truck origin will be recorded
QA/QC procedures to be	Check consistency of distance records provided by the truckers
applied:	by comparing recorded distances with other information from
	other sources.
	• The origin of the biomass and the corresponding round trip
	distance for each truck will be recorded manually in a data log
	file
	• Uncertainly level of data: low
Any comment:	

Data / Parameter:	N _y (ID4)
Data unit:	-
Description:	Number of truck trips for the transportation of biomass.
Source of data to be used:	On-site measurements
Description of measurement	Recording of each truck delivering biomass to the plant
methods and procedures to	
be applied:	
Monitoring frequency	Continuous (Each truck)
QA/QC procedures to be	• The consistency of the number of truck trips with the quantity of
applied:	biomass combusted will be checked (e.g. by relation with
	previous years).
	Uncertainly level of data: low
Any comment:	

Data / Parameter:	$EF_{km,CO2,y}$ (ID5)
Data unit:	tCO ₂ /km
Description:	Average CO_2 emission factor for the trucks during the year y
Source of data to be used:	Conduct sample measurements of the fuel type, fuel consumption and
	distance traveled for all truck types. Calculate CO2 emissions from fuel
	consumption by multiplying with appropriate net calorific values and
	CO2 emission factors. For net calorific values and CO2 emission factors,
	use reliable national default values or, if not available, (country-specific)
	IPCC default values. Alternatively, choose emission factors applicable for
	the truck types used from the literature in a conservative manner (i.e. the
	higher end within a plausible range)
Description of measurement	-

UNFOOL

CDM – Executive Board

page 39

methods and procedures to	
be applied:	
Monitoring frequency	At least once annually
QA/QC procedures to be applied:	 Cross-check measurement results with emission factors referred to in the literature. Uncertainly level of data: low
Any comment:	Checkanny level of data. low

Data / Parameter:	EF _{C02,FF,NG} (ID 6)
Data unit:	tCO ₂ /GJ
Description:	CO ₂ emission factor for fossil fuel type <i>natural gas</i>
Source of data to be used:	IPCC 2006 default emission factors
Description of measurement	-
methods and procedures to	
be applied:	
Monitoring frequency	Review the appropriateness of the data annually
QA/QC procedures to be	-
applied:	
Any comment:	Reliable local or national data not available

Data / Parameter:	EF _{CO2,FF,diesel} (ID 7)
Data unit:	tCO ₂ /GJ
Description:	CO ₂ emission factor for fossil fuel type <i>diesel</i>
Source of data to be used:	IPCC 2006 default emission factors
Description of measurement	-
methods and procedures to	
be applied:	
Monitoring frequency	Review the appropriateness of the data annually
QA/QC procedures to be	-
applied:	
Any comment:	Reliable local or national data not available

Data / Parameter:	FF _{project plant,i,y} (ID 8)
Data unit:	m ³ /year or liter/year
Description:	Quantity of fossil fuel type <i>i</i> combusted in the project plant during the
	year y
Source of data to be used:	On-site measurements
Description of measurement	Use weight or volume meters
methods and procedures to	
be applied:	
Monitoring frequency	Continuous
QA/QC procedures to be	• Cross-check the measurements with an annual energy balance
applied:	that is based on purchased quantities and stock changes.
	Uncertainly level of data: low
	• Maintenance and calibration as per manufacturer's specifications
	or at least every year
Any comment:	

UNFOOD

CDM – Executive Board

page 40

Data / Parameter:	FF _{project site,i,y} (ID 9)
Data unit:	m ³ /year or liter/year
Description:	Quantity of fossil fuel type <i>i</i> combusted at the project site for other
	purposes that are attributable to the project activity during the year y
Source of data to be used:	On-site measurements
Monitoring frequency	Continuous
Description of measurement	Use weight or volume meters A diesel storage tank will be installed. A
methods and procedures to	meter will record the consumption of diesel during refuelling of
be applied:	equipment.
QA/QC procedures to be	Cross-check the measurements with the purchasing invoices of the fossil
applied:	fuel and stock changes.
	• Continuously (aggregate) recording of the fossil fuel combusted
	• Data will be recorded manually in a data log file (monthly basis)
	• Uncertainly level of data: low
	• Maintenance and calibration as per manufacturer's specifications
	or at least every year
Any comment:	

Data / Parameter:	Q _{FF,y} (ID 10)
Data unit:	GJ
Description:	Quantity of steam diverted from other fossil fuel boilers to the project
	plant.
Source of data to be used:	On-site measurements
Description of measurement	Net heat generation is determined as the difference of the enthalpy of the
methods and procedures to	steam generated by the project cogeneration plant minus the enthalpy of
be applied:	the feed-water and any condensate return
	The respective enthalpies should be determined based on the mass (or
	volume) flows, the temperatures and, in case of superheated steam, the
	pressure. Steam tables or appropriate thermodynamic equations will be
	used to calculate the enthalpy as a function of temperature and pressure.
	The fraction of heat generated from firing biomass residues should be
	determined by dividing the quantity of biomass residues fired by the total
	quantity of all fuels fired, both expressed in energy quantities
Monitoring frequency	Continuously
QA/QC procedures to be	• The consistency of metered net heat generation should be cross-
applied:	checked with receipts from sales (if available) and the quantity of
	biomass fired (e.g. check whether the net heat generation divided
	by the quantity of biomass fired results in a reasonable thermal
	efficiency that is comparable to previous years)
	• Uncertainly level of data: low
	• Maintenance and calibration as per manufacturer's specifications
	or at least once per year
Any comment:	The fossil fuel boiler will be used mainly during phase 1 (back up in
	phase 2)

page 41

UNFOOD

Data / Parameter:	e _{boiler,FF} (ID 11)
Data unit:	-
Description:	Average net efficiency of steam generation in the plant from where steam
	is diverted to the project plant (fossil fuel boiler)
Source of data to be used:	The higher value among (a) the measured efficiency and (b)
	manufacturer's information on the efficiency
Monitoring frequency	Quarterly
Description of measurement	The efficiency will be calculated by dividing the steam generation by the
methods and procedures to	sum of the fuels used, both expressed in energy units.
be applied:	
QA/QC procedures to be	 Check consistency with manufacturer's information or the
applied:	efficiency of comparable plants.
	• Data will be recorded manually in a data log file
	• Uncertainly level of data: low
Any comment:	$e_{\text{boiler,FF}} = e_{\text{boiler}}$ (average net efficiency of heat generation in the boiler
	that would generate heat in the absence of the project activity)

Data / Parameter:	EG _{project plant,y} (ID 12)
Data unit:	MWh/yr
Description:	Net quantity of electricity generated in the project plant during the year y
Source of data to be used:	On-site measurements
Monitoring frequency	Continuously
Description of measurement	Energy meter providing a cumulative reading of the kWh
methods and procedures to	
be applied:	
QA/QC procedures to be	• The consistency of metered net electricity generation will be
applied:	cross-checked with the quantity of fuels fired (biomass and/or
	fossil fuel) ³⁸ (e.g. check whether the electricity generation divided
	by the quantity of fuels fired results in a reasonable efficiency
	that is comparable to previous years).
	• Data are recorded manually and stored electronically in a data log
	file (DLF).
	• Data are aggregated monthly in a data log file (DLF).
	Uncertainly level of data: low
Any comment:	During Phase 1, one unit of biomass boiler and one unit of fossil fuel
	boiler are running. During Phase 2, only two biomass boilers are running
	and fossil fuel boiler as standby unit.

Data / Parameter:	Q _{project plant,y} (ID 13)
Data unit:	GJ
Description:	Net quantity of heat generated from firing biomass in the project plant
Source of data to be used:	On-site measurements: they are two steam outputs (process steam 1 and
	process steam 2)

³⁸ No sale of electricity hence no receipts from sale are available

UNFOOD

page 42

Description of measurement	Net heat generation is determined as the difference of the enthalpy of the
methods and procedures to	steam generated by the project cogeneration plant minus the enthalpy of
be applied:	the feed-water and any condensate return.
	The respective enthalpies should be determined based on the mass (or
	volume) flows, the temperatures and, in case of superheated steam, the
	pressure. Steam tables or appropriate thermodynamic equations will be
	used to calculate the enthalpy as a function of temperature and pressure.
	The fraction of heat generated from firing biomass residues should be
	determined by dividing the quantity of biomass residues fired by the total
	quantity of all fuels fired, both expressed in energy quantities
Monitoring frequency	Continuously
Monitoring frequency QA/QC procedures to be	Continuously The consistency of metered net heat generation should be cross-
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross- checked with the quantity of fuels fired (e.g. check whether the
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross- checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross-checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in a reasonable thermal efficiency that is comparable to previous vers)³⁹
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross-checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in a reasonable thermal efficiency that is comparable to previous years)³⁹ Uncertainly level of data level
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross-checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in a reasonable thermal efficiency that is comparable to previous years)³⁹ Uncertainly level of data: low
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross-checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in a reasonable thermal efficiency that is comparable to previous years)³⁹ Uncertainly level of data: low Maintenance and calibration as per manufacturer's specifications
Monitoring frequency QA/QC procedures to be applied:	 Continuously The consistency of metered net heat generation should be cross-checked with the quantity of fuels fired (e.g. check whether the net heat generation divided by the quantity of fuels fired results in a reasonable thermal efficiency that is comparable to previous years)³⁹ Uncertainly level of data: low Maintenance and calibration as per manufacturer's specifications or at least once per year

Data / Parameter:	NCV _i (ID14)
Data unit:	GJ /m ³
Description:	Net calorific value of the fossil fuel type <i>i</i>
Source of data:	Either conduct measurements or use accurate and reliable local or national
	data if available. If such data is not available, use IPCC default net
	calorific values (country-specific, if available) if they are deemed to
	reasonably represent local circumstances. Choose the values in a
	conservative manner and justify the choice
Monitoring frequency	In case of measurements: At least every six months, taking at least three
	samples for each measurement.
	In case of other data sources: Review the appropriateness of the data
	annually
Measurement procedures (if	Measurements should be carried out at reputed laboratories and according
any)	to relevant international standards
QA/QC procedures to be	Check consistency of measurements and local / national data with default
applied:	values by the IPCC. If the values differ significantly from IPCC default
	values, possibly collect additional information or conduct measurements
Any comment:	The appropriate method will be selected based on the availability of
	information and the type of fuel (natural gas and diesel)

Data / Parameter:	NCV _k (ID 15)
Data unit:	GJ/ton of dry matter
Description:	Net calorific value of biomass residue type k
Source of data to be used:	Measurement: determination of the gross calorific value of solid biomass

³⁹ No sale of steam hence no receipts from sale are available

page 43

	fuel based on the bomb calorimeter, and calculation of net calorific value.		
Monitoring frequency	At least every six months, taking at least three samples for each		
	measurement.		
Measurement procedures (if	Measurements to be carried out at accredited laboratory and according to		
any)	relevant international standards. Measure the NCV based on dry biomass.		
QA/QC procedures to be	• Check the consistency of the measurements by comparing the		
applied:	measurement results with measurements from previous years,		
	relevant data sources and default values by the IPCC. If the		
	measurement results differ significantly from previous		
	measurements or other relevant data sources, conduct additional		
	measurements. Ensure that the NCV is determined on the basis of		
	dry biomass.		
	• Data are recorded manually in a data log file		
	• Uncertainly level of data: low		
Any comment:	NCV_k is calculated based on the GCV_k , adjusted based on moisture and		
	the hydrogen content of the sample biomass k.		

Data / Parameter:	(ID 16)	
Data unit:	Tons	
Description:	Availability of a surplus of biomass residue type k (which cannot be sold	
	or utilized) at the ultimate supplier to the project and a representative	
	sample of other suppliers in the defined geographical region	
Source of data to be used:	Surveys or statistics	
Monitoring frequency	Annually	
Description of measurement	-	
methods and procedures to		
be applied:		
QA/QC procedures to be	-	
applied:		
Any comment:	-	

Data / Parameter:	EC _{PJ,y} (ID 17)	
Data unit:	MWh	
Description:	On-site grid electricity consumption attributable to the project activity	
	during the year y	
Source of data to be used:	On-site measurements	
Monitoring frequency	Continuously, aggregated at least annually	
Description of measurement	Energy meter providing a cumulative reading of the kWh.	
methods and procedures to		
be applied:		
QA/QC procedures to be	 Shall be cross-checked with electricity purchase receipts (if 	
applied:	available).	
	Uncertainly level of data: low	
Any comment:		

page 44

B.7.2. Description of the monitoring plan:

>>

A final monitoring plan will be prepared prior the start crediting date based on the as-built project activity. It will address the following aspects:

1. The CDM monitoring team will be composed by the following staff:

Position	Qualifications
Operator	Technician
Supervisor	Technician
Chief	Engineer
CDM consultant	-

2. The allocation of responsibility to ensure compliance with the monitoring requirement of the methodology is given here below:

	Tasks description	Operator	Supervisor	Chief	CDM Consultant
Mo	Monitoring activity				
1	Recording of monitored data	\checkmark			
Qu	Quality Assurance & Quality Control				
2	Verification of data monitored (consistency and completeness)			~	
3	Ensuring adequate training of staff			\checkmark	
4	Ensuring adequate maintenance		✓		
4	Ensuring calibration of monitoring instruments		~		
5	Data archiving: ensuring adequate storage of data monitored (integrity and backup): 2 years after the end of the crediting period			~	
6.	Identification of non-conformance and corrective/preventive actions and monitoring plan improvement		~		
7	Emergency procedures		~		
8 External audit		\checkmark			
Calculation of GHG emission reductions and reporting					
9	Processing of data and calculation of emission reductions				~
10	Monitoring report: management review of monitoring report (internal audit)			~	

page 45

3. Monitoring diagram

Each monitored parameter is identified in the diagram here below:

page 46

B.8. Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies):

>>

The final draft of this baseline was completed on 12/10/2009 by Mr Michel Buron (<u>michel.buron@kyotoenergy.net</u>). Kyoto Energy Pte Ltd (<u>www.kyotoenergy.net</u>) provides carbon advisory services and is not a project participant listed in Annex 1

SECTION C. Duration of the project activity / crediting period

C.1. Duration of the <u>project activity</u>:

C.1.1. <u>Starting date of the project activity</u>:

16/04/2008

C.1.2. Expected operational lifetime of the project activity:

20 years

C.2. Choice of the crediting period and related information:

This project activity will make use of a fixed crediting period.

C.2.1. <u>Renewable crediting period:</u>

C.2.1.1. Starting date of the first crediting period:

Not applicable

C.2.1.2. Length of the first crediting period:

Not applicable

C.2.2. Fixed crediting period:

C.2.2.1. Starting date:

01/09/2010 or the date of registration, whichever is later.

C.2.2.2. Length:

10 years and 0 months.

page 47

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

As such the project activity does not require an Environmental Impact Assessment but it was conducted for the entire crushing facility, including the project activity as well. It verifies any potential impact of the project as requested under the environmental laws of the Government of the Province of Santa Fe, Argentina⁴⁰.

The positive effects of the project activity on key environmental parameters are briefly described below.

- The project will reduce CO_2 emissions by displacing non-renewable fossil fuels (natural gas), with the use of biomass residues that were previously burned or left to decay.
- The project includes adequate air pollution control equipment to ensure that emissions meet Argentina standards, as per the Santa Fe RESOLUCION N°201⁴¹
- The use of biomass will further help to reduce air emissions from contaminants present in fossil fuel such as sulfur and heavy metals
- The avoidance of methane formation by anaerobic decay or by burning of the biomass
- The ashes produced by the combustion process contain a high proportion of potassium and can be used as natural fertilizer. These are to be disposed as soil conditioner reducing the quantity of chemical fertilizer to be utilized.

Finally the EIA identifies the expected negative impacts of the crushing facility which are mainly arising from particulate emissions. The project activity contributes partly to these: in particular due to the emissions from the boilers and the transportation by trucks of biomass.

However the EIA concludes that these impacts are moderate in nature and none of greater importance⁴².

⁴⁰ Ley del Ambiente, Government of Argentina, Articulo 11, and LA LEGISLATURA DE LA PROVINCIA DE SANTA FE SANCIONA CON FUERZA DE L E Y : <u>MEDIO AMBIENTE Y DESARROLLO</u> <u>SUSTENTABLE Capitulo VIII.Articulo 18.</u>

⁴¹ See enclosure 19

⁴² See EIA section 3.2.6

page 48

D.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

Not applicable. Environmental impacts are moderate in nature and none of greater importance.

SECTION E. Stakeholders' comments

>>

E.1. Brief description how comments by local stakeholders have been invited and compiled:

The stakeholder consultation consisted of a public meeting addressing the stakeholders mentioned above. Stakeholders were invited to the consultation meeting through personal invitations delivered by hand (see annex 1 for example of invitation). The Stakeholder Consultation Meeting was held on Wednesday 08 October 2008.

Policy makers, Union leaders, local people directly impacted by the project, municipal and government organizations, immediate neighbours, local companies, members of the municipal counsel, including teachers from local schools,. Altogether, 21 participants from various public and private organizations, from Noble Argentina, from Noble Carbon and from KYOTOenergy participated in the consultation meeting.

The meeting was held in Spanish. Two PowerPoint presentations were given. A first presentation was given by Noble Argentina explaining the company's activities and to introduce the project activity's objectives and justification. The second presentation was given by KYOTOenergy to explain in non-technical terms what is the Kyoto protocol, what are the principles of a CDM project, and how the Noble Argentina project fits in the CDM project profile. Following the presentations, there was a question and answers period to allow participants to discuss and ask questions on any and all presentations, and to ensure their understanding of the project. Finally all participants, except for those from Noble Argentina and KYOTOenergy, were given the opportunity to answer an optional questionnaire, in Spanish as to review their understanding of the project. The questionnaire was distributed to each participant willing to fill out the questionnaire.

Meeting procedure

- Opening of meeting
- Presentation of Noble Argentina activities
- Explanation in non-technical terms of CDM projects and on the purpose of the consultation
- Discussions, clarifications
- Answering of questionnaire
- Lunch and refreshments

page 49

E.2. Summary of the comments received:

>>

QUESTION
Have any government officials been notified about this project and about this Public Consultation?
Will this project increase the frequency of transport?
What will happen with the ashes from the boiler?
Where is the biomass residues bought?
What is the total surface of the project?
Why did Noble choose biomass as an alternate source of energy?
Did Noble plan any teaching, training and other capacity building programmes for the new system?
Is there a problem if the size of the wood chips you will use is not exactly uniform? Will there be any
rejects?

E.3. Report on how due account was taken of any comments received:

None of the comments received during the stakeholder consultation meeting required any action that had not already taken place prior to the consultation meeting in anticipation with the concern of the stakeholders. Therefore, none of the comments have an impact on the project.

QUESTION	How due account was taken?
Have any government officials been	Yes in fact two representatives of the Provincial Environment
notified about this project and about	government are attending the meeting.
this Public Consultation?	
Will this project increase the	The project is located in an industrial zone and therefore, no
frequency of transport?	trucks will go through the municipality to bring the biomass.
	In fact, the routes to be used are the same as those used for
	the transport of crushed soya.
What will happen with the ashes from	The ashes are to be used as fertilizer. A lot of it will be used
the boiler?	on Noble's own land. The rest will be used on other land that
	is in need of natural fertilizer or as soil conditioner.
Where is the biomass residues bought?	There are several potential suppliers of biomass residues. For
	the moment, no contracts have been signed with any supplier.
What is the total surface of the	The project for Noble is not only the biomass boiler but the
project?	whole crushing plant which extends over 200 hectares. The
	biomass boiler project is therefore a very small part of the
	whole surface, which are the boiler area and the biomass
	storage area.
Why did Noble choose biomass as an	The alternative would be natural gas, diesel or coal which is
alternate source of energy?	very polluting. Coal is very expensive in Argentina and
	would lead to high emissions. Biomass seemed to be a logical
	choice. And although the costs for the boiler is higher than
	that of a fossil fuel boiler (3 to 4 times higher), with the
	carbon credits it seemed like a feasible and sustainable
	option.

page 50

Did Noble plan any teaching, training	Yes, Noble will give special training to the employees
and other capacity building	responsible for operating and maintaining the biomass boiler,
programmes for the new system?	and for all the logistics surrounding the new technology
Is there a problem if the size of the wood chips you will use is not exactly uniform? Will there be any rejects?	There is no problem on the size of the woodchips. There is an acceptable range and therefore, all the wood waste and wood residues as woodchips will be used. There will be no rejects from the biomass wood.

page 51

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE **PROJECT ACTIVITY**

Organization:	Noble Argentina S.A.
Street/P.O.Box:	Carlos Pellegrini 1163 - Piso 9° - (C1009ABW)
Building:	
City:	Capital Federal
State/Region:	Buenos Aires
Postcode/ZIP:	(C1009ABW)
Country:	Argentina
Telephone:	Tel. 011 4131 7100/ 011 4131 7140
FAX:	011 4131 7140
E-Mail:	administracion@noblegrain.com
URL:	
Represented by:	Alfonso Romero
Title:	General Manager
Salutation:	
Last name:	Romero
Middle name:	Bedoya
First name:	Alfonso
Department:	Management
Mobile:	011-1557031200
Direct FAX:	
Direct tel:	
Personal e-mail:	alfonsoromero@noblegrain.com

page 52

Organization:	Noble Carbon Credits Limited
Street/P.O.Box:	13 Gilford Road
Building:	1 st Floor, Gilford Hall
City:	Dublin
State/Region:	Sandymount
Postcode/ZIP:	4
Country:	Ireland
Telephone:	+ 353 1 260 7660
FAX:	+ 353 1 260 7661
E-Mail:	thorstenansorg@noblecarbon.com
URL:	www.thisisnoble.com
Represented by:	Mr. Thorsten Ansorg
Title:	Managing Director
Salutation:	Mr.
Last name:	Ansorg
Middle name:	Andreas
First name:	Thorsten
Department:	
Mobile:	+49 160 715 0994
Direct FAX:	
Direct tel:	
Personal e-mail:	thorstenansorg@noblecarbon.com

LAFOC

CDM – Executive Board

page 53

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

The project activity is not receiving any funding from parties included in Annex 1 of the Kyoto Protocol

page 54

UNFOOD

Annex 3

BASELINE INFORMATION

UNFEEC

CDM – Executive Board

page 55

Annex 4

MONITORING INFORMATION

Monitoring refers to the collection and archiving of all relevant data necessary for determining the baseline, measuring anthropogenic emissions by sources of greenhouse gases (GHG) within the project boundary of a CDM project activity and leakage. It includes developing suitable data collection methods and data interpretation techniques for monitoring and verification of GHG emissions with specific focus on specific energy production parameters.

Data Monitoring

The monitoring methodology involves amongst other the monitoring of the following:

- Steam quantity (GJ): calculated from the flow, pressure and temperature of steam (some flow meters have inbuilt temperature and pressure compensation which means that it is not required to measure separately p and T). The corresponding steam enthalpies are determined by using the steam table or appropriate thermodynamic equations. Adjustment will be made to take into consideration the enthalpies of the feed-water and condensates return.
- Electricity consumption/generation (MWh): by using energy meters
- Weight (tonne): by the use of electronic weight scale or volume measurement multiplied by density
- Moisture content: is the water content: (or "moisture content on wet basis") proportion of water mass compared to wet material mass.

$$w = Water.Content = \frac{m_{water}}{m_{dry.fuel} + m_{water}} \quad \in [0\%, 100\%]$$

The purpose of the monitoring procedure will be to direct and support monitoring of project performance project indicators to determine project outcomes, greenhouse gas (GHG) emission reductions. The project employs latest state of art monitoring and control equipment that measure, control and record key parameters continuously.

page 56

On-line monitoring system

Whenever feasible key parameters required to determine GHG emissions and emission reductions will be monitored from a central control point which will record meter readings continuously at a pre-determined interval (e.g. every ten minutes or shorter interval) or at each events (e.g. number of trucks entering the facility).

Ensuring adequate maintenance and calibration of monitoring instruments

- Specific maintenance, repair or replacement of monitoring equipment will be recorded and will describe the time and action undertaken.
- The calibration will occur at intervals determined on the basis of instrument manufacturers' recommendations, stability, purpose, usage and history of repeatability. Recalibration should be performed whenever an event occurs that places the accuracy of the instrument in doubt.
- Calibration of the flow meter will take place at least once per year to ensure that the monitoring equipment are properly installed and functioning properly.
- Energy meters are delivered with a certificate of conformity and are not calibrated after installation. They will be calibrated yearly after the first year of service.
- Last calibration certificates and next calibration date will be provided during periodic verification
- Defect, repair or change of monitoring equipment will be recorded.

Data archiving

The monitored data will be kept for a minimum of 2 years after the end of the crediting years by using paper documents and electronic files.

Identification of non-conformities

A verification of inconsistencies of the data recorded will be performed periodically. Any discrepancies (completeness, calculation errors, transcription errors, instrument calibration issues) will be analyzed and actions taken to correct the problem.

Ensuring adequate training of staff

- All new staff will undergo 'on job training' covering the monitoring requirements
- The monitoring plan will be made available to each staff involved in the monitoring in the local language. A copy is located in the control room at the site.
- During the training, staff is required to sign training attendance list.

page 57

- All training record shall be documented inclusive of training attendance, training memo and training material if any.
- Type of training required will be indicated from Training Need Analysis conducted yearly. The record of training and awareness should be kept for at least 2 years after the crediting period.
- Regular meetings will be organized to ensure that the personnel is aware of the relevance and importance of its activities and how it is contributing to the achievement of the quality monitoring plan.

- - - - -