11-1 Mathematical Patterns

Objectives:

- To identify mathematical patterns.
- To identify explicit or recursive patterns.
- To use a formula for finding the nth term of a sequence.

Vocabulary:

sequence: a pattern of objects seperated by commas

$$e \times 2,4,6, \dots \times,0,\times,0,\dots$$

term: One specific object in a sequence the previous term
typical notation $t_1, t_2, t_3, \dots, t_{n-1}, t_n, t_{n+1}$

Examples: Determine the pattern. Find the next three terms.

- 1. 2, 4, 6, 8, 10, 12, 142. 2, 5, 8, 11, 14, 17, 26 $\sqrt{2}$ add 2
- 3. 20, 2, 0.2, 0.02, ... 002 .0002 4. 5, 6, 9, 14, 21, ... 30 41 54 $V \lor V \lor V$ divide by 10 .00002 4. 5, 6, 9, 14, 21, ... 30 41 54 $V \lor V \lor V$ divide by 10 .00002 4. 5, 6, 9, 14, 21, ... 30 41 54 11 + 3 + 5 + 7add Consecutive odds starthig at 1

Recursive definition (think "recurring"): Defines the terms of a sequence based on the previous term

Examples: a. Identify the pattern.

- **b.** Find the next 2 terms.
- **c.** Write the recursive definition.
- **d.** Use the recursive definition to find the 7th and 8th term.

5.
$$3, 5, 7, 9, 11, ...$$

6. $2, 6, 18, 54, 162, ...$
6. $2, 6, 18, 54, 162, ...$
a. multiply by 3
b. $13/15$
c. $\{0_1 = 3\}$
 $a_1 = a_{n-1} + 2$
d. $a_7 = a_6 + 2$
 $= 13 + 2$
 $= 15$
 $a_g = a_7 + 2$
 $= 15 + 2$
 $= 17$
6. $2, 6, 18, 54, 162, ...$
a. multiply by 3
b. $486, 1458$
c. $\{a_1 = 2\}$
 $a_n = 3a_{n-1}$
d. $a_7 = 3a_6$
 $= 3(486)$
 $= 1458$
 $a_8 = 3a_7$
 $= 3(1458)$
 $= 4374$

Examples: Use the following recursive definitions to find the first 5 terms of the sequence.

7.
$$\begin{cases} a_{1} = 11 \\ a_{n} = a_{n-1} - 1 \\ \# a_{n} = a_{n-1} - 1 \\ \# a_{n} = a_{n-1} - 1 \\ \# a_{n} = -2 \\ a_{n} = -2a_{n-1} \end{cases} \qquad \begin{array}{c} 1 & -1 & -1 \\ 1 & 0 & 9 \\ 0 & 9 & 8 \\ 0 & 1 \\$$

9.
$$\begin{cases} a_1 = 3 \\ a_n = -a_{n-1} + n \end{cases}$$

10.
$$\begin{cases} a_1 = 2 \\ a_n = 4(a_{n-1})^2 - n \end{cases}$$

9.
$$\begin{cases} a_{1} = 3 \\ a_{p} = -a_{p-1} + p \\ previous \\ pr$$

Explicit definition: Defines the nth term (an) interms of n (location)

Notation:

Examples: Use the following explicit definitions to find the first 5 terms of the sequence.

11.
$$a_n = 2n - 1$$

 $a_1 = 2 \cdot 1 - 1 = 1$
 $a_2 = 2 \cdot 2 - 1 = 3$
 $a_3 = 2 \cdot 3 - 1 = 5$
 $a_4 = 2 \cdot 3 - 1 = 5$
 $a_5 = 2 \cdot 5 - 1 = 7$

12.
$$a_n = 2(3)^n$$

 $a_1 = 2 \cdot 3^n = 2 \cdot 3 = 6 \cdot 7 + 3$
 $a_2 = 2 \cdot 3^n = 2 \cdot 9 = 18 \cdot 7 + 3$
 $a_3 = 2 \cdot 3^3 = 2 \cdot 27 = 54 \cdot 7 + 3$
 $a_4 = 2 \cdot 3^4 = 2 \cdot 87 = 54 \cdot 7 + 3$
 $a_5 = 2 \cdot 3^5 = 2 \cdot 243 = 7 + 6$

13.
$$a_n = n^2 - 1$$

 $a_1 = |^2 - 1 = 0$
 $a_2 = 2^2 - 1 = 3$
 $a_3 = 3^2 - 1 = 8$
 $a_4 = 4^2 - 1 = 15$
 $a_5 = 5^2 - 1 = 24$
 $0,3,8,15,24,...$

14.
$$a_n = \frac{n+3}{n^2}$$

 $a_1 = \frac{1+3}{1^2} = \frac{4}{1} = 4$
 $a_2 = \frac{2+3}{2^2} = \frac{5}{4}$
 $a_3 = \frac{3+3}{3^2} = \frac{6}{9} = \frac{2}{3}$
 $a_4 = \frac{4+3}{4^2} = \frac{7}{16}$
 $a_5 = \frac{5+3}{5^2} = \frac{8}{25}$
 $4_1 = \frac{2}{4}, \frac{2}{5}, \frac{7}{16}, \frac{8}{25}, \cdots$

11-1 Sequences

- a. Find the next two terms of each sequence.b. Write arecursive formula for each sequence.

Please complete part "a" on both sides.

1(4)-8, -2, 4, 10, 16, 22	2. 6, 5.7, 5.4, 5.1, 4.8, 4.5 4.2
Q,= -14	a,= 6
$a_n = a_{n-1} + 6$	Qn - Qn - 3
3. 1, -2, 4, -8, 16, 32, 64	4. 1,3,9,27, 81, 243
*-2	*3
Ω ₁ = 1	Q = 1
$a_n = a_{n-1} + -2$	a' = a, +3

5. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16},$	o
	4 to 16, 52 by
17	· · · · - , ·
* 1/2	a,= 1
-	Qn= Qn-1 × 3

7. 36, 39, 42, 45, 48, ... **51, 54** V $Q_{1} = 36$ $Q_{1} = Q_{1} + 3$ +3

9. 9.6, 4.8, 2.4, 1.2, 0.6,3 , .15
$$Q_1 = 9.6$$

 $\therefore 2$ $Q_2 = 0.1 + \frac{1}{2}$

- a. Label each formula as explicit, recursive or neither.b. Find the first 4 terms of the sequence.

25.
$$a_n = \frac{1}{3}n$$
 26. $a_n = n^2 - 6$

27.
$$a_1 = 5, a_n = 3a_{n-1} - 7$$
 R
 $a_1 = 5, a_n = 3a_{n-1} - 7$ R
 $a_n : 3a_{n-1} - 7$
28. $a_n = \frac{1}{2}(n-1)$
5, 8, 17, 44
 $3 \cdot 5 - 7$ $3 \cdot 8 - 7$
 $15 - 7$ $3 \cdot 8 - 7$
 $30. a_1 = -4, a_n = 4a_{n-1}$ R
 $-4 - 8 - 7 \cdot 16 - 32$
 $-4 \cdot 7 - 8 \cdot 3 - 16 \cdot 2$

-32

Name _____ Date ____ Practice 11-1
a. Find the next two terms of each sequence.
b. Write a recursive formula for each sequence.
1. -14, -8, -2, 4, 10, 16, 22, 22, 5, 54, 51, 48, 4.5, 4.2

$$\begin{cases} t_1 = t_1 + 4 \\ t_1 = t_{n-1} - 3 \end{cases}$$
2. 6, 5.7, 5.4, 5.1, 48, 4.5, 4.2
 $\begin{cases} t_1 = t_1 + 4 \\ t_1 = t_{n-1} - 3 \end{cases}$
2. 6, 5.7, 5.4, 5.1, 48, 4.5, 4.2
 $\begin{cases} t_1 = t_1 + 4 \\ t_1 = t_{n-1} - 3 \end{cases}$
2. 6, 5.7, 5.4, 5.1, 48, 4.5, 4.2
 $\begin{cases} t_1 = t_1 + 4 \\ t_1 = t_{n-1} - 3 \end{cases}$
2. 6, 5.7, 5.4, 5.1, 48, 4.5, 4.2
 $\begin{cases} t_1 = t_1 + 4 \\ t_1 = t_{n-1} + 3 \end{cases}$
2. 6, 5.7, 5.4, 5.1, 48, 4.5, 4.2
 $\begin{cases} t_1 = t_1 + 3 \\ t_1 = t_1 + 4 \\ t_1 = t_1 + 3 \\ t_1 = t_1 + 4 \\ t_1$

Examples: Applications

15. Suppose you drop a handball from a height of 10 feet. After the ball hits the floor, it rebounds to 85% of its previous height. How high will the ball rebound after its fourth bounce?

How can you tell the difference between an explicit definition and a recursive definition?

