Toolkit: Graphing Linear Inequalities

You can use a graph to model linear inequalities like y < 2x - 10 or $y \ge 2x - 10$

The graph of a linear inequality includes the region above or below the line depending on whether the inequality includes a greater than or less than symbol.

Step 1. Imagine the inequality symbol is an " = " and identify the slope and y-intercept.

Step 2 Plot points to set up your graph based on the slope and y-intercept.

Step 3: Connect the points with the appropriate type of line.

A <u>solid line</u> means that the points on the line are included in the solution. This type of line is used for _____

A dashed line means that the points on the line are not included in the solution.

This type of line is used for \checkmark

Step 4. Shade the region of the graph that represents the solution.

For y is < (less than) or $y \le$ (less than or equal to)

shade ______ the line.

		101	++-			++	
		9	++-			++	1
		8+	++-				1
		7+	++			1	-
		6+				1	-
						1	
		N				· _	
		4				1	
		31			1		
		21			1		-
		1 1 +	++-		1	++-	
		+++	++	++,		++	-
0-9-8-7-	3 -5 -4 -8 -	2 -1.	12:	1 4 3	6	789	1
		2		/			
		-		1			
				1			
		14 T	11				
		-5	1				
		-6	1				
		-6	1				
		-6 -7 -8	/				

For y is \rightarrow (greater than) or $y \ge$ (greater than or equal to)

shade _____ the line.

Practice:

1) Graph $y < 8 - \frac{5}{3}x$ on the coordinate axis provided.

Use a _____ line because ...

Shade ______ the line because...

7 6 5 4 3 2 -11 0-9-8-7-6-5-4 -3 -2 6 -2 -3 -4 -5 -6 -7 -8 -9

9 8

2) Graph $y \le 2x + 4$ on the coordinate axis provided.

Use a _____ line because ...

Shade ______ the line because...

3) Graph $y > \frac{1}{2}x - 6$ on the coordinate axis provided.

Use a _____ line because ...

Shade ______ the line because...

IM 1 Investigation 3.2.2 Day 4 Alternate

Name _

Accurately draw the graph of each of the following inequalities without using your calculator. If the equation is in standard form, change it to slope-intercept form first. Show all calculations.

1)
$$y > -2x - 1$$

2)
$$y \le -\frac{3}{2}x + 10$$

3) $y \ge 3x - 6$

7) 2x + 8y > -16

$$-2x+5y\geq 40$$

