Chemistry Content Review

Periodic Table of the Elements

	1																	18
1	1 H 1.008	2		°.	-Atom -Svmb	ic nui ool	mber			Metal Semir	metal		13	14	15	16	17	He 4.003
2	3 Li 6.941	4 Be 9.012	Atomic weight							Nonm	netal		5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 T1 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 209.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	103 Lr 262.1	104 Rf 261.1	105 Db 262.1	106 Sg 263.1	107 Bh 264.1	108 Hs 265.1	109 Mt 268	110 Uun 269	111 Uuu 272	112 Uub 277	113 Uut	114 Uuq 289	115 Uup	116 Uuh 289	117 Uus	118 Uuo 293
		6	57 La 138. 89 Ac 227	58 Ce 9 140. 90 C 140. 90 C 110 0 232	59 Pr 1 140.9 91 Pa 0 231.0	60 No 144.3 92 U 238	61 Pn 146.9 93 N1 0 237	62 5 150.4 94 94 94 94 0 Pu 0 244	63 E1 152. 95 An 1 243	1 GC 0 157.3 96 1 Cn 1 247	65 1 Tb 158.9 97 B 1 247	66 Dy 162.1 98 Cf	67 H 5 164. 99 Ex 1 252	68 9 167. 9 167. 100 5 Fn 0 257	69 7 168. 103 1 1 1 1 1 1 1 1	n Yk 9 173. 1 103 d Nc 1 259		(c) 1998

Matter

- Anything that has mass and takes up space.
- All matter is made from three basic particles:
 - protons
 - neutrons
 - electrons

- Protons, neutrons, and electrons make up atoms.
- Different *types* of atoms are called elements.
- Elements contain protons, neutrons, and electrons in differing numbers.

Subatomic Particles

Nucleus:

- Contains protons and neutrons
- Atomic mass is concentrated in the nucleus
 - Proton
 - Positively charged
 - Found in the nucleus
 - Determines identity of element
 - Mass = 1 amu
 - Neutron
 - Neutral
 - Found in Nucleus
 - Mass = 1 amu

Subatomic Particles

- **Electron Cloud**
- Electron Cloud surrounds the nucleus
- Contains particles which are negatively charged
- Electrons are located in specific energy levels.
- If the atom is neutral, the number of electrons equals the number of neutrons
- Very small mass (negligible)
- Electrons in the outermost shell are called valance electrons.

An atom or group of atoms that has a positive or negative charge.

Ions

- If an atom loses an electron, it becomes positive
- If an atom gains an electron, it becomes negative.

Compounds

A substance containing atoms of more than one element

- NaCl
- $-C_{6}H_{12}O_{6}$
- $-H_2SO_4$
- C₁₃H₁₈O₂ (ibuprofen)

- Two or more atoms bound so tightly that they behave as a single unit.
 - Linked by covalent bonds
- Consist of atoms of the same element or different elements

Molecules

Ionic Compound

- Formed by the attraction of two ions that are oppositely charged.
- Na⁺ + Cl⁻ → NaCl

Practice

- Identify each of the following as an atom, ion, or molecule:
 - -Ne Atom
 - CI⁻ Ion
 - Ca²⁺ Ion
 - CH₄ Molecule
 - -NO Molecule
 - P³⁻ Ion
 - CO₂ Molecule
 - He Atom
 - SO₄²⁻ Ion

Density

- Describes how closely packed atoms and molecules are in a given substance.
- The ratio of an object's mass to its volume.
- Volume of a cube = length x width x height
- Density = mass/volume
- Units: g/cm³
- Common Densities
 - Air: .001 g/cm³
 - Water (40C): 1.00 g/cm³
 - Water/Ice (00C): 0.92 g/cm³
 - Aluminum: 2.7 g/cm³
 - Gold: 19.3 g/cm³

Density Practice

- Which object has a lower density, a brick or a block of Styrofoam?
 - Styrofoam
- 2. Which object will float in water, a rock or a piece of ice? Why?
 - Ice will float because it is less dense than water; a rock is more dense than water.
 - 3. What is the density of a substance that has a mass of 55g and a volume of 11cm³?
 - 5g/cm³

Pure Substance

- A type of matter in which all particles are of the same chemical composition
 - Au (pure gold)
 - $-H_2O$
 - NaCl
 - Sugar (C₆H₁₂O₆)
 - -Ar

- Which of the previous examples is a compound? an element?
- Why is salt water not a pure substance?

Mixtures

- Two or more pure substances physically mixed together.
- Cannot be represented by a chemical formula.
 - Salt water
 - Sand and rocks
 - Air

Heterogeneous Mixture

- A mixture where substances are not evenly distributed (non uniform)
 - oil and vinegar salad dressing
 - vegetable soup
 - sand and sugar
 - soil
 - granite

Homogeneous Mixture

- A mixture where all components are evenly distributed (uniform).
- "same throughout"
 - salt water
 - gasoline
 - syrup
 - air

Practice

Identify each of the following as:

- pure substance/mixture
- element/compound

Solution

- Formed when one substance is dissolved by another.
- In order to be dissolved, a substance must be soluble.
- A homogeneous mixture.
- Particles are evenly distributed.
- Parts cannot be separated by filtering.
- Solvent—does the dissolving
- Solute—dissolved by the solvent

Solution Practice

- Identify the solute and solvent in each of the following:
 - Salt water
 - iced tea
 - kool aid
 - paint/paint thinner
 - nail polish/acetone

Types of Solutions

- Solid dissolved in a liquid.
 - Salt water
- Gas dissolved in a liquid
 - Coca-cola
- Two solids
 - Metal alloys: brass = copper + zinc
- Two gasses
 - Air: nitrogen (78% vol), oxygen (21% vol), argon (1% vol), carbon dioxide (0.03% vol).
- In solutions of two solids or two gases, the solvent is the component present in largest quantity.

The "universal solvent"
A solution in which water is the solvent is called an aqueous (aq) solution.
Does NOT dissolve everything.

ater

Salt in Aqueous Solution

Na⁴

- Why is this a good thing?
 - -think about the paint on your house ..

Because water is polar, it dissolves other polar substances.

- "Like dissolves like"

Water dissolves many other compounds.

Water the Universal Solvent

COPYRIGHT © 2002 Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Solubility

- How much of a solute will dissolve in a given solvent.
- How do you increase the solubility of a solid in a liquid? (hint: iced tea)
- How do you increase the solubility of a gas in a liquid? (hint: can of soda)

Solubility of a Solid in a Liquid

- Increasing temperature will make a solid more soluble in a liquid.
- Decreasing temperature will make a solid less soluble in a liquid
- Heat water before adding tea/sugar for iced tea.

Solubility of a Gas in a Liquid

- Increasing temperature will make a gas less soluble in liquid.
- Decreasing temperature will make a gas more soluble in a liquid.
- Increasing pressure will make a gas more soluble in a liquid.
- Decreasing pressure will make a gas less soluble in a liquid.

Types of Solutions

Saturated

– Holding the maximum solute at a given temperature.

Unsaturated

Holding less than the maximum solute at a given temperature.

Supersaturated

 Holding more than the maximum solute at a given temperature.

Solution Questions

- What term is used to describe a substance that is not soluble in another substance, such as oil in water?
 - Insoluble
- A solid substance is dissolved in a liquid. If the solid comes out of solution and settles to the bottom, it is called a _____.

- precipitate.

Periodic Table

- Atomic Number
 - Identifies the element

- Tells you how many **protons** an atom has
- Tells you how many electrons are contained by a neutral atom of a given element.

Atomic Mass

• Average mass of the atom

- Equal to number of protons plus number of neutrons.
- Electrons have mass BUT the mass is so small we do not factor it in to the overall mass.

Practice

How many protons and neutrons do the following atoms contain?

- Oxygen
- Bromine
- Carbon-14
- Atomic Number 53
- Atomic Number 10

Isotopes

- The atomic mass of each atom represents an *average* of all of the individual isotopes of that element.
- Two atoms contain the same number of protons but different numbers of neutrons

Isotopes

- Isotopes are atoms of the same element, but have different masses.
- Isotopes with an unstable nucleus will tend to breakdown or decay; these atoms are called radioactive and will release energy in the form of nuclear radiation as they decay.

The Periodic Table of Elements

Metals vs. Non-metals (and metalloids)

The Periodic Table of Elements

A	alkali netals				Period: Horizontal Row												Noble	
Alkaline earth metals					Fa	Family/Group: Vertical Column											aloger	ns V 8A
	1 H	2A												Grou 4A	ıp nun 5A	nbers 6A	↓ 7A	2 He
	3 Li	4 Be	5 B												7 N	8 0	9 F	10 Ne
	11 Na	12 Mg	Transition metals										13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		
		I	Lantha	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			Acti	nides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Oxidation States

- In order to become stable, atoms will gain or lose a certain number of **electrons**.
- The goal is to have a full outer shell (octet rule)
- A full outer shell contains **eight** electrons.
- When atoms gain or lose electrons, they become ions and take on a certain charge.
 - This charge is referred to as the oxidation number.
Oxidation Numbers

Alkali Metals

- Group 1
- 1 valance electron
- Oxidation Number = +1
- Highly reactive

Alkaline Earth Metals

- Group 2
- 2 valance electrons
- Oxidation Number = +2
- Harder, Denser, Stronger than Alkali Metals
- Very reactive, but less reactive than Alkali Metals

Transition Metals

- Groups 3-12
- Varied
 oxidation
 numbers
- Not as reactive as groups 1 and 2.

	Transition metals											
	21	22	23	24	25	26	27	28	29	30		
	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn		
/e	39	40	41	42	43	44	45	46	47	48		
	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd		
	57	72	73	74	75	76	77	78	79	80		
	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg		
	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		
				1	1							

Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Halogens

- Group 17
- 7 valance electrons
- Oxidation Number = -1
- Most reactive non-metals
- Combine with metals
 - NaCl, KBr, MgBr

Noble Gases

- Group 18
- 8 outer electrons
 - will not gain or lose electrons
 - no oxidation number
- Very stable

Bonding

- When forming compounds, atoms will bond in a way that leads to an overall charge of zero.
- Bonding is due to interactions of the electron clouds that surround an atom.
- Types of bonds
 - Ionic
 - Covalent

Ionic Bonds

- Formed between a **metal** and a **non-metal**.
- Forms a compound—not a molecule.
- Involves gain/loss of electrons.
- Produces compound with net charge of zero.

Ionic Bonds

How to predict bonding pattern:

- Na + Cl
- Ca + Br
- Ba + I
- Mg + O
- -AI + O

Covalent Bonds

- Involves the sharing of electrons.
- Produces a molecule.
- Formed between two non-metals
- Examples
 - Water (H₂O)
 - Sugar (C₆H₁₂O₆)
 - Hydrogen gas (H₂)
- Diatomic Molecules:
 - $\, H_2, \, F_2, \, CI_2, \, Br_2, \, I_2, \, N_2, \, O_2$

Bonding Practice

- What type of bond is produced when electrons are shared between atoms?
- What type of bond is produced when atoms with opposite charges are attracted to each other?
- What type of bond will be produced when the following atoms combine?
 - C + O
 - Mg + Cl
 - 0 + 0
 - Ba + Br

Periodic Properties

Electron Affinity

- The ability of an atom to attract and hold extra electrons.
- Electronegativity
 - The tendency of an atom to attract electrons to itself when combined with another atom.
 - How might this predict bonding patterns?

Periodic Properties

- Ionization energy
 - Amount of energy required to remove an electron from an atom or ion.
- Atomic Radius
 - one half the distance between two nuclei of like atoms.
 - A measure of the size of an atom
 - What effect does atomic radius have on electron affinity and ionization energy?

Atomic radius

Periodic Properties

Reactivity

- o Metals
 - Increases as you move down a family.
 - Decreases as you move across a period.
 - Francium is most reactive metal.
- Nonmetals
 - Decreases as you move down a family.
 - Increases as you move across a period.
 - Fluorine is the most reactive nonmetal.

Periodic Trends

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Electronegativity Increases Atomic Radius Decreases Ionization Energy Increases

Electronegativity Increases Atomic Radius Decreases Ionization Energy Increases

Periodic Properties Practice

List the following elements from highest to lowest electronegativity:

- Al, Ca, Cl
- I, Xe, Rb
- N, Bi, As
- Cs, Li, K

Periodic Properties Practice

List the following elements from largest to smallest atomic radius:

- AI, Ca, Cl
- I, Xe, Rb
- N, Bi, As
- Cs, Li, K

Periodic Properties Practice

List the following elements from highest to lowest ionization energy:

- AI, Ca, Cl
- I, Xe, Rb
- N, Bi, As
- Cs, Li, K

Chemical Reactions

The process by which the atoms of one or more substances are rearranged to form different substances

Reactant

- The **starting** substance in a chemical reaction.

Product

- The substance **formed** during a chemical reaction.

Catalyst

 A substance that **increases** the rate of a chemical reaction by lowering activation energies but is not itself consumed in the reaction.

Chemical Reactions

Chemical Equation

 a statement using chemical formulas to describe the identities and relative amounts of the reactants and products involved in the chemical reaction.

Law of Conservation of Matter

- Matter is neither created nor destroyed
- All chemical reactions should be **balanced**; the mass of the products should equal the mass of the reactants.

Chemical Reactions

Types of Reactions

Synthesis

- Two or more substances react to yield a single product.
- $-2H_2 + O_2 \rightarrow 2H_2O$
- Decomposition
 - A single compound breaks down into two or more elements or compounds.
 - $-2H_2O \rightarrow 2H_2 + O_2$

Types of Reactions

Single Displacement/Replacement

- The atoms of one element replace the atoms of another element in a compound.
- $-2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$
- Double Displacement/Replacement
 - Involves the exchange of positive ions between two compounds.
 - $-AgNO_3 + KCI \rightarrow AgCI(s) + KNO_3$

Types of Reactions

Combustion

- Occurs when a substance reacts with oxygen, releasing _____ in the form of heat and light.
- $-CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$
- Dehydration
 - Occurs when monomers combine with the loss of a water molecule.
 - $-C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6} \rightarrow C_{12}H_{22}O_{11} + H_{2}O_{12}O_{11} + H_{2}O_{12}O_{11} + H_{2}O_{12}O$
- Exothermic Reaction: Energy is released
- Endothermic Reaction: Energy is absorbed

Practice

2.

3.

Б.

Identify each reaction below

- 1. $2C_3H_7OH + 9O_2 \rightarrow 6CO_2 + 8H_2O$
 - Combustion
 - $Ca_3(PO_4)_2 + 3H_2SO_4 \rightarrow 3CaSO_4 + 2H_3PO_4$
 - Double replacement

- $C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$ - **Combustion**
- $2\text{KCIO}_{3} \rightarrow 2\text{KCI} + 3\text{O}_{2}$ **Decomposition**
 - $2\mathsf{K}\mathsf{I} + \mathsf{C}\mathsf{I}_2 \rightarrow 2\mathsf{K}\mathsf{C}\mathsf{I} + \mathsf{I}_2$
 - Single replacement

Chemical and Physical Changes

Chemical change

- A change in the **arrangement** of **atoms**.
- A change where you end up with a **new** and different substance from which you started.
- Combustion, Fermentation, Electrolysis, Rusting/Oxidation, Tarnishing, Souring of Milk, "chemical reactions"
- Examples
 - $2H_2O \rightarrow 2H_2 + O_2$
 - $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$
 - HCI + NaOH \rightarrow NaCI + H₂O

Chemical and Physical Changes

Physical Change

- A change in a physical property of a substance.
- End up with same substance as original.
- Phase changes
 - $H_2O(s) \rightarrow H_2O(I) \rightarrow H_2O(g)$
- Dissolving, Melting, Freezing
- Breaking into smaller particles

Practice

- Classify each of the following as a chemical or a physical change:
 - 1. boiling water
 - 2. bleaching clothes
 - 3. drying clothes
 - 4. slicing potatoes
 - 5. making coffee
 - 6. silver tarnishing
 - 7. cooking a hamburger
 - 8. Making Kool-Aid

Acids and Bases

Acid

- Forms H⁺ when dissolved in water.
- Acidic solutions have more H⁺ than OH⁻.
- pH less than 7
- Examples
 - HCI
 - Lemon juice
 - Vinegar
 - H_2SO_4
 - Stomach Acid

- Donates OH⁻ when dissolved in water.
- Basic solutions have more OH⁻ than H⁺.
- pH greater than 7
- Examples
 - NaOH
 - NH₃ (ammonia)
 - How is this a base if it does not have OH-?

		[H+]	рΗ	Example
Examples	Acids	1 X 10º	0	HCI
of Acids		1 x 10 ⁻¹	1	Stomach acid
and Bases		1 x 10 ⁻²	2	Lemon juice
		1 x 10 ⁻³ 3 Vineg		Vinegar
		1 x 10 ⁻⁴	4	Soda
		1 x 10 ⁻⁵	5	Rainwater
		1 x 10 ⁻⁶	6	Milk
	Neutral	1 x 10 ⁻⁷	7	Pure water
	Bases	1 x 10 ⁻⁸	8	Egg whites
		1 x 10 ⁻⁹	9	Baking Soda
		1 x 10 ⁻¹⁰	10	Tums [®] antacid
		1 x 10 ⁻¹¹	11	Ammonia
		1 x 10 ⁻¹²	12	Mineral Lime - Ca(OH) ₂
		1 x 10 ⁻¹³	13	Drano [®]
		1 x 10 ⁻¹⁴	14	NaOH

Acid and Base Terms

- Neutralization: an acid reacts with a base to produce a neutral solution.
 - Produces a salt and water
 - HCI + NaOH \rightarrow NaCI + H₂O

Acid and Base Terms

- Hydrogen ion: H⁺
- Hydroxide ion: OH-
- Indicator: a compound that changes color in the presence of an acid or base.
 - Phenolpthalein
 - Litmus paper: red (acid), blue (base)
- pH: a measure of the hydronium (hydrogen) ion concentration in a solution.

Acid Rain

- Normal Rain is slightly acidic due to reaction of water with dissolved CO₂
- Pollutants such as sulfur oxides and nitrogen oxides decrease the pH further.
- Rain with a pH less than 5.5 is considered acid rain.
- How would acid rain affect plants?
- How would acid rain affect buildings and monuments?

States of Matter

- Matter exists in three primary states
 Solid
 - Liquid
 - Gas

Solid

Holds Shape

Fixed Volume

Shape of Container Free Surface Fixed Volume

Liquid

Gas

Shape of Container

Volume of Container

Solid

- Particles closest together
- Most dense*
- Definite shape and volume
 - Strongest intermolecular forces
- Least amount of particle
 motion (kinetic energy)

solid

*Density—amount of mass per unit volume. Units = g/cm^3

Liquid

Particles further apart

- Particles have greater range of motion compared to solid
- Less dense
- Definite volume, but not definite shape
- Takes the shape of its container
- Weaker intermolecular forces

liquid

Gas

- Particles farthest apart
- Greater particle motion and energy content than solids and liquids
- Least dense
- No definite shape or volume
- Takes the shape of its container
- Weakest intermolecular forces
- Random collisions between particles.

gas

Conversion Between States

- Melting
 - Solid**→**liquid
- Vaporization/
 Evaporation (boiling)
 - liquid**→**gas
 - Freezing
 - liquid→solid
- Condensation
 - gas**→**liquid
- Sublimation – solid→gas

Thermodynamics

- "Movement of Heat"
- The study of heat and its transformation to mechanical energy.
 - Applications
 - Refrigerators
 - Heat pumps
 - Insulation
 - Heat engines
 - Electric generators
 - Fireplace

Temperature

- Tells us how warm or cold an object is relative to some standard.
- A measure of the average kinetic energy of a substance.
- Temperature is measured using a thermometer.
 - How does a thermometer work?

Important Temperatures Absolute Zero 212 100 373 - 0K -Freezing Point H₂O $-0^{0}C$ $- 32^{\circ}F$ Boiling Point H₂O - 100°C $-212^{0}F$ 32° 273 **O** Fahrenheit Celsius Kelvin

What Causes Temperature?

Kinetic-Molecular Theory

- Matter made up of tiny particles that are always in motion.
- As the particles gain energy, they move **faster**.
- Faster moving particles have greater *average kinetic energy*.
- The more kinetic energy particles have, the greater the temperature of the object or substance.