11-1 Mathematical Patterns
Objectives:

- To identify mathematical patterns.
- To identify explicit or recursive patterns.
- To use a formula for finding the $\mathrm{n}^{\text {th }}$ term of a sequence.

Vocabulary:
sequence: a pattern of objects separated by commas

Examples: Determine the pattern. Find the next three terms.

1. $2,4,6,8, \ldots \ldots .10,12,14$ $\bigvee_{a d d 2}$
2. $2,5,8,11, \ldots .14,17,20$ add 3
3. $20,2,0.2,0.02, \ldots .002$ $V_{\text {divide by } 10} 1$
mut. by $\frac{1}{10}$

$$
\begin{aligned}
& \text { 4. } 5,6,9,14,21, \ldots 30 \text { yo } 54 \\
& V V V V \\
& +1+3+5+7 \\
& \text { add consecutive odds } \\
& \text { starting ot । }
\end{aligned}
$$

Recursive definition (think "recurring"):
Defines the terms of a sequence based on the previous term

Notation:
sequence:

$$
\left\{\begin{array}{l}
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n-1}, a_{n}, a_{n+1} \\
a_{1}=\# \quad \text { (starting point) } \\
a_{n}=3 \underbrace{a_{n-1}}_{\substack{\text { previous } \\
\text { term }}}-2 \text { (pattern) }
\end{array}\right.
$$

Examples: a. Identify the pattern.
b. Find the next 2 terms.
c. Write the recursive definition.
d. Use the recursive definition to find the $7^{\text {th }}$ and $8^{\text {th }}$ term.
5. $3,5,7,9,11, \ldots$
6. $2,6,18,54,162, \ldots$
a. add 2
a. multiply by 3
b. 13,15
b. 486,1458
c. $\left\{\begin{array}{l}a_{1}=3 \\ a_{n}=a_{n-1}+2\end{array}\right.$
d. $a_{7}=a_{6}+2$ $=13+2$

$$
=15
$$

$a_{8}=a_{7}+2$

$$
=15+2
$$

$$
=17
$$

$$
\text { c. } \begin{aligned}
\left\{\begin{aligned}
a_{1} & =2 \\
a_{n} & =3 a_{n-1}
\end{aligned}\right. \\
\text { d. } \begin{aligned}
a_{7} & =3 a_{6} \\
& =3(486) \\
& =1458 \\
a_{8} & =3 a_{7} \\
& =3(1458) \\
& =4374
\end{aligned}
\end{aligned}
$$

Examples: Use the following recursive definitions to find the first 5 terms of the sequence.

8. $\left\{\begin{array}{l}a_{1}=-2 \\ a_{n}=-2 a_{n-1}\end{array} \quad-2,4^{x-2},-8,16,-32\right.$
9. $\left\{\begin{array}{l}a_{1}=3 \\ a_{n}=-a_{n-1}+n\end{array}\right.$
10. $\left\{\begin{array}{l}a_{1}=2 \\ a_{n}=4\left(a_{n-1}\right)^{2}-n\end{array}\right.$
9. $\left\{\begin{array}{l}a_{1}=3 \\ a_{n}=-\left(\frac{a_{n-1}}{b}, \frac{-1}{a_{1}}, \frac{4}{a_{2}}, \frac{0}{a_{4}}, \frac{5}{a_{5}}, ~\right.\end{array}\right.$
term term

$$
\begin{array}{rlrlr}
a_{2} & =-a_{2 \cdot 1}+2 & a_{3} & =-a_{2}+3 & a_{4}
\end{array}=-a_{3}+4 \quad a_{5}=-a_{4}+5
$$

10. $\left\{\begin{array}{l}a_{1}=2 \\ a_{n}=4\left(a_{n-1}\right)^{2}-n\end{array} \quad \frac{2}{a_{1}}, \frac{14}{a_{2}}, \frac{781}{a_{3}}, \frac{2439840}{a_{4}}, \frac{\approx 2.35 \times 10^{13}}{a_{5}}\right.$

$$
\begin{aligned}
a_{2} & =4 \cdot a_{1}^{2}-2 & a_{3} & =4 \cdot a_{2}^{2}-3 \\
& =4 \cdot 2^{2}-2 & & =4 \cdot 14^{2}-3 \\
& =4 \cdot 4-2 & & =4 \cdot 196 \cdot 3 \\
& =16-2 & & =784-3 \\
& =14 & & =781
\end{aligned}
$$

Explicit definition:
Defines the $n^{\text {th }}$ term (a_{n}) interms of n (location)

Notation:

$$
\begin{aligned}
& \underbrace{a_{n}}_{\text {term }}=3 n-5 \\
& \text { location } \\
& \begin{aligned}
235^{\text {th }} & \text { term } \\
a_{235} & =3(235)-5 \\
& =700
\end{aligned}
\end{aligned}
$$

Examples: Use the following explicit definitions to find the first 5 terms of the sequence.
11. $a_{n}=2 n-1$

$$
\begin{aligned}
& a_{1}=2.1-1=1 \\
& a_{2}=2.2-1=3 \\
& a_{3}=2.3-1=5 \\
& a_{4}=2.4-1=7 \\
& a_{5}=2.5-1=9
\end{aligned}
$$

12. $a_{n}=2(3)^{n}$,

$$
\begin{aligned}
& a_{1}=2 \cdot 3=2 \cdot 3=67^{* 3} \\
& a_{2}=2 \cdot 3^{2}=2.9=187^{* 3} \\
& a_{3}=2 \cdot 3^{3}=2 \cdot 27=547^{* 3} \\
& a_{4}=2 \cdot 3^{4}=2.81=162 \\
& a_{5}=2 \cdot 3^{5}=2 \cdot 243=486
\end{aligned}
$$

$$
\begin{aligned}
& \text { 13. } a_{n}=n^{2}-1 \\
& a_{1}=1^{2}-1=0 \\
& a_{2}=2^{2}-1=3 \\
& a_{3}=3^{2}-1=8 \\
& a_{4}=4^{2}-1=15 \\
& a_{5}=5^{2}-1=24 \\
& 0,3,8,15,24, \ldots
\end{aligned}
$$

14. $a_{n}=\frac{n+3}{n^{2}}$

$$
\begin{aligned}
& a_{1}=\frac{1+3}{1^{2}}=\frac{4}{1}=4 \\
& a_{2}=\frac{2+3}{2^{2}}=\frac{5}{4} \\
& a_{3}=\frac{3+3}{3^{2}}=\frac{6}{9}=\frac{2}{3} \\
& a_{4}=\frac{4+3}{4^{2}}=\frac{7}{16} \\
& a_{5}=\frac{5+3}{5^{2}}=\frac{8}{25} \\
& 4, \frac{5}{4}, \frac{2}{3}, \frac{7}{16}, \frac{8}{25}, \cdots
\end{aligned}
$$

\qquad Date \qquad
a. Find the next two terms of each sequence.
b. Write recursive formula for each sequence.

Please complete part "a" on both sides.
1.

$$
a_{n}=a_{n-1}+6
$$

3. $1,-2,4,-8,16, \ldots-32,64$
\bigvee_{*-2}

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=a_{n-1} *-2
\end{aligned}
$$

5. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

$$
\begin{aligned}
& \frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \\
& * \frac{1}{2} \quad a_{1}=1 \\
& a_{n}=a_{n-1} * \frac{1}{2}
\end{aligned}
$$

7. $36,39,42,45,48, \ldots$ SI, SH

$$
\begin{array}{ll}
v \\
+3 & a_{1}=36 \\
a_{n}=a_{n-1}+3
\end{array}
$$

2. $6,5.7,5.4,5.1,4.8, \ldots$. $.5, ~ Y .2 ~$
-3
-3

$$
a_{1}=6
$$

$$
a_{n}=a_{n-1}-.3
$$

4. $1,3,9,27, \ldots 81,243$

V
$* 3$

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=a_{n, 1} * 3
\end{aligned}
$$

6. $\frac{2}{3}, 1,1 \frac{1}{3}, 1 \frac{2}{3}, 2, \ldots$

$$
\begin{aligned}
& \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3}, \frac{6}{3}, \frac{\frac{7}{3}}{11}, \frac{8}{3} \\
& a_{1}=2 / 3 \\
& a_{n}=a_{n-1}+\frac{1}{3}
\end{aligned}
$$

8. $36,30,24,18,12, \ldots \mathbf{6}, \mathbf{0}$
$\underset{-6}{V}$

$$
a_{1}=36
$$

$$
a_{n}=a_{n-1}-b
$$

9. 9.6.4.8, 2.4, $1.2,0.6, \ldots .3$, 15

$$
\begin{aligned}
& a_{1}=9.6 \\
& a_{n}=a_{n-1} * \frac{1}{2}
\end{aligned}
$$

a. Label each formula as explicit, recursive or neither.
b. Find the first 4 terms of the sequence.
25. $a_{n}=\frac{1}{3} n$
26. $a_{n}=n^{2}-6$
27. $a_{1}=5, a_{n}=3 a_{n-1}-7 \quad R$
28. $a_{n}=\frac{1}{2}(n-1)$
29. $a_{1}=5, a_{n}=3-a_{n-1} R$
30. $a_{1}=-4, a_{n}=a_{n-1} \boldsymbol{R}$

Name \qquad
\qquad Practice 11-1
a. Find the next two terms of each sequence.
b. Write a recursive formula for each sequence.

1. $-14,-8,-2,4,10,16,22$
2. $6,5.7,5.4,5.1,4.8,4.5,4.2$
answer key

$$
\left\{\begin{array}{l}
t_{1}=-14 \\
t_{n}=t_{n-1}+6
\end{array}\right.
$$

4. $1,3,9,27,81,243$

$$
\left\{\begin{array}{l}
t_{1}=1 \\
t_{n}=t_{n-1} * 3
\end{array}\right.
$$

7. $36,39,42,45,48, .51,54$

$$
\left\{\begin{array}{l}
t_{1}=36 \\
t_{n}=t_{n-1}+3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
t_{1}=6 \\
t_{n}=t_{n-1}-3
\end{array}\right.
$$

5. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \frac{1}{32} \frac{1}{64}$

$$
\begin{aligned}
& t_{1}=1 \\
& t_{n}=t_{n-1} * \frac{1}{2}
\end{aligned}
$$

8. $36,30,24,18,12, \ldots$

$$
\begin{aligned}
& t_{1}=36 \\
& t_{n}=t_{n-1}-6
\end{aligned}
$$

$$
\begin{cases}t_{1}=9.6 & 9.6,4.8,2 \cdot 4,1.2,0.6, \ldots \\ t_{n}=t_{n-1} & \vdots 2\end{cases}
$$

6. $\frac{2}{3}, 1,1 \frac{1}{3}, 1 \frac{2}{3}, 2, .2 \frac{1}{3} 2 \frac{3}{3}$

$$
\begin{aligned}
& t_{1}=2 / 3 \\
& t_{n}=t_{n-1}+\frac{1}{3}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
t_{1}=1 \\
t_{n}=t_{n-1} *-2
\end{array}\right.
$$

$$
a_{1}=1^{2}-6=-5
$$

25. $a_{n}=\frac{1}{3} n$
$a_{1}: \frac{1}{3} \cdot 1=\frac{1}{3}$
a) exp.
$a_{2}: \frac{1}{3} \cdot 2=\frac{2}{3}$
b) $\frac{1 / 3}{1}, 2 / 3,3 / 3,4 / 3$
26. $a_{n}=\frac{1}{2}(n-1)$
a) $e x p$
b) $0, \frac{1}{2}, 1,1 \frac{1}{2}$
27. $a_{1}=5, a_{n}=3-a_{n-1}$
a) rec

28. $a_{n}=n^{2}-6$
a) $e \times p$.
b) $-5,-2,3,10$
29. $a_{1}=5, a_{n}=3 a_{n-1}-7$
a) rec.
b) $\frac{5^{x^{3^{-7}}}}{7}, 8^{4^{3-7}}, 17^{x^{-7}}, 44$
30. $a_{n}=2 a_{n-1}$
a) Neither
b) Impossidder

$$
a_{1}=2 \cdot a_{0}
$$

Examples: Applications
15. Suppose you drop a handball from a height of 10 feet. After the ball hits the floor, it rebounds to 85% of its previous height. How high will the ball rebound after its fourth bounce?
original height: a_{1}

$$
10 \mathrm{ft}
$$

after $2^{\text {nd }}$ bounce: a_{3}

$$
8.5(.85)=7.225
$$

after $1^{\text {st }}$ bounce: α_{2}

$$
10(.85)=8.5 \mathrm{ft}
$$

after $3^{\text {rd }}$ bounce: 94

$$
7.225(.85)=6.14125 \mathrm{ft}
$$

sequence:

$$
10,8.5,7.225,6.141, \ldots
$$

recursive definition:

$$
\left\{\begin{array}{l}
a_{1}=10 \\
a_{n}=.85 a_{n-1}
\end{array}\right.
$$

explicit definition:

$$
\begin{aligned}
& y=a b^{x} \\
& y=(10)(.85)^{x} \\
& a_{n}=(10)(.85)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { next 2 terms: } \\
& 5.22 .4 .44 \\
& 5.22 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10 th term: } \\
& \begin{aligned}
a_{10} & =10(.85)^{10} \\
& =1.969 \mathrm{ft} .
\end{aligned}
\end{aligned}
$$

How can you tell the difference between an explicit definition and a recursive definition?

Recursive

2 parts
$a_{1}=\#$
a_{n-1}

