Write the equation in logarithmic form.

1. $2^4 = 16$

2. $27^{\frac{4}{3}} = 81$ [A] $\log_{\frac{4}{3}} 81 = 27$ [B] $\log_{81} 27 = \frac{3}{4}$ [C] $\log_{27} 81 = \frac{4}{3}$ [D] $3\log_{4} 81 = 27$

Evaluate the logarithm.

- 3. $\log_{81} 3$ [A] $\frac{1}{4}$ [B] -4 [C] $-\frac{1}{4}$ [D] 4
- 4. $\log \sqrt[4]{10}$
- 5. Use your calculator to evaluate the logarithm. log 0.15
 [A] -1.214
 [B] -1.897
 [C] -0.527
 [D] -0.824
- 6. Write the equation $\log_{32} 4 = \frac{2}{5}$ in exponential form. [A] $\left(\frac{2}{5}\right)^{32} = 4$ [B] $4^{\frac{5}{2}} = 32$ [C] $32^{\frac{2}{5}} = 4$ [D] $4^{\frac{2}{5}} = 32$

State the property or properties used to rewrite the expression.

- 7. $\log \sqrt[6]{8x^3} = \frac{1}{2} \log 2x$ [A] product and power properties [B] quotient property [C] power and quotient properties [D] power property
- 8. 2 log 6 + log $\frac{1}{3}$ = log 12

Write the logarithmic expression as a single logarithm.

- 9. $6 \log_b x + 3 \log_b y$
- 10. $6 \log x 3 \log (x+5)$ [A] $\log x(x+5)^{18}$ [B] $18 \log \frac{x}{x+5}$ [C] $\log x^6(x+5)^3$ [D] none of these

Expand the logarithm.

11.
$$\log_b \sqrt{\frac{23}{33}}$$

[A] $\sqrt{\log_b 23 - \log_b 33}$
[B] $\frac{1}{2} (\log_b 23 - \log_b 33)$
[C] $\log_b \frac{1}{2} (23 - 33)$
[D] $\frac{1}{2} (\log_b 23 + \log_b 33)$
12. $\log_a \frac{2xy^3}{z^4}$

Use the properties of logarithms to evaluate the expression.

13.
$$\log_4 4 + \log_4 64 - \log_4 16$$

- 14. $2\log_5 \sqrt{5}$ [A] 10 [B] 1 [C] 11 [D] $\frac{1}{2}$
- 15. Given $\log_z 2 = 0.333$ and $\log_z 5 = 0.774$, find $\log_z 0.4$.
- 16. Given $\log 10 = F$ and $\log 5 = G$, find $\log 2$.

[A]
$$\frac{F}{G}$$
 [B] $F+G$ [C] $F-G$ [D] FG

17. Indicate whether the following statement is true or false. If it is false, correct the statement. $\log (3 \cdot 4) = \log 3 \cdot \log 4$

Solve the equation. Check your answer.

- 18. $-85 + 7.14^{x} = 45$
- 19. $\frac{1}{9} = 27^{6x-4}$ [A] $\frac{1}{3}$ [B] $\frac{5}{9}$ [C] $\frac{7}{9}$ [D] $\frac{1}{9}$

Use the Change of Base Formula to evaluate each expression. Then convert it to a logarithm in base 9.

- 20. log₆973

 [A] 3.840, log₉4624.97

 [C] 3.840, log₉4616.427

 [D] 41.282, log₉4624.97
- 21. $\log_2 16$

Solve the equation. Check your answer.

22. $3 \log 2x = 4$ [A] 2.7826 [B] 0.6309 [C] 10.7722 [D] 5

23. $\log 3x + 5 = 3$

Solve the equation.

24. $\log (5x+7) = 2$ [A] $\frac{13}{5}$ [B] $\frac{93}{5}$ [C] $\frac{1017}{5}$ [D] $\frac{107}{5}$ 25. $\log (x+15) - \log x = 2$ [A] 0.1515 [B] 1.2667 [C] 6.6000 [D] 0.7895

26. $\log (2x+43) - \log x = 1$

Solve the equation.

- 27. $\log x + \log 4 = 2$ [A] 2.5 [B] 25 [C] $\frac{1}{2}$ [D] -2
- 28. $2 \log 4 \log 3 + 2 \log x 4 = 0$

Write the expression as a single natural logarithm.

29. $3 \ln 5 + 2 \ln x$

30.
$$3 \ln a - \frac{1}{2} (\ln b + \ln c^2)$$
 [A] $\frac{3}{2} \ln \frac{a}{bc^2}$ [B] $\ln \frac{3a}{0.5bc^2}$ [C] $\ln \frac{a^3}{bc}$ [D] $\ln \frac{a^3}{c\sqrt{b}}$

Simplify the expression.

- 31. $\ln e^4$
- 32. $\ln \sqrt[3]{e}$ [A] 3e [B] $\frac{1}{3e}$ [C] $\frac{1}{3}$ [D] 3
- 33. The sales of a certain product *t* years after the product is introduced is given by 1200 ln (8t + 4). How many of the product will be sold 4 years after the product is introduced? Round the answer to the nearest whole number.

Solve the equation. Check your answer.

34. $\ln 2 + \ln x = 5$ [A] 50,000 [B] 3 [C] 10 [D] 74.2

35.
$$\ln (7x-3) = \frac{4}{3}$$

36. $\ln x - \ln 6 = 0$ [A] $\ln 6$ [B] 6 [C] e^{6} [D] $6e$

Solve the equation. Check your answer.

37.
$$\ln (3x+2)^2 - 4 = 3.1$$

Use natural logarithms to solve the equation.

38. $e^x = \frac{1}{8}$

- 39. $e^{2x} + 5 = 8$
- 40. The number of bacteria present in a culture after *t* minutes is given as $B = 100e^{kt}$. If there are 662 bacteria present after 8 minutes, find *k*.