
United States Patent

US007158993B1

(12) (10) Patent N0.: US 7,158,993 B1
W . . , Sch abe (45) Date of Patent‘ Jan 2 2007

(54) API REPRESENTATION ENABLING FOREIGN PATENT DOCUMENTS
SUBMERGED HIERARCHY

EP 0 292 248 5/1988

(75) Inventor: Judith E. SchWabe, Palo Alto, CA

(Us) (Continued)
(73) Assignee: Sun Microsystems, Inc., Santa Clara, OTHER PUBLICATIONS

CA (US)
(*) Notice: Subject to any disclaimer, the term of this Zhao, Jianjun “Applying Program Dependence Analysis to Java

patent is extended or adjusted under 35 gogwarenflizuulilolil II<<>gy<> Daégléfklil Kinky)“ Ring}? IEIReSleamh
u etin 0 no a nstltute 0 ec n0 ogy, v0. , 0. , pp.

U.S.C. 154(b) by 87 days. 2941' 1998*

(21) Appl. No.: 09/662,258 (Continued)

(22) Filed: Sep. 14, 2000 Primary ExamineriThuy N. Pardo
(74) Attorney, Agent, or FirmiGunnison, McKay &

Related U-S- ApplicatiOIl Data Hodgson, L.L.P.; Forrest Gunnison

(60) Provisional application No. 60/ 165,298, ?led on Nov.
12, 1999, provisional application No. 60/165,533, (57) ABSTRACT
?led on Nov. 15, 1999.

A method for representing an application programming
(51) IIlt- Cl- interface (API) for an object-oriented library includes cre

G06F 17/30 (2006-01) ating a list of public elements in the library and storing the
(52) US. Cl. 707/103 R; 707/ 101; 707/ 102; list. Each public element in the list includes a sublist of all

707/ 104.1; 717/126; 717/ 154; 715/513 public related elements for the element. According to one
(58) Field of Classi?cation Search 707/1, aspect, the public elements include classes and interfaces,

707/103, 101, 102, 103 R, 104,1; 717/163, the public related elements include public superclasses and
717/165, 108, 116, 118, 126, 154, 709/328, public superinterfaces, and the library is a JavaTM package.

715/513 According to one aspect, a method for determining a pro
See application ?le for complete Search history, gram hierarchy includes receiving an API de?nition ?le for

_ an object-oriented library and indicating a ?rst public ele
(56) References Clted ment is a direct parent of a second public element When the

US. PATENT DOCUMENTS

5,022,028 A 6/1991 Edmonds et a1. 714/38

5,313,616 A 5/1994 Cline et a1. 5,408,665 A * 4/1995 Fitzgerald 717/163

5,446,901 A 8/1995 OWicki et a1.
5,490,249 A 2/1996 Miller
5,565,316 A 10/1996 Kershaw et a1. 434/322

5,613,101 A 3/1997 Lillich
5,615,137 A 3/1997 HolZmann et a1. 364/578

5,652,835 A 7/1997 Miller
5,668,999 A 9/1997 Gosling

(Continued)

?rst public element is represented in the sublist for the
second public element and the ?rst public element is not
represented in the sublist for any other public element listed
in the sublist for the second public element. According to
another aspect, a method for detecting changes to a program
hierarchy includes comparing a ?rst program hierarchy
reconstructed from a ?rst API de?nition ?le With a second
program hierarchy reconstructed form a second API de?ni
tion ?le and indicating an error When the ?rst program
hierarchy is inconsistent With the second program hierarchy.

20 Claims, 10 Drawing Sheets

165

public class Object
superclasses: <none>

public class cl/\/”O
superclasses I Object

public class c3/\/‘75
superclasses I Cl, Object

public class (IQ/V180
superclasses : 03, Cl, Object

US 7,158,993 B1
Page 2

US. PATENT DOCUMENTS EP 0 778 520 11/1996
EP 0 778 520 A2 11/1996

5,701,408 A 12/1997 Cornell et al. W0 WO 98/19237 5/1998
5,724,272 A 3/1998 Mitchell et al. W0 WO 98/52158 5/1998
5,737,609 A * 4/1998 Reed et a1. WO 98/37526 8/1998
5,748,964 A 5/1998 Gosling W0 WO 00/00890 1/2000
5,748,980 A 5/1998 Lipe et al. .. W0 WO 00/25278 5/2000
5,761,510 A 6/1998 J1‘. et W0 WO 00/46666 8/2000
5,884,316 A 3/1999 Bernstein et al. W0 WO 01/14958 H2001

5,907,704 A * 5/1999 Gudmundson et al. 5,925,140 A 7/1999 Hudson OTHER PUBLICATIONS

5,966,702 A 10/1999 Fresko et al. .. _ _ _ _ _

5,974,255 A * 10/1999 Gossain et a1‘ Dav1d Bas1n “Java Bytecode Ver1?cat1on by Model Checkrng”
5,999,731 A 0/1999 Yellin et a1‘ ______________ __ System Abstract, pp. 492-495 IT-Research Security (TZ/FE34).
6,002,871 A 12/1999 Duggan et a1‘ Daniels, John et al., “Strategies For Sharing Objects In Distributed
6,011,918 A * 1/2000 Cohen et al. 717/106 Systems”, JOOP, Object Designers Ltd» UK, PP~ 27-36~
6,016,495 A * 1/2000 McKeehan et a1‘ 707/103 R Chan, “Infrastructure of Multi-Application Smart Card”, http://
6,038,378 A 3/2000 Kim et a1‘ home.hkstar.com/~alanchan/papers/multiApplicationSmartCard/,
6,052,732 A 4/2000 Gosling Jul 25, 2902
6,058,393 A 5/2000 Meier et 31‘ Chen, Zhrqun, “Java CardTM Technology for Smart Cards”, Sun
6,067,639 A 5/2000 Rodrigues et al. Microsyslé’ms, PP 1146, Jun; 2000 _ _
6,075,940 A 6/2000 Gosling R1tchey, T1m, “Advanced Top1cs: The Java V1rtual Machrne”, Javal,
6,092,147 A 7/2000 Levy et al. Chapter 14,1211 25-346, $91122, 1995,
6,125,442 A * 9/2000 Maves et al. 712/220 Sun Mlcrosystemsa 111°» “Java CardTM 20 Language Subset and
6,138,112 A 10/2000 SlutZ Virtual Machine Speci?cation”, Oct. 13, 1997, Revision 1.0 Final.
6,178,504 B1 1/2001 Fieres et a1. 713/164 Sun Microsystems, 111°» “Java CardTM 20 Programming Concepts”,

6,182,158 B1 1/2001 Kougioris et al. Oct 15, 1997, ReV1S_1°_n 1~0 Flnfll
6,202,070 B1 30001 Nguyen et 31‘ “Sun Del1vers On V1s1on to Brrng JAVA Technology to the Con
6,205,579 B1 3/2001 Southgate 717/173 Sumer and Embedded Market”, Buslness Wlre, Sell 28, 1999
6,212,633 B1 4/2001 Levy et 31‘ “Sun Microsystems Announces JAVACARD API”, Business Wire,
6,230,312 B1 5/2001 Hunt Oct l9_96~
6,230,314 B1 * 5/2001 Sweeney et a1‘ __________ __ 717/108 Sun Mrcrosystems: “Sun’s JAVA Technology Leads Open World
6,230,318 B1 * 5/2001 Halstead et 31‘ n n Wide Market for Smart Cards”, M2, Presswire, May 1999.
6,243,859 B1 * 6/2001 Chen_Kuang """"""" " 717/111 Posegga et al., “Byte Code Veri?cationfor Java Smart Cards Based
6,247,171 B1 60001 Yellin et al‘ on Model Checking”, Sep. 16-18, pp. 175-190.
6,263,492 B1 * 7/2001 Fraley et al. 717/107 New? et a1» “Proof-Carrying Code”, NW 199?, PP~ 1-60~ _
6,272,674 B1 8/2001 Holiday, Jr‘ Bergrn et al., “Java Resources for Computer Sc1ence Instructron”,

6,347,398
6,349,344
6,360,334
6,363,488
6,370,541
6,370,686
RE37,722
6,389,467
6,405,309
6,418,554
6,425,118
6,427,227
6,434,744
6,466,947
6,477,666
6,477,702
6,519,767
6,526,571
6,539,539
6,546,551
6,549,930
6,651,186
6,668,289
6,708,324
6,721,941
6,742,177
6,748,555
6,986,101

2002/0040936

EP
EP
EP

FOREIGN PATENT DOCUMENTS

B1 2/2002 Parthasarathy et al. 717/178
B1 2/2002 Sauntry et a1.
B1 3/2002 Kavanagh et al. 714/38

B1 3/2002 Ginter et al.
B1 * 4/2002 Chou et al. 707/103 X

B1 4/2002 Delo et al.
E * 5/2002 Burnard et al. 345/764

B1 5/2002 Eyal 709/223

B1 6/2002 Cheng et al. 713/1

B1 7/2002 Delo et al.
B1 7/2002 Molloy et al. 717/136

B1 7/2002 Chamberlain 717/ 124

B1 8/2002 Chamberlain et al. 717/168

B1 10/2002 Arnold et al.
B1 11/2002 Sanchez et al.
B1 11/2002 Yellin et al. 717/126

B1 2/2003 Carter et al.
B1 * 2/2003 AiZikoWitZ et al. 717/154

B1 3/2003 Larsen et al.
B1 * 4/2003 Sweeney et al. 717/154

B1 4/2003 Chrysos et al.
B1 11/2003 Schwabe 714/38

B1 12/2003 Cheng et al. 710/36

B1 3/2004 SolloWay et al. 717/124

B1 4/2004 Morshed et al. ..

B1 5/2004 Dorak et al. 717/124

B1 6/2004 Teegan et al. 714/38

B1* 1/2006 Cooper et al. 715/513

A1 4/2002 Wentker et al.

0 498 130 A2 12/1991
0 685 792 A1 5/1995
0 718 761 A1 12/1995

Report of the I TiCSE '98/ACT C '98 Working Group on Curricular
Opportunities of Java Based Software Development, ITiCSE, pp.
14-34 (1998).
Bowles et al., “A Comparison of Commercial Reliability Prediction
Programs”, Proceedings Annual Reliability and Maintainability
Symposium, IEEE, pp. 450-455 (1990).
Cooper, Richard, “Persistent Languages Facilitate the Implementa
tion of Software Version Management”, IEEE, pp. 56-65 (1989).
Ferscha et al., “Java Based Conservative Distributed Simulation”,
Proceedings of the 1997 Winter Simulation Conference, pp. 381-388
(1997).
Foster et al., “A Security Architecture for Computational Grids”,
Fifth ACM Conference on Computer & Communications Security,
pp. 83-92 (1998).
Lindsay et al., “A Generic Model for Fine Grained Con?guration
Management Including Version Control and Traceability”, Proceed
ings of the Australian Software Engineering Conference
(ASWEC’9?, IEEE Computer Society, pp. 27-36 (1997).
Suresh Subramanian, “CRUISE: Using Interface Hierarchies to
Support Software Evolution”, IEEE, 1988, pp. 132-142.
International Search Report, PCT/U S 01/28579, International ?ling
date Sep. 12, 2001, date Search Report mailed- Jan. 5, 2004.
International Search Report, PCT/U S 01/28688, International ?ling
date Sep. 14, 2001, date Search report mailed- Jan. 5, 2004.
International Preliminary Examination Report, PCT/US01/28687,
International ?ling date Sep. 14, 2001, date Search Report mailed
Jan. 5, 2004.
CZajkoWski, GrZegorZ et al., “JRes: A Resource Accounting Inter
face for Java”, pp. 21-35, ACM, Vancouver, BC, 1998.
Ostrolf, Jonathan S., “Automated Modular Speci?cation and Veri
?cation of Real-Time Reactive Systems”, pp. 108-121, IEEE, 1995.
Abdulla, Parosh et al., “Verifying Programs With Unreliable Chan
nels”, pp. 160-170, IEEE, 1993.

* cited by examiner

U.S. Patent Jan. 2, 2007 Sheet 1 0f 10 US 7,158,993 B1

4 6

public class Object
public class Cl extends Object
public class C2 extends Cl

2

FIG. 1A

14 ‘2

public class Object
public class Cl extends Object
class PrivateClass extends Cl
public class C2 extends PrivateClass

l
10 8

FIG. 1B

U.S. Patent Jan. 2, 2007 Sheet 2 0f 10 US 7,158,993 B1

50
2? 4 >

2 V DISPLAY 2 V 2 _ CENTRAL ~22

ADAPTER PROCESSOR

DISPLAY SCREEN M12

P SYSTENI MEMORY N16
44” SERIAL _ '

PORT

USER POINTING
DEvICE _ 7 V0 “218

CONTROLLER

32 L . a

~48

I ~ WWW 0| I ll [_2]]

;_Q_II‘ ' @
KEYBOARD NETWORK INTERFACE

ADAPTER

34 30
S S 46

g I]

E ET A 2 SERIAL F‘ % PORT @
% MODEM

FIXED DISI<
36

42 40 Hg ~38
g EEZ'H FLOPPY DISK REMOVABLE % UNIT STORAOE

CD-ROM PLAYER
V

FIG. 2A

U.S. Patent Jan. 2, 2007

(Begin)

Sheet 3 0f 10 US 7,158,993 B1

Receive Library
~50

ll

Create A List Of Public Elements In
A Library, including A Sublist Of All

Public Related Elements

N52

End

FIG. 2B

U.S. Patent Jan. 2, 2007 Sheet 4 0f 10 US 7,158,993 B1

60

public class Object
superclasses I <nane>

public class c1/\/58
superclasses I Object

public class C2/—\—-/56
superclasses I Cl, Object

FIG. 2C

62

public class Cl
superclasses I <none>

public class Object/'\/64
superclasses = Cl 66

public class C2 N

superclasses : Cl, Object

FIG. 2D

U.S. Patent Jan. 2, 2007 Sheet 5 0f 10 US 7,158,993 B1

Receive API

ll

Receive First Element

Is First
Element In Sublist
For Second Public

Element?

78 76

l
Indicate First Element ls A Direct

Parent Of Second Element

Is First
Element ln Sublist For

Any Other Public Element
Listed In Sublist For

econd Element?

lndicote First Element is An Indirect
Pdrent Of Second Element

U.S. Patent Jan. 2, 2007 Sheet 6 0f 10 US 7,158,993 B1

Object C1

FIG. 313 FIG. 8C

U.S. Patent Jan. 2, 2007 Sheet 7 0f 10

N130
Object

A

' N 125

C1 odd new C3

A

~I2O
C2

FIG. 4A

US 7,158,993 B1

Object
A

N 110
C1

A

N 100

C3

A

N 105
C2

FIG. 4B

U.S. Patent Jan. 2, 2007 Sheet 8 0f 10 US 7,158,993 B1

150

public class Object
superclusses I <none>

public class Cl/_/155
superclosses I Object

public cluss CZ/Vmo
superclusses I Cl, Object

FIG. 5A

165

public class Object
superclusses/I <none>

public class elm/‘7O
superclosses I Object

public class c3/\/‘75
Superclusses I C], Object

public class C2/__/i8O
superclosses I O5, Cl, Object

FIG. 5B

U.S. Patent Jan. 2, 2007 Sheet 9 0f 10 US 7,158,993 B1

190m N188
Object ~ C3

\

186%
C1

A

184% N 182
C2 04

Referenced Client API
API

FIG. 6A

U.S. Patent Jan. 2, 2007 Sheet 10 0f 10 US 7,158,993 B1

200

public class C3 extends Object
public class C4 extends C2/\/2O5

FIG. 6B

210

3
public class C3

superclosses = Objec
public class C4 W220

tp/ZHS

superclusses = C2, C1, Object

FIG. 6C

US 7,158,993 B1
1

API REPRESENTATION ENABLING
SUBMERGED HIERARCHY

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the bene?t of provisional patent
application Ser. No. 60/165,298 ?led Nov. 12, 1999 in the
name of inventor Judith E. SchWabe, entitled “API Repre
sentation Enabling Submerged Hierarchy”. This application
also claims the bene?t of provisional patent application Ser.
No. 60/165,533 ?led Nov. 15, 1999 in the name ofinventor
Judith E. SchWabe, entitled “API Representation Enabling
Submerged Hierarchy”.

This application is related to the following:

US. Patent Application ?led Sep. 14, 2000 in the name of
inventor Judith E. SchWabe, entitled “Remote Incremental
Program Veri?cation Using API De?nitions”, Ser. No.
09/662,503, commonly assigned hereWith.

US. Patent Application ?led Sep. 14, 2000 in the name of
inventor Judith E. SchWabe, entitled “Remote Incremental
Program Binary Compatibility Veri?cation Using API De?
nitions”, Ser. No. 09/661,684, commonly assigned hereWith.

US. Patent Application ?led Sep. 14, 2000 in the name of
inventor Judith E. SchWabe, entitled “Populating Resource
Constrained Devices With Content Veri?ed Using API De?
nitions”, Ser. No. 09/661,582, commonly assigned hereWith.

US. Patent Application ?led Sep. 14, 2000 in the name of
inventor Judith E. SchWabe, entitled “Populating Binary
Compatible Resource-Constrained Devices With Content
Veri?ed Using API De?nitions”, Ser. No. 09/661,582, com
monly assigned hereWith.

US. patent application Ser. No. 09/243,108 ?led Feb. 2,
1999 in the name of inventors Judith E. SchWabe and Joshua
B. Susser, entitled “Token-based Linking”.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to computer systems. More

particularly, the present invention relates to a method for
representing an application programming interface (API) in
an object-oriented system such that submerged hierarchies
are enabled.

2. Background
An API de?nition ?le typically de?nes a library of func

tionality that may be used by one or more client applications
in an object-oriented system. An API de?nition ?le also
typically includes the set of classes and interfaces that are
externally accessible from that library and the items in those
classes and interfaces that are externally accessible. A library
in JavaTM technology corresponds to the JavaTM “Package”
construct.

The “items” in classes and interfaces include ?elds,
methods and implemented interfaces of the various classes,
and ?elds and methods of the various interfaces. Addition
ally, the immediate superclass and superinterface for each
class and interface, respectively, is listed. Since an API can
only enumerate externally accessible items, all superclasses
and superinterfaces must also be externally accessible.
An API de?nition ?le may include non-public function

ality that is not exposed by the API de?nition ?le. This
functionality can be implemented in classes as non-public
?elds, non-public methods or non-public implemented inter

20

25

30

35

40

50

55

60

65

2
faces. In addition, the content of a method is not disclosed
in an API representation, regardless of Whether the method
is public or non-public. Therefore, non-public algorithms are
not disclosed.

FIG. 1A illustrates a typical API representation. In this
example, all of the classes in the hierarchy of C2 (2) are
public. The API representation indicates that the public class
C1 (4) is the superclass of the public class C2 (2). The API
representation also indicates that the public class Object (6)
is the superclass of the public class C1 (4). Thus, this API
representation reveals the entire hierarchy of C2 (2). Fur
thermore, typical API representations unnecessarily con
strain a hierarchy by forcing the hierarchy to contain only
public classes.

Additionally, since typical API representations only indi
cate the immediate superclass or superinterface of a particu
lar class or interface, respectively, one must traverse the
hierarchy recursively to determine Whether a class or inter
face is a member of the hierarchy. Such functionality
requires that not only the immediate API de?nition ?le is
available When validating references to elements in a hier
archy, but also the set of API de?nition ?les referenced by
that API de?nition ?le.
The JavaTM language supports a construct Where the

immediate superclass or superinterface of a class or inter
face, respectively, may be declared as non-public. A super
class or superinterface declared in this Way must not be
disclosed in an API de?nition ?le. FIG. 1B demonstrates this
feature in a class hierarchy. Such a hierarchy that includes
one or more non-public classes is referred to as a submerged
hierarchy. Such constructs are useful to API designers and
implementers because they alloW non-public, or proprietary
functionality to be inserted into a hierarchy and for that
functionality to be encapsulated in a hidden class. This
provides for modular designs consistent With Object-ori
ented theory.

HoWever, the hierarchy illustrated in FIG. 1B cannot be
represented in a typical API de?nition ?le. This is because
a typical API representation requires the disclosure of the
immediate superclass of C2 (8), Which is PrivateClass (10).
Disclosing a non-public class such as PrivateClass (10)
Would violate the JavaTM language requirement that such a
class not be made public.

Typical API representations constrain the design of an
API such that more than is desirable falls into the publicly
accessible domain. Accordingly, a need exists in the prior art
for an API representation that suf?ciently constrains particu
lar implementations, While alloWing them to de?ne sub
merged hierarchies.

SUMMARY OF THE INVENTION

A method for representing an application programming
interface (API) for an object-oriented library includes cre
ating a list of public elements in the library and storing the
list. Each public element in the list includes a sublist of all
public related elements for the element. According to one
aspect, the public elements include classes and interfaces,
the public related elements include public superclasses and
public superinterfaces, and the library is a JavaTM package.
According to one aspect, a method for determining a pro
gram hierarchy includes receiving an API de?nition ?le for
an object-oriented library and indicating a ?rst public ele
ment is a direct parent of a second public element When the
?rst public element is represented in the sublist for the
second public element and the ?rst public element is not
represented in the sublist for any other public element listed

US 7,158,993 B1
3

in the sublist for the second public element. According to
another aspect, a method for detecting changes to a program
hierarchy includes comparing a ?rst program hierarchy
reconstructed from a ?rst API de?nition ?le With a second
program hierarchy reconstructed form a second API de?ni
tion ?le and indicating an error When the ?rst program
hierarchy is inconsistent With the second program hierarchy.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a representation of a typical hierarchy as
disclosed in a typical Application Programming Interface
(API) representation.

FIG. 1B is a representation of a typical hierarchy includ
ing a submerged hierarchy.

FIG. 2A is a block diagram of a computer system suitable
for implementing aspects of the present invention.

FIG. 2B is a ?oW diagram that illustrates a method for
representing an API de?nition in accordance With one
embodiment of the present invention.

FIG. 2C is an API representation of a hierarchy in
accordance With one embodiment of the present invention.

FIG. 2D is an API representation in accordance With one
embodiment of the present invention, demonstrating a
change from the hierarchy as shoWn in FIG. 2C.

FIG. 3A is a ?oW diagram that illustrates determining a
program hierarchy based on an API in accordance With one
embodiment of the present invention.

FIG. 3B is a class diagram that illustrates the hierarchy
represented by the API in FIG. 2C.

FIG. 3C is a class diagram that illustrates the hierarchy
represented by the API in FIG. 3C.

FIG. 4A is a class diagram that illustrates a class hierar
chy.

FIG. 4B is a class diagram that illustrates adding a class
to the hierarchy of FIG. 4A.

FIG. 5A is an API de?nition ?le in accordance With one
embodiment of the present invention, representing the hier
archy of FIG. 4A.

FIG. 5B is an API de?nition ?le in accordance With one
embodiment of the present invention, representing the hier
archy of FIG. 4B.

FIG. 6A is a class diagram of an API de?nition that is
extended by a client API de?nition.

FIG. 6B is a representation of a client API de?nition that
references the API de?nition illustrated in FIG. 6A.

FIG. 6C is an API de?nition ?le in accordance With one
embodiment of the present invention, representing the hier
archy in FIG. 6B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Those of ordinary skill in the art Will realiZe that the
folloWing description of the present invention is illustrative
only. Other embodiments of the invention Will readily sug
gest themselves to such skilled persons having the bene?t of
this disclosure.

This invention relates to computer systems. More particu
larly, the present invention relates to an API representation
enabling a submerged hierarchy in an object-oriented sys
tem. The invention further relates to machine-readable
media on Which are stored (l) the layout parameters of the
present invention and/or (2) program instructions for using
the present invention in performing operations on a com
puter. Such media includes by Way of example magnetic
tape, magnetic disks, optically readable media such as CD

20

25

30

35

40

45

50

55

60

65

4
ROMs and semiconductor memory such as PCMCIA cards.
The medium may also take the form of a portable item such
as a small disk, diskette or cassette. The medium may also
take the form of a larger or immobile item such as a hard
disk drive or a computer RAM.

According to embodiments of the present invention, API
class hierarchies are speci?ed such that submerged hierar
chies are supported While su?iciently constraining particular
API implementations such that each API implementation is
functionally equivalent and the operations available to cli
ents of each API implementation are exactly equivalent.

FIG. 2A depicts a block diagram of a computer system 20
suitable for implementing aspects of the present invention.
As shoWn in FIG. 2A, computer system 20 includes a bus 12
Which interconnects major subsystems such as a central
processor 22, a system memory 16 (typically RAM), an
input/output (I/O) controller 18, an external device such as
a display screen 24 via display adapter 26, serial ports 28 and
30, a keyboard 32, a ?xed disk drive 34, a ?oppy disk drive
36 operative to receive a ?oppy disk 38, and a CD-ROM
player 40 operative to receive a CD-ROM 42. Many other
devices can be connected, such as a pointing device 44 (e. g.,
a mouse) connected via serial port 28 and a modem 46
connected via serial port 30. Modern 46 may provide a direct
connection to a remote server via a telephone link or to the
Internet via a POP (point of presence). Alternatively, a
netWork interface adapter 48 may be used to interface to a
local or Wide area netWork using any netWork interface
system knoWn to those skilled in the art (e.g., Ethernet, DSL,
AppleTalkTM).
Many other devices or subsystems (not shoWn) may be

connected in a similar manner. Also, it is not necessary for
all of the devices shoWn in FIG. 2A to be present to practice
the present invention, as discussed beloW. Furthermore, the
devices and subsystems may be interconnected in different
Ways from that shoWn in FIG. 2A. The operation of a
computer system such as that shoWn in FIG. 2A is readily
knoWn in the art and is not discussed in detail in this
application, so as not to overcomplicate the present discus
sion. Code to implement the present invention may be
operably disposed in system memory 16 or stored on storage
media such as ?xed disk 34 or ?oppy disk 38.

Turning noW to FIG. 2B, a ?oW diagram that illustrates
creating an API de?nition ?le in accordance With one
embodiment of the present invention is presented. At 50, a
library is received. At 52, a list of public elements in the
library is created. The list of public elements includes a
sublist of all public related elements. Each sublist of public
related elements includes public elements that are directly
related and public elements that are indirectly related.
Examples of public elements that are directly and indirectly
related are illustrated With reference to FIG. 2C. At 54, the
list is stored.

Turning noW to FIG. 2C, an API representation in accor
dance With one embodiment of the present invention is
presented. The API representation shoWn in FIG. 2C can be
used to represent the hierarchies illustrated in FIGS. 1A and
1B. In this representation, the hierarchy of each public class
is de?ned using a list of the public superclasses. Thus, the
hierarchy for public class C2 (56) is the list of pubic
superclasses (C1, Object). The hierarchy for public class C1
is (Object) and the hierarchy for public class Object (60) is
the empty set, since Object (60) has no superclass. Note that
private class (10) in FIG. 1B is not disclosed in the API
representation of FIG. 2C.

Given the API representation of the present invention, the
hierarchy can be reconstructed. For example, the hierarchy

US 7,158,993 B1
5

of FIG. 1A can be reconstructed from the representation
illustrated in FIG. 2C as follows. Starting With public class
C2 (56), the representation or list of superclasses for C2 (56)
indicates C2 (56) has superclasses C1 (58) and Object (60).
Therefore, either C1 (58) or Object (60) is a direct superclass
of C2 (56). Since the representation for the hierarchy of C1
(58) also indicates Object (60) is a superclass of C1 (58), C1
(58) is the direct superclass of C2 (56) and Object (60) is the
direct superclass of C1 (58). Determining a program hier
archy is discussed in more detail With reference to FIG. 3A.

Turning noW to FIG. 3A, a method for determining a
program hierarchy based on an API de?nition ?le in accor
dance With one embodiment of the present invention is
presented. At 70, an API de?nition ?le is received. At 72, a
?rst public element in the API de?nition ?le is received. At
74, a determination is made regarding Whether the ?rst
public element is in a sublist for a second public element in
the API de?nition ?le. If the public element is not in a sublist
Within the API de?nition ?le, the public element is not a
parent of any other element in the API de?nition ?le. If the
public element is in a sublist for another element, at 76, a
check is made to determine Whether the ?rst public element
is in a sublist for any other public element listed in the sublist
of the second public element. If the ansWer at 76 is “Yes”,
at 78, an indication is made that the ?rst public element is
a direct parent of the second element. If the ansWer at 76 is
“No”, at 68, an indication is made that the ?rst element is an
indirect parent of the second element. This process continues
at 72 until all public elements in the API de?nition ?le have
been examined.

The API representation illustrated by FIG. 2C suf?ciently
constrains particular implementations from changing the
order of classes in a hierarchy. This is illustrated in FIGS.
2Ci3C. FIG. 3B shoWs an initial hierarchy including three
classes, C2 (75), C1 (82) and Object (80). The class C2 (75)
extends class C1 (82) and C1 (82) extends Object (80). FIG.
2C illustrates an API representation of the hierarchy in FIG.
3B according to one embodiment of the present invention.
According to one embodiment of the present invention, each
class includes a list of all superclasses, both direct and
indirect. Thus, class C2 (56) includes enough information
regarding its superclasses to reconstruct the hierarchy rep
resented in FIG. 3B from C2 (75) up through Object (80).
Likewise, class C1 (58) includes enough information to
reconstruct the hierarchy from C1 (82) up to Object (80).

Once the hierarchy is reconstructed, relationships incon
sistent With the original hierarchy can be detected. FIG. 3C
represents an attempt to change the initial hierarchy of FIG.
3B by sWitching the relationship betWeen Object (80) and
C1 (82). FIGS. 2C and 2D are API representations in
accordance With the present invention, corresponding to
FIGS. 3B and 3C, respectively. Those of ordinary skill in the
art Will recogniZe that the API representation in FIG. 2C is
not equal to the API representation in FIG. 2D.

Since the present invention alloWs the hierarchy repre
sented by FIG. 3B to be reconstructed based on the API
representation, any attempt to sWitch the relationship
betWeen the classes can be detected. For example, the
reconstructed hierarchy created from the API representation
in FIG. 2C indicates that neither C1 (58) nor C2 (56) is a
superclass of Object (60), and that C2 (56) is not a superclass
of C1 (58). HoWever, the reconstructed hierarchy created
from the API representation in FIG. 2D indicates that Cl
(62) is a superclass of Object (64). Since the hierarchical
relationships extracted from the API representations in
FIGS. 2C and 2D are inconsistent, an attempt to change the
relationships of the classes in FIG. 3B is indicated.

20

25

30

35

40

45

50

55

60

65

6
Furthermore, adding or removing a publicly accessible

class from a hierarchy results in a different API representa
tion. The effect of adding a publicly accessible class is
illustrated in FIGS. 4Ai5B. FIG. 4A illustrates an initial
hierarchical relationship. FIG. 4B illustrates the hierarchy
that results after a neW publicly accessible class C3 (100) is
added to the hierarchy illustrated in FIG. 4B. FIGS. 5A and
5B are API representations of the hierarchies in FIGS. 4A
and 4B, respectively. The list of superclasses for C2 (160,
180) differs in FIGS. 5A and 5B. Speci?cally, the list of
superclasses for C2 (160) in FIG. 5A includes C1 (155) and
Object (150). The list of superclasses for C2 (180) in FIG.
5B includes C3 (175), as Well as C1 (170) and Object (165).
Since the hierarchical relationships extracted from the API
representations in FIGS. 5A and 5B are inconsistent, an
attempt to change the relationships of the classes in FIG. 4A
is indicated.

Those of ordinary skill in the art Will recogniZe that the
effect of removing a publicly accessible class may be
detected in a similar manner.

The API representation illustrated by FIG. 2C also alloWs
hierarchies having submerged hierarchies such as the one
illustrated by FIG. 1B to be represented Without revealing
any non-public or proprietary information about the hierar
chy. Thus, the list of superclasses for C2 (8) is (C1, Object),
the list of superclasses for C1 (14) is (Object) and the list of
superclasses for Object (5) is the empty set. A client of this
API de?nition can use this information to reconstruct the
hierarchy of FIG. 1B, Without revealing any information
about the non-public class PrivateClass (10).

Since a client of an API de?nition only has access to
public items in any particular implementation of the API
de?nition, the existence of a submerged hierarchy does not
have any impact on the client. The submerged portion of the
hierarchy is non-public and therefore not available to the
client. Thus, using the API representation in FIG. 2C, a
client can execute With either an implementation of FIG. 1A
or FIG. 1B and obtain functionally equivalent results.
A client API de?nition is an API de?nition that references

another API de?nition. The API representation of the present
invention discloses only those portions of client API de?
nitions relevant to a client in regard to class hierarchies,
Without requiring complete disclosure of those referenced
API de?nitions. This provides an additional method for
keeping dependencies on referenced API de?nitions undis
closed, While still providing suf?cient information to a client
of the client API de?nition.

Turning noW to FIG. 6A, a class diagram of an API
de?nition that is extended by a client API de?nition is
presented. Client API de?nition C4 (182) references the API
de?nition containing C2 (184). The API de?nition contain
ing C2 (184) references class C1 (186). Both class C1 (186)
and class C3 (188) reference class Object (190). In this
example, C4 (182) of the client API de?nition extends C2
(184) of the referenced API de?nition, and class C3 (188) of
the client API de?nition extends class Object (190) of the
referenced API de?nition.

Turning noW to FIG. 6B, a representation of a hierarchy
that references another hierarchy is presented. Classes
Object (200) and C2 (205) are as represented in FIG. 6A.

Turning noW to FIG. 6C, an API representation of the
hierarchy of FIG. 6B in accordance With one embodiment of
the present invention is presented. The API representation
includes all direct and indirect superclasses for each class in
the client API de?nition of FIG. 6A. Thus, a client of the API
de?nition in FIG. 6C can determine complete hierarchy

US 7,158,993 B1
7

information from the client API (182) in FIG. 6A, Without
requiring complete disclosure of referenced API de?nition
(184) of FIG. 6A.
The present invention also relates to apparatus for per

forming these operations. This apparatus may be specially
constructed for the required purpose or it may comprise a
general-purpose computer as selectively activated or recon
?gured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general
purpose machines may be used With programs Written in
accordance With the teachings herein, or it may prove more
convenient to construct more specialiZed apparatus to per
form the required process. The required structure for a
variety of these machines Will appear from the description
given.

While the JavaTM programming language and platform are
suitable for the invention, any language or platform having
certain characteristics Would be Well suited for implement
ing the invention. These characteristics include type safety,
pointer safety, object-oriented, dynamically linked, and vir
tual machine based. Not all of these characteristics need to
be present in a particular implementation. In some embodi
ments, languages or platforms lacking one or more of these
characteristics may be utiliZed. Also, although the invention
has been illustrated shoWing obj ect-by-obj ect security, other
approaches, such as class-by-class security could be utiliZed.

The system of the present invention may be implemented
in hardWare or in a computer program. Each such computer
program can be stored on a storage medium or device (e.g.,
CD-ROM, hard disk or magnetic diskette) that is readable by
a general or special purpose programmable computer for
con?guring and operating the computer When the storage
medium device is read by the computer to perform the
procedures described. The system may also be implemented
as a computer-readable storage medium, con?gured With a
computer program, Where the storage medium so con?gured
causes a computer to operate in a speci?c and prede?ned
manner.

According to a presently preferred embodiment, the
present invention may be implemented in softWare or ?rm
Ware, as Well as in programmable gate array devices, Appli
cation Speci?c Integrated Circuits (ASICs), and other hard
Ware.

Thus, a novel method for representing an API has been
described. While embodiments and applications of this
invention have been shoWn and described, it Would be
apparent to those skilled in the art having the bene?t of this
disclosure that many more modi?cations than mentioned
above are possible Without departing from the inventive
concepts herein. The invention, therefore, is not to be
restricted except in the spirit of the appended claims.

What is claimed is:
1. A method for representing an application programming

interface (API) de?nition for an obj ect-oriented library, said
method comprising:

creating a public list including all public classes and
interfaces de?ned in said object-oriented library
Wherein said all public classes and interfaces being
Written in an object-orientated computer programming
language and said interfaces include methods, said
public list including a class sublist for each of said
public classes, each said class sublist including all
direct and indirect public superclasses of a class and
excluding private classes; and

storing said list.

20

25

30

35

40

45

50

55

60

65

8
2. The method of claim 1 Wherein said object-oriented

library is a JavaTM package.
3. A program storage device readable by a machine,

embodying a program of instructions executable by the
machine to perform a method to represent an application
programming interface (API) de?nition for an object-ori
ented library, the method comprising:

creating a public list including all public classes and
interfaces de?ned in said object-oriented library
Wherein said all public classes and interfaces being
Written in an obj ect-orientated computer programming
language and said interfaces include methods, said
public list including a class sublist for each of said
public classes, each said class sublist including all
direct and indirect public superclasses of a class and
excluding private classes; and

storing said list.
4. The program storage device of claim 3 Wherein said

object-oriented library is a JavaTM package.
5. An apparatus for representing an application program

ming interface (API) de?nition for an object-oriented
library, said apparatus comprising:
means for creating a public list including all public classes

and interfaces de?ned in said object-oriented library
Wherein said all public classes and interfaces being
Written in an obj ect-orientated computer programming
language and said interfaces include methods, said
public list including a class sublist for each of said
public classes, each said class sublist including all
direct and indirect public superclasses of a class and
excluding private classes; and

means for storing said list.
6. The apparatus of claim 5 Wherein said object-oriented

library is a JavaTM package.
7. A method for representing an application programming

interface (API) de?nition for an obj ect-oriented library, said
method comprising:

step for creating a public list including all public classes
and interfaces de?ned in said object-oriented library
Wherein said all public classes and interfaces being
Written in an obj ect-orientated computer programming
language and said interfaces include methods, said
public list including a class sublist for each of said
public classes, each said class sublist including all
direct and indirect public superclasses of a class and
excluding private classes; and

step for storing said list.
8. The method of claim 7 Wherein said object-oriented

library is a JavaTM package.
9. A method for determining a program hierarchy, said

method comprising:
receiving an application programming interface (API)

de?nition ?le for an object-oriented library, said API
de?nition ?le including a list of public elements in said
obj ect-oriented library, each element comprising a class
or interface, Wherein said each class or interface being
Written in an obj ect-orientated computer programming
language and said interface include at least one method
each of said public elements including a sublist of all
public hierarchically-related elements that are a parent
of the element and excluding private classes; and

indicating a ?rst public element is a direct parent of a
second public element When said ?rst public element is
represented in the sublist for said second public ele
ment and said ?rst public element is not represented in
the sublist for any other public element listed in the
sublist for said second public element.

US 7,158,993 B1
9

10. The method of claim 9 wherein said object-oriented
library is a JavaTM package.

11. The method of claim 9, further comprising
comparing a ?rst program hierarchy reconstructed from a

?rst API de?nition ?le With a second program hierarchy
reconstructed from a second API de?nition ?le; and

indicating an error When said ?rst program hierarchy is
inconsistent With said second program hierarchy.

12. A program storage device readable by a machine,
embodying a program of instructions executable by the
machine to perform a method to determine a program
hierarchy, said method comprising:

receiving an application programming interface (API)
de?nition ?le for an object-oriented library, said API
de?nition ?le including a list of public elements in said
obj ect-oriented library, each element comprising a class
or interface, Wherein said each class or interface being
Written in an object-orientated computer programming
language and said interface include at least one method
each of said public elements including a sublist of all
public hierarchically-related elements that are a parent
of the element and excluding private classes; and

indicating a ?rst public element is a direct parent of a
second public element When said ?rst public element is
represented in the sublist for said second public ele
ment and said ?rst public element is not represented in
the sublist for any other public element listed in the
sublist for said second public element.

13. The program storage device of claim 12 Wherein said
object-oriented library is a JavaTM package.

14. The program storage device of claim 12, said method
further comprising:

comparing a ?rst program hierarchy reconstructed from a
?rst API de?nition ?le With a second program hierarchy
reconstructed from a second API de?nition ?le; and

indicating an error When said ?rst program hierarchy is
inconsistent With said second program hierarchy.

15. An apparatus for determining a program hierarchy,
said apparatus comprising:
means for receiving an application programming interface

(API) de?nition ?le for an object-oriented library, said
API de?nition ?le including a list of public elements in
said object-oriented library, each element comprising a
class or interface, Wherein said each class or interface
being Written in an object-orientated computer pro
gramming language and said interface include at least
one method each of said public elements including a
sublist of all public hierarchically-related elements that
are a parent of the element and excluding private
classes; and

10

20

25

30

40

45

10
means for indicating a ?rst public element is a direct

parent of a second public element When said ?rst public
element is represented in the sublist for said second
public element and said ?rst public element is not
represented in the sublist for any other public element
listed in the sublist for said second public element.

16. The apparatus of claim 15 Wherein said object
oriented library is a JavaTM package.

17. The apparatus of claim 15, said apparatus further
con?gured to:

compare a ?rst program hierarchy reconstructed from a
?rst API de?nition ?le With a second program hierarchy
reconstructed from a second API de?nition ?le;

indicate an error When said ?rst program hierarchy is
inconsistent With said second program hierarchy.

18. A method for determining a program hierarchy, said
method comprising:

step for receiving an application programming interface
(API) de?nition ?le for an object-oriented library, said
API de?nition ?le including a list of public elements in
said object-oriented library, each element comprising a
class or interface, Wherein said each class or interface
being Written in an object-orientated computer pro
gramming language and said interface include at least
one method each of said public elements including a
sublist of all public hierarchically-related elements that
are a parent of the element and excluding private
classes; and

step for indicating a ?rst public element is a direct parent
of a second public element When said ?rst public
element is represented in the sublist for said second
public element and said ?rst public element is not
represented in the sublist for any other public element
listed in the sublist for said second public element.

19. The method of claim 18 Wherein said object-oriented
library is a JavaTM package.

20. The method of claim 19, further comprising
step for comparing a ?rst program hierarchy reconstructed

from a ?rst API de?nition ?le With a second program
hierarchy reconstructed from a second API de?nition
?le; and

step for indicating an error When said ?rst program
hierarchy is inconsistent With said second program
hierarchy.

