

COURSE OBJECTIVES

Academic Year	: 2013-2014	
Semester	: I	
Name of the Program:	B.Tech Year: IV	Section: A,B
Course/Subject: Por	wer System Operation Control	Course Code: 57015
Name of the Faculty:	K.Sireesha	Dept.: Electrical & Electronics Engineering
Designation: ASST.PF	ROFESSOR.	

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To provide students the knowledge of optimization techniques used in the power system and Load Frequency Control (LFC).
2	To provide a solid foundation in mathematical and engineering fundamentals required to control the governing system in Turbine models.
3	To provide the knowledge of Hydrothermal scheduling, reactive power control.

Signature of HOD

Signature of faculty

Date:

Date:25-09-13

COURSE OUTCOMES

Acade	mic Year : 2013-2014		
Semes	ter : I		
Name	of the Program: B.Tech	Year: IV	Section: A,B
Course	e/Subject: Power System and Operation Contr	rol	Course Code: 57015
Name	of the Faculty: K.Sireesha		
Desigr	nation: ASST.PROFESSOR.	Dept:	Electrical & Electronics Engineering
The exp	pected outcomes of the Course/Subject are:		
S.No	0	utcomes	
1	To make students express Economic operation control.		ver system and importance of LFC
2	To allow students discuss about thermal and demand optimally. (State and central wide in power control through seminars.	2 1	
3	To improve student's ability in solving prol different problem models related to Econor reactive power control.		
4	Apply their knowledge in PSOC for competi	tive exams li	ke GATE, IES, and Public sector etc.
5	Ability to discuss single area load frequency com	trol and two ar	rea load frequency control.
6	Ability to model and design turbine and Automat	ic controller.	
7	Ability to express variation of frequency in the p	ower system w	vith varying load.

Signature of HOD

Signature of faculty

Date:

Date:25-09-13

MAPPINGS

Department/Program-EEE

Mission of the Institute:

To be among the best of the institutions for engineers and technologists with attitudes, skill and knowledge and to become an epicenter of creative solutions.

Vision of the Institute:

To achieve and impart quality education with an emphasis on practical skills and social relevance.

Mission of the Program:

To provide the technical knowledge and soft skills required to succeed in life, career and help society to achieve self sufficiency.

Program Educational Objectives:

This education is meant to prepare our students to thrive and to lead. In their careers, our graduates:

- Will have successful technical or professional careers, including supportive and leadership roles on multidisciplinary teams.
- Will acquire, use and develop skills required for effective professional practices.
- Will acquire the holistic education necessary to be a responsible member of society.
- Engage in life-long learning to remain current in their profession and be leaders in our technological society.

Program Learning Outcomes:

Students in the Electrical and Electronics Engineering program should, at the time of their graduation, be in possession of:

a. Ability to apply knowledge of mathematics, science, and engineering.

b. Ability to design and conduct experiments, as well as to analyze and interpret data.

c. Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d. Ability to function on multi-disciplinary teams.

e. Ability to identify, formulate, and solve engineering problems.

f. Understanding of professional and ethical responsibility.

g. Ability to communicate effectively.

h. Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues.

k. Ability to utilize experimental, statistical and computational methods and tools necessary for engineering practice.

I. Graduates will demonstrate an ability to design electrical and electronic circuits, power electronics, power systems, electrical machines analyze and interpret data and also an ability to design digital and analog systems and programming them.

Name of the Course: POWER SYSTEM OPERATION AND CONTROL (PSOC)

Course Objectives:

- 1) To provide students the knowledge of optimization techniques used in the power system and Load Frequency Control (LFC).
- 2) To provide a solid foundation in mathematical and engineering fundamentals required to control the governing system in Turbine models.
- 3) To provide the knowledge of Hydrothermal scheduling, reactive power control.

Course Outcomes:

- 1) To make students understand Economic operation of power system and importance of LFC control.
- 2) To allow students discuss about thermal and hydro power plants operation in meeting the load demand optimally. (State and central wide installation). Also expressing importance of reactive power control through seminars.
- 3) To improve student's ability in solving problems (numerical problems at present) by posing different problem models related to Economic Load Dispatch, Load Frequency Control and reactive power control.
- 4) Apply their knowledge in PSOC for competitive exams like GATE, IES, and Public sector etc.
- 5) Ability to discuss single area load frequency control and two area load frequency control.
- 6) Ability to model and design turbine and Automatic controller.
- 7) Ability to express variation of frequency in the power system with varying load.

Assessment methods:

Regular attendance to classes.

- ➢ Viva-voce during the class.
- > Written tests clearly linked to learning objectives
- Classroom assessment techniques like tutorial sheets and assignments.
- ➢ Seminars.
- **Program Educational Objectives (PEOs) Vision/Mission Matrix** (Indicate the relationships by mark "X")

Vision/Mission	Vision of the Institute	Mission of the Institute	Mission of the Program
PEOs			
1	Х		Х
2	Х	Х	Х
3	Х	Х	Х
4		Х	Х

• **Program Educational Objectives(PEOs)-Program Outcomes(POs) Relationship Matrix** (Indicate the relationships by mark "X")

Р-	a	b	c	d	e	f	g	h	i	j	k	1
Outcomes												
DEO												
PEOs												
1	Χ	Х	Х	Х	Х			Х	Х	Х	Х	Х
2	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х
3		Х	Х	Х		Х	Х	Х	Х	Х		
4				Х					Х	Х		Х

• Course Objectives-Course Outcomes Relationship Matrix (Indicate the relationships by mark "X")

Course-Outcomes	1	2	3	4	5	6	7
Course-Objectives							
1	Х		Х	Х	Х	Х	Х
2			Х	Х			
3	Х	Х		Х			

• Course Objectives-Program Outcomes(POs) Relationship Matrix (Indicate the relationships by mark "X")

P-Outcomes	а	b	с	d	e	f	g	h	i	J	k	1

C- Objectives								
1	Χ			Х	Х			
2		Х		Х				
3					Х			

• Course Outcomes-Program Outcomes(POs) Relationship Matrix (Indicate the relationships by mark "X")

P-Outcomes	a	b	c	d	e	f	g	h	i	j	k	1
C-Outcomes												
	X				X							
1	Λ				Λ				X			
2	X	X			X		Х		X			
3	X	Λ			Λ	Х	Λ		X			
4	X	X			X	X	X		X			
6	X	X			X	X	X		X			
6		v										
1	Х	X			Х	Х	Х		Х			

• Courses (with title & code)-Program Outcomes (POs) Relationship Matrix (Indicate the relationships by mark "X")

P-Outcomes	a	b	c	d	e	f	g	h	i	j	k	1
Courses												
Power	Х	Х			Х	Х	Х		Х			
System												
Operation												
System Operation and Control												

• **Program Educational Objectives (PEOs)-Course Outcomes Relationship Matrix** (Indicate the relationships by mark "X")

P-Objectives (PEOs)	1	2	3	4
Course-Outcomes				
1	Х			
2	Х	Х		
3	Х	Х		
4	Х			Х
5	Х	Х		Х
6	Х	Х		Х
7	Х	Х		Х

• Assignments & Assessments-Program Outcomes (POs) Relationship Matrix (Indicate the relationships by mark "X")

P-Outcomes	a	b	с	d	e	f	g	h	i	j	k	1
Assessments												
1						Х			Х			
2	Х				Х		Х	Х	Х			
3	Х	Х				Х						
4	Х	Х			Х							
5	Х						Х					

• Assignments & Assessments-Program Educational Objectives (PEOs) Relationship Matrix (Indicate the relationships by mark "X")

PEOs	1	2	3	4
Assessments				
1			Х	Х
2	Х	Х		
3	Х		Х	
4	Х		Х	Х
5	Х	Х		Х

• **Constituencies - Program Outcomes (POs) Relationship Matrix** (Indicate the relationships by mark "X").

P-Outcomes	a	b	c	d	e	f	g	h	i	j	k	1
Constituencies												
1												
2												
3												
4												
5												
6												

Prepare the following Matrix:

11. The improvements Matrix are summarized below and described in the text that follows.

<u>Hint:</u>

Example:

Proposed	Year	Year	Old Version	New Version	Comments
Change	Proposed	Implemented			
Add new Operating System course	2012-2013	2013-2014	No operating system course in curriculum	IT Oper System Concepts & Administration	To address need for additional material for operating systems

RUBRIC TEMPLATE

Objective: _____

Student Outcome:_____

			Scale	Scale	Scale	Scale	Score
			(Numeric	(Numeric	(Numeric	(Numeric	(Numeric
			/descriptor)	/descriptor)	/descriptor)	/descriptor))
S.No.	Name of the Student	Performan ce Criteria	Identifiable performance characteristics	Identifiable performance characteristic s	Identifiable performance characteristi cs	Identifiable performanc e characterist	
			reflecting this level	reflecting this level	reflecting this level	ics reflecting this level	
1.		Performan ce Criteria #1 Performan ce					

	Criteria #2			
	Performan ce			
	Criteria #3			
	Performan ce			
	Criteria #4			
			Average Score	
2.				
			Average Score	

EXAMPLE OF FILLED RUBRIC

OBJECTIVE: Work effectively with others

STUDENT OUTCOME: Ability to function in a multi-disciplinary team

S.No.	Student	Performance	Unsatisfactory	Developi	Satisfactor	Exemplary	Score
	Name	Criteria		ng	У		
			1	2	3	4	
1.		Research &	Does not	Collects	Collects	Collects a	3
		Gather	collect any	very little	some	great deal	
		Information	information	informati	basic	of	
			that relates to	onsome	informatio	information	
				relates	nmost	all relates	
			the topic.	to the	relates	to	
				topic	to the	the topic.	
					topic.		
		Fulfill team	Does not	Performs	Performs	Performs	3
		role's duty	perform any				

		duties	very little	nearly all	all duties of	
		of assigned team role.	duties.	duties.	assigned team role.	
	Share Equally	Always relies on others to do the work.	Rarely does the assigned work	Usually does the assigned work	Always does the assigned work	4
			often needs remindin g.	rarely needs reminding	without having to be reminded.	
	Listen to other team mates	Is always talkingnever allows anyone else to speak.	Usually doing most of the talking rarely allows others to speak.	Listens, but sometimes talks too much.	Listens and speaks a fair amount.	4
					Average score	3.5
2.						
					Average score	

GUIDELINES TO STUDY THE COURSE / SUBJECT

Academic Year	: 2013-2014	
Semester	: I	
Name of the Program: B.Tec	h Year: IV	Section: A,B
Course/Subject: Power Syste	m Operation Control	Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR.

Guidelines to study the Course/ Subject: Power System Operation Control

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively

- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, adviser, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Signature of faculty

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, A.P., India. (040) 6686 4440

COURSE SCHEDULE

Academic Year	: 2013-2014
Semester	: I
Name of the Program: B.Tech	n Year: IV

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Course Code: 57015 Dept.: Electrical & Electronics Engineering

Section: A

Designation: ASST.PROFESSOR The Schedule for the whole Course / Subject is:

The Selicu	ule for the whole Course / Subject is:			
S. No.	Description	Duratio	n (Date)	Total No. Of Periods
	1	From	То	
1.	INTRODUCTION & IMPORATANCE OF SUBJECT.	02/07/2013		1
2.	UNIT – IEconomic Operation of Power Systems-1Optimal operation of Generators in Thermal Power Stations, - heat rate Curve – Cost Curve – Incremental fuel and Production costs, input- output characteristics, Optimum generation allocation with line losses neglected.	02/07/2013	09/07/13	(2*2)+1=5
3.	UNIT – II Economic Operation of Power Systems-2 Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula.	11/07/13	23/07/13	2*4=8
4.	UNIT – III Hydrothermal Scheduling Optimal scheduling of Hydrothermal System: Hydroelectric power plant models, Scheduling problems-Short term Hydrothermal scheduling	25/07/13	06/08/13	2*4=8

5.	 UNIT –IV Modelling of Turbine, Generator and Automatic Controllers Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models. Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation) and State-Space II-Order Mathematical Model of Synchronous Machine. Modelling of Governor: Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function. Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model 	08/08/13	23/08/13	2*4=8
6.	 UNIT - V Single Area Load Frequency Control Necessity of keeping frequency constant. Definitions of Control area - Single area control - Block diagram representation of an isolated power system - Steady state analysis - Dynamic response - Uncontrolled case. 	29/08/13	10/09/13	2*3=6
7.	UNIT – VI Two-Area Load Frequency Control Load frequency control of 2-area system – uncontrolled case and controlled case, tie-line bias control	12/09/13	24/09/13	2*3=6
8.	UNIT-VIILoad Frequency ControllersProportional plus Integral control of single areaand its block diagram representation, steady stateresponse – Load Frequency Control and Economicdispatch control.	26/09/13	03/10/13	2*3=6
9	UNIT – VIIIReactive Power ControlOverview of Reactive Power control – ReactivePower compensation in transmission systems –advantages and disadvantages of different types ofcompensating equipment for transmission systems;load compensation – Specifications of loadcompensator, Uncompensated and compensated	08/10/13	24/10/13	2*4=08

transmission lines: shunt and Series Compensation		

Total No. of Instructional periods available for the course:56....... Periods

Signature of HOD

Signature of faculty

Date:

COURSE SCHEDULE

Academic Year	: 2013-2014	
Semester	: I	
Name of the Program: B.Tech	Year: IV	Section: B

Course/Subject: Power System Operation Control

Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR The Schedule for the whole Course / Subject is:

S. No.	Description	Duratio	Total No. Of Periods	
		From	То	
1.	INTRODUCTION & IMPORATANCE OF SUBJECT.	02/07/13	_	1
2.	UNIT – IEconomic Operation of Power Systems-1Optimal operation of Generators in Thermal Power Stations, - heat rate Curve – Cost Curve – Incremental fuel and Production costs, input- 	02/07/13	08/07/13	(2*4)+1=5
3.	UNIT – II Economic Operation of Power Systems-2 Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula.	10/07/13	22/07/13	2*4=8
4.	UNIT – III Hydrothermal Scheduling Optimal scheduling of Hydrothermal System: Hydroelectric power plant models, Scheduling problems-Short term Hydrothermal scheduling	24/07/13	05/08/13	2*4=8

	problem.			
5.	 UNIT –IV Modelling of Turbine, Generator and Automatic Controllers Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models. 	12/08/13	21/08/13	2*4=8
	Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation) and State-Space II-Order Mathematical Model of Synchronous Machine.			
	Modelling of Governor : Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.			
	Modelling of Excitation System : Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model			
6.	UNIT - VSingleAreaLoadFrequencyControlNecessity of keeping frequency constant.Definitions of Control area – Single area control –Block diagram representation of an isolated power	02/09/13	18/09/13	2*3=6
	system – Steady state analysis – Dynamic response – Uncontrolled case.			
7.	UNIT – VI Two-Area Load Frequency Control Load frequency control of 2-area system – uncontrolled case and controlled case, tie-line bias control	23/09/13	25/09/13	2*2=4
8.	UNIT-VII Load Frequency Controllers Proportional plus Integral control of single area and its block diagram representation, steady state response – Load Frequency Control and Economic dispatch control.	30/09/13	08/10/13	2*2=4
9	UNIT – VIIIReactive Power ControlOverview of Reactive Power control – ReactivePower compensation in transmission systems –advantages and disadvantages of different types of	10/10/13	23/10/13	2*3=6

compensating equipment for transmission systems;		
load compensation – Specifications of load		
compensator, Uncompensated and compensated		
transmission lines: shunt and Series Compensation		

Total No. of Instructional periods available for the course:50....... Periods

Signature of HOD

Signature of faculty

Date:

ILLUSTRATIVE VERBS FOR STATING INSTRUCTIONAL OBJECTIVES

These verbs can also be used while framing questions for Continuous Assessment Examinations as well as for End – Semester (final)Examinations

ILLUSTRATIVE VERBS FOR STATING GENERAL OBJECTIVES/OUTCOMES

х́поw	
Comprehend	
Inderstand	
spply	
analyze	
Design	
Generate	
Ovaluate	

ILLUSTRATIVE VERBS FOR STATING SPECIFIC OBJECTIVES/OUTCOMES:

A. COGNITIVE DOMAIN (KNOWLEDGE)

1	2	3	4	5	6
Knowledge	Comprehension Understanding	Application of knowledge & comprehension	Analysis Of whole w .r.t. its constituents	Synthesis	Evaluation Judgment
		comprenension	constituents		Judgment
Define	Convert	Change	Breakdown	Categorize	Appraise
Identify	Defend	Compute	Differentiate	Combine	Compare
Label	Describe (a	Demonstrate	Discriminate	Compose	Conclude
List	Procedure)	Deduce	Distinguish	Compose	Contrast
March	Distinguish	Manipulate	Separate	Create	Criticize
Reproduce	Estimate	Modify	Subdivide	Devise	Justify
Select	Explain why/how	Predict		Design	Interpret
State	Extend	Prepare		Generate	Support
	Generalize	Relate		Organize	
	Give examples	Show		Plan	
	Illustrate	Solve		Rearrange	
	Infer			Reconstruct	
	Summarize			Reorganize	
				Revise	

Adhere	Resolve	Bend	Dissect	Insert	Perform	Straighten
Assist	Select	Calibrate	Draw	Keep	Prepare	Strengthen
Attend	Serve	Compress	Extend	Elongate	Remove	Time
Change	Share	Conduct	Feed	Limit	Replace	Transfer
Develop		Connect	File	Manipulate	Report	Туре
Help		Convert	Grow	Move Precisely	Reset	Weigh
Influence		Decrease	Increase	Paint	Set	

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2013-2014

Semester

Name of the Program: B.Tech Year: IV

: I

Course/Subject: Power System Operation Control

Section: A

Name of the Faculty: K.Sireesha

Code: 57015

Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR.

Unit No.	Lesso n No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1.	1.	02/07/13	1	Optimal operation of Generators in Thermal Power Stations	1 ; 1,2	Nagrath & Kothari
	2.	02/07/13	1	 heat rate Curve – Cost Curve – Incremental fuel and Production costs, input-output characteristics, 	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
	3.	04/07/13	1	Optimum generation allocation with line losses neglected.	1;1,2,3,4	Nagrath & Kothari
	4.	04/07/13	1	Optimum generation allocation with line losses neglected. algorithm & flowchart	1;1,2	Nagrath & Kothari
	5.	09/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari
2.	1.	11/07/13	2	Optimum generation allocation including the effect of transmission line losses	1;1,2	Nagrath & Kothari
	2.	16/07/13	1	Loss Coefficients,	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
	3.	16/07/13	1	General transmission line loss formula.	1;1,2,3,4	Nagrath & Kothari
	4.	18/07/13	2	Optimum generation allocation including the effect of transmission line losses_algorithm & flowchart	1;1,2	Nagrath & Kothari
	5.	23/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari
3.		25/07/13	1	Optimal scheduling of	3;1,2	Nagrath & Kothari

	1.			Hydrothermal System		
	2.	25/07/13	1	Optimal scheduling of Hydrothermal System-algorithm	3;2	Nagrath & Kothari & C.L.Wadwa
	3.	30/07/13	1	Hydroelectric power plant models	3;2	Nagrath & Kothari
	4.	30/07/13	1	Scheduling problems	3;1,2	Nagrath & Kothari
	5.	01/08/13	2	Short term Hydrothermal scheduling problem	3;2	Nagrath & Kothari
	6.	06/08/13	2	Numerical problems	3;3,4	Nagrath & Kothari C.L.Wadwa
4.	1.	08/08/13	1	Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.	1,2;1,6	Nagrath & Kothari ,Das
	2.	08/08/13	1	Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)	1;1	Nagrath & Kothari & Das
	3.	12/02/12	1	State-Space II-Order Mathematical Model of Synchronous Machine.	1;1	Nagrath & Kothari
		13/08/13	1	Modelling of Governor:	2;1	Nagrath & Kothari,
	4.	15/00/15		Mathematical Madelling of Opend		C.L.Wadwa
	5.		1	Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.	2;1	Nagrath & Kothari, C.L.Wadwa
		22/08/13				
	6.		1	Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model	3;1,2,6	Nagrath & Kothari,Das
		22/08/13				
	7.	23/08/13	2	Numerical problems	2;3	Nagrath & Kothari, Das & C.L.Wadwa
5.	1.	29/08/13	1	Necessity of keeping frequency constant. Definitions of Control area – Single area control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	2.		1	Block diagram representation of an isolated power system	1;1,5,7	PSOC by Siva Nagaraju

		29/08/13				
	3.	03/09/13	1	Steady state analysis	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	03/09/13	1	Dynamic response – Uncontrolled case.	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
		00,00,10				
	5.	10/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju
6.	1.	12/09/13	1	Load frequency control of 2-area system	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	2.	12/09/13	1	Steady state & dynamic analysis for uncontrolled case	1;1,5,7	PSOC by Siva Nagaraju
	3.	19/09/13	1	Steady state & dynamic analysis controlled case	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	19/09/13	1	tie-line bias control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	5.	24/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju
7.	1.	26/09/13	1	Proportional plus Integral control of single area and its block diagram representation	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	2.	26/09/13	1	steady state response	1;1,5,7	PSOC by Siva Nagaraju
	3.	01/10/13	1	Load Frequency Control and Economic dispatch control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	01/10/13	1	State space model of LFC-1 and LFC-2	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	5.	03/10/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju
8.	1.	08/10/13	1	Overview of Reactive Power control	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	2.	08/10/13	1	Reactive Power compensation in transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	3.	10/10/13	1	advantages and disadvantages of different types of compensating equipment for transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	4.	10/10/13	1	load compensation – Specifications of load compensator	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	5.	17/10/13	1	Uncompensated transmission lines	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju

		1	compensated transmission lines	3;2	PS by C.L.Wadwa
6.	17/10/13				,PSOC by Siva
					Nagaraju
		1	shunt Compensation, Series	3;2	PS by C.L.Wadwa
7.	24/10/13		Compensation.		,PSOC by Siva
					Nagaraju
		1	Numerical problems	3;3	PS by C.L.Wadwa
8.					,PSOC by Siva
	24/10/13				Nagaraju

Signature of HOD

Date:

Signature of faculty

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2013-2014

Semester : I

Name of the Program: B.Tech Year: IV

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Section: B

Course Code: 57015

Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR.

Unit No.	Lesso n No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1.	1.	02/07/13	1	Optimal operation of Generators in Thermal Power Stations	1 ; 1,2	Nagrath & Kothari
	2.	02/07/13	1	 heat rate Curve – Cost Curve – Incremental fuel and Production costs, input-output characteristics, 	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
	3.	04/07/13	1	Optimum generation allocation with line losses neglected.	1;1,2,3,4	Nagrath & Kothari
	4.	04/07/13	1	Optimum generation allocation with line losses neglected. algorithm & flowchart	1;1,2	Nagrath & Kothari
	5.	08/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari
2.	1.	10/07/13	2	Optimum generation allocation including the effect of transmission line losses	1;1,2	Nagrath & Kothari
	2.	15/07/13	1	Loss Coefficients,	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
	3.	15/07/13	1	General transmission line loss formula.	1;1,2,3,4	Nagrath & Kothari
	4.	17/07/13	2	Optimum generation allocation including the effect of transmission line losses_algorithm & flowchart	1;1,2	Nagrath & Kothari
	5.	22/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari

3.	1.	24/07/13	1	Optimal scheduling of Hydrothermal System	3;1,2	Nagrath & Kothari
	2.	24/07/13	1	Optimal scheduling of Hydrothermal System-algorithm	3;2	Nagrath & Kothari & C.L.Wadwa
	3.	29/07/13	1	Hydroelectric power plant models	3;2	Nagrath & Kothari
	4.	29/07/13	1	Scheduling problems	3;1,2	Nagrath & Kothari
	5.	31/07/13	2	Short term Hydrothermal scheduling problem	3;2	Nagrath & Kothari
	6.	05/08/13	1	Numerical problems	3;3,4	Nagrath & Kothari C.L.Wadwa
4.	1.	12/08/13	1	Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.	1,2;1,6	Nagrath & Kothari ,Das
	2.	12/08/13	1	Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)	1;1	Nagrath & Kothari & Das
	3.	14/08/13	1	State-Space II-Order Mathematical Model of Synchronous Machine.	1;1	Nagrath & Kothari
	4.	14/08/13	1	Modelling of Governor:	2;1	Nagrath & Kothari, C.L.Wadwa
	5.	19/08/13	1	Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.	2;1	Nagrath & Kothari, C.L.Wadwa
	6.	19/08/13	1	Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model	3;1,2,6	Nagrath & Kothari,Das
	7.	21/08/13	2	Numerical problems	2;3	Nagrath & Kothari, Das & C.L.Wadwa
5.	1.		1	Necessity of keeping frequency constant. Definitions of Control area – Single area control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
		02/09/13				
		02/09/13	1	Block diagram representation of	1;1,5,7	PSOC by Siva Nagaraju

	2.			an isolated power system		
	3.	11/09/13	1	Steady state analysis	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	11/09/13	1	Dynamic response – Uncontrolled case.	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	5.	18/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju
6.	1.	23/09/13	1	Load frequency control of 2-area system	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	2.	23/09/13	1	Steady state & dynamic analysis for uncontrolled case	1;1,5,7	PSOC by Siva Nagaraju
	3.	25/09/13	1	Steady state & dynamic analysis controlled case, tie-line bias control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	25/09/13	1	Numerical problems	1;1,5,7	PSOC by Siva Nagaraju
7.	1.	30/09/13	1	Proportional plus Integral control of single area and its block diagram representation, steady state response	1,2;3,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	2.	30/09/13	1	Load Frequency Control and Economic dispatch control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	3.	07/10/13	1	State space model of LFC-1 and LFC-2	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	4.	07/10/13	1	Numerical problems	1;1,5,7	PSOC by Siva Nagaraju
8	1.	09/10/13	1	Overview of Reactive Power control, Reactive Power compensation in transmission systems	1;1,5,7	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	2.	09/10/13	1	advantages and disadvantages of different types of compensating equipment for transmission systems	1,2;3,5,7	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	3.	21/10/13	1	load compensation – Specifications of load compensator	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	4.	21/10/13	1	Uncompensated transmission lines, compensated transmission lines	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	5.	23/10/13	1	shunt Compensation, Series Compensation.	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
	6.	23/10/13	1	Numerical problems	3;2	PS by C.L.Wadwa ,PSOC by Siva

			Nagaraju

Signature of HOD

Date:

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, A.P., India. (040) 6686 4440

POWER SYSTEM OPERATION AND CONTROL

SYLLABUS

Objective :

This subject deals with Economic operation of Power Systems, Hydrothermal schedulings and modeling of turbines, generators and automatic controllers. It emphasizes on single area and two area load frequency control and reactive power control.

UNIT – I Economic Operation of Power Systems-1

Optimal operation of Generators in Thermal Power Stations, - heat rate Curve – Cost Curve – Incremental fuel and Production costs, input-output characteristics, Optimum generation allocation with line losses neglected.

UNIT – II Economic Operation of Power Systems-2

Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula.

UNIT – III Hydrothermal Scheduling

Optimal scheduling of Hydrothermal System: Hydroelectric power plant models, Scheduling problems-Short term Hydrothermal scheduling problem.

UNIT –IV Modelling of Turbine, Generator and Automatic Controllers

Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.

Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation) and State-Space II-Order Mathematical Model of Synchronous Machine.

Modelling of Governor: Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.

Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model

UNIT – V Single Area Load Frequency Control

Necessity of keeping frequency constant.

Definitions of Control area – Single area control – Block diagram representation of an isolated power system – Steady state analysis – Dynamic response – Uncontrolled case.

UNIT – VI Two-Area Load Frequency Control

Load frequency control of 2-area system – uncontrolled case and controlled case, tie-line bias control

UNIT-VII Load Frequency Controllers

Proportional plus Integral control of single area and its block diagram representation, steady state response – Load Frequency Control and Economic dispatch control.

UNIT – VIII Reactive Power Control

Overview of Reactive Power control – Reactive Power compensation in transmission systems – advantages and disadvantages of different types of compensating equipment for transmission systems; load compensation – Specifications of load compensator, Uncompensated and compensated transmission lines: shunt and Series Compensation.

Signature of HOD

Signature of faculty

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, A.P., India. (040) 6686 4440

TIME TABLE

Academic Year	: 2013-	2014	
Semester	: I		
Name of the Program:	B.Tech	Year: IV	Section: A
Course/Subject: Power	System Opera	tion Control	Code: 57015
Name of the Faculty:	K.Sireesha		Dept.: Electrical & Electronics Engineering
Designation: ASST.PR	OFESSOR.		

IV BTech (EEE) A - ISemester

DAY/HOUR		12:40-1:30	1:30-2:00	2:00-2:45	2:45-3:30	3:30-4:15	4:15-5:00
MONDAY							
TUESDAY				PS	OC		
WEDNES DA Y			B R E				
THURSDAY			A K			PS	OC
FRIDAY							
SATURDAY							

Signature of HOD

Signature of faculty

Date:

TIME TABLE

Academic Year	: 2013-2014	
Semester	: I	
Name of the Program: B.Tech	Year: IV	Section: B
Course/Subject: Power System	n Operation Control	Code: 57015
Name of the Faculty: K.Sire	esha	Dept.: Electrical & Electronics Engineering
Designation: ASST.PROFESS	SOR.	

<u>IV BTech (EEE) B</u> - ISemester

DAY/ HOUR	11:00-11:50	11:5012:40	12:40-1:30	1:30-2:00	2:00-2:45	2:45-3:30	3:30-4:15	4:15-5:00
MONDAY	PSOC							
TUESDAY								
W EDNES DA Y	PS	PSOC		B R E				
THURSDAY				A K				
FRIDAY								
SATURDAY								

Signature of HOD Date:

Signature of faculty Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 1
Name of the Program:	B.Tech	Year: IV	Section: A
Course/Subject: Powe	r System Operation	Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR

Less on No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1.	02/07/13	1	Optimal operation of Generators in Thermal Power Stations	1 ; 1,2	Nagrath & Kothari
2.	02/07/13	1	 heat rate Curve – Cost Curve – Incremental fuel and Production costs, input-output characteristics, 	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
3.	04/07/13	1	Optimum generation allocation with line losses neglected.	1;1,2,3,4	Nagrath & Kothari
4.	04/07/13	1	Optimum generation allocation with line losses neglected. algorithm & flowchart	1;1,2	Nagrath & Kothari
5.	09/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year

Semester

: 2013-2014

: I

UNIT NO.: 1

Name of the Program: B.Tech Year: IV

Section: B

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	02/07/13	1	Optimal operation of Generators in Thermal Power Stations	1 ; 1,2	Nagrath & Kothari
2.	02/07/13	1	 heat rate Curve – Cost Curve – Incremental fuel and Production costs, input-output characteristics, 	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
3.	04/07/13	1	Optimum generation allocation with line losses neglected.	1;1,2,3,4	Nagrath & Kothari
4.	04/07/13	1	Optimum generation allocation with line losses neglected. algorithm & flowchart	1;1,2	Nagrath & Kothari
5.	08/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 2
Name of the Program: B.	Tech	Year: IV	Section: A
Course/Subject: Power Sy	/stem Operation C	ontrol	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References(Text Book, Journal)Page Nos.:to
1.	11/07/13	2	Optimum generation allocation including the effect of transmission line losses	1;1,2	Nagrath & Kothari
2.	16/07/13	1	Loss Coefficients,	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
3.	16/07/13	1	General transmission line loss formula.	1;1,2,3,4	Nagrath & Kothari
4.	18/07/13	2	Optimum generation allocation including the effect of transmission line losses_algorithm & flowchart	1;1,2	Nagrath & Kothari
5.	23/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 2
Name of the Program: B.T.	ech	Year: IV	Section: B
Course/Subject: Power Syst	tem Operation C	ontrol	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	10/07/13	2	Optimum generation allocation including the effect of transmission line losses	1 ; 1,2	Nagrath & Kothari
2.	15/07/13	1	Loss Coefficients,	1;1,2,4	Nagrath & Kothari & C.L.Wadwa
3.	15/07/13	1	General transmission line loss formula.	1;1,2,3,4	Nagrath & Kothari
4.	17/07/13	2	Optimum generation allocation including the effect of transmission line losses_algorithm & flowchart	1;1,2	Nagrath & Kothari
5.	22/07/13	2	Numerical problems	1;1,3	Nagrath & Kothari

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 3
Name of the Program: B.T	ech	Year: IV	Section: A
Course/Subject: Power Sys	tem Operation C	Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.				Nos.	Page Nos.:to
1.	25/07/13	1	Optimal scheduling of Hydrothermal System	3;1,2	Nagrath & Kothari
2.	25/07/13	1	Optimal scheduling of Hydrothermal System-algorithm	3;2	Nagrath & Kothari & C.L.Wadwa
3.	30/07/13	1	Hydroelectric power plant models	3;2	Nagrath & Kothari
4.	30/07/13	1	Scheduling problems	3;1,2	Nagrath & Kothari
5.	01/08/13	2	Short term Hydrothermal scheduling problem	3;2	Nagrath & Kothari
6.	06/08/13	2	Numerical problems	3;3,4	Nagrath & Kothari C.L.Wadwa

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 3
Name of the Program:	B.Tech	Year: IV	Section: B
Course/Subject: Power	r System Operation (Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	24/07/13	1	Optimal scheduling of Hydrothermal System	3;1,2	Nagrath & Kothari
2.	24/07/13	1	Optimal scheduling of Hydrothermal System-algorithm	3;2	Nagrath & Kothari & C.L.Wadwa
3.	29/07/13	1	Hydroelectric power plant models	3;2	Nagrath & Kothari
4.	29/07/13	1	Scheduling problems	3;1,2	Nagrath & Kothari
5.	31/07/13	2	Short term Hydrothermal scheduling problem	3;2	Nagrath & Kothari
6.	05/08/13	2	Numerical problems	3;3,4	Nagrath & Kothari C.L.Wadwa

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2013-2014

Semester

. 2013-2014

: I

UNIT NO.: 4

Section: A

Name of the Program: B.Tech Year: IV

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.				Nos.	Page Nos.:to
1.	08/08/13	1	Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.	1,2;1,6	Nagrath & Kothari ,Das
2.	08/08/13	1	Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)	1;1	Nagrath & Kothari & Das
3.		1	State-Space II-Order Mathematical Model of Synchronous Machine.	1;1	Nagrath & Kothari
	13/08/13				
4.	13/08/13	1	Modelling of Governor:	2;1	Nagrath & Kothari, C.L.Wadwa
5.		1	Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.	2;1	Nagrath & Kothari, C.L.Wadwa
	22/08/13				
6.	22/08/13	1	Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model	3;1,2,6	Nagrath & Kothari,Das

	23/08/13	2	Numerical problems	2;3	Nagrath & Kothari, Das
7.					& C.L.Wadwa

Signature of HOD

Date:

Signature of faculty

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 4
Name of the Program:	B.Tech	Year: IV	Section: B
Course/Subject: Power	r System Operation	Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.	42/00/42	1	Modelling of Turbino, First order	Nos.	Page Nos.: to
1.	12/08/13	1	Modelling of Turbine: First order Turbine model, Block Diagram representation of Steam Turbines and Approximate Linear Models.	1,2;1,6	Nagrath & Kothari ,Das
2.	12/08/13	1	Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)	1;1	Nagrath & Kothari & Das
3.	14/08/13	1	State-Space II-Order Mathematical Model of Synchronous Machine.	1;1	Nagrath & Kothari
4.	14/08/13	1	Modelling of Governor:	2;1	Nagrath & Kothari, C.L.Wadwa
5.	19/08/13	1	Mathematical Modelling of Speed Governing System – Derivation of small signal transfer function.	2;1	Nagrath & Kothari, C.L.Wadwa
6.	19/08/13	1	Modelling of Excitation System: Fundamental Characteristics of an Excitation system, Ttransfer function, Block Diagram Representation of IEEE Type-1 Model	3;1,2,6	Nagrath & Kothari,Das
	21/08/13	2	Numerical problems	2;3	Nagrath & Kothari, Das

1	7.			& C.L.Wadwa

Signature of HOD

Date:

Signature of faculty

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2013-2014

Semester

: I

UNIT NO.: 5

Section: A

Name of the Program: B.Tech Year: IV

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	29/08/13	1	Necessity of keeping frequency constant. Definitions of Control area – Single area control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
2.	29/08/13	1	Block diagram representation of an isolated power system	1;1,5,7	PSOC by Siva Nagaraju
3.	03/09/13	1	Steady state analysis	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.	03/09/13	1	Dynamic response – Uncontrolled case.	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
5.	10/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 5
Name of the Program:	B.Tech	Year: IV	Section: B
Course/Subject: Power	System Operation (Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.		1	Necessity of keeping frequency constant. Definitions of Control area – Single area control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
	02/09/13				
2.	02/09/13	1	Block diagram representation of an isolated power system	1;1,5,7	PSOC by Siva Nagaraju
3.	11/09/13	1	Steady state analysis	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.		1	Dynamic response – Uncontrolled case.	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva
	11/09/13				Nagaraju
5.	18/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 6
Name of the Program:	B.Tech	Year: IV	Section: A

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

т	Data	No. of Periods	Taming / Sub Taming	Objectives &	References
Lesson No.	Date	Periods	Topics / Sub - Topics	Outcomes Nos.	(Text Book, Journal) Page Nos.:to
1.	12/09/13	1	Load frequency control of 2-area system	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
2.	12/09/13	1	Steady state & dynamic analysis for uncontrolled case	1;1,5,7	PSOC by Siva Nagaraju
3.	19/09/13	1	Steady state & dynamic analysis controlled case	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.	19/09/13	1	tie-line bias control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
5.	24/09/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 6
Name of the Program: B.Te	ech	Year: IV	Section: B
Course/Subject: Power Syst	tem Operation C	Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.				Nos.	Page Nos.: to
	23/09/13	1	Load frequency control of 2-area	1;1,5,7	PSA by Nagrath &
1.			system		Kothari ,PSOC by Siva
					Nagaraju
2.	23/09/13	1	Steady state & dynamic analysis for uncontrolled case	1;1,5,7	PSOC by Siva Nagaraju
3.	25/09/13	1	Steady state & dynamic analysis controlled case, tie-line bias control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.	25/09/13	1	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 7
Name of the Program:	B.Tech	Year: IV	Section: A
Course/Subject: Powe	Course Code: 57015		

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes	References (Text Book, Journal)
No.		1	Proportional plus Integral control of	Nos.	Page Nos.: to
1.	26/09/13	I	single area and its block diagram representation	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
2.	26/09/13	1	steady state response	1;1,5,7	PSOC by Siva Nagaraju
3.	01/10/13	1	Load Frequency Control and Economic dispatch control	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.	01/10/13	1	State space model of LFC-1 and LFC-2	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
5.	03/10/13	2	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014		
Semester	: I		UNIT NO.: 7
Name of the Program: B.	Tech	Year: IV	Section: B
Course/Subject: Power Sy	vstem Operation C	ontrol	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	30/09/13	1	Proportional plus Integral control of single area and its block diagram representation, steady state response	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
2.	30/09/13	1	Load Frequency Control and Economic dispatch control	1;1,5,7	PSOC by Siva Nagaraju
3.	07/10/13	1	State space model of LFC-1 and LFC-2	1;1,5,7	PSA by Nagrath & Kothari ,PSOC by Siva Nagaraju
4.	07/10/13	1	Numerical problems	1,2;3,5,7	PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year

: 2013-2014

Semester

: I

UNIT NO.: 8

Name of the Program: B.Tech Year: IV

Section: A

Course/Subject: Power System Operation Control

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

Course Code: 57015

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1.	08/10/13	1	Overview of Reactive Power control	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
2.	08/10/13	1	Reactive Power compensation in transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
3.	10/10/13	1	advantages and disadvantages of different types of compensating equipment for transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
4.	10/10/13	1	load compensation – Specifications of load compensator	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
5.	17/10/13	1	Uncompensated transmission lines	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
6.	17/10/13	1	compensated transmission lines	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
7.	24/10/13	1	shunt Compensation, Series Compensation.	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
8.	24/10/13	1	Numerical problems	3;3	PS by C.L.Wadwa ,PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year	: 2013-2014	
Semester	: I	UNIT NO.: 8
Name of the Program: B.Te	ech Year: IV	Section: B
Course/Subject: Power Syst	em Operation Control	Course Code: 57015

Name of the Faculty: K.Sireesha

Dept.: Electrical & Electronics Engineering

DESIGNATION: ASST.PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.: to
1	09/10/13	1	Overview of Reactive Power control, Reactive Power compensation in transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
2.	09/10/13	1	advantages and disadvantages of different types of compensating equipment for transmission systems	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
3.	21/10/13	1	load compensation – Specifications of load compensator	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
4.	21/10/13	1	Uncompensated transmission lines, compensated transmission lines	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
5.	23/10/13	1	shunt Compensation, Series Compensation.	3;2	PS by C.L.Wadwa ,PSOC by Siva Nagaraju
6.	23/10/13	1	Numerical problems	3;3	PS by C.L.Wadwa ,PSOC by Siva Nagaraju

Signature of HOD

Signature of faculty

Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 02/07/2013	
Semester	: I			
Name of the Program: B.Tech	1	Year: IV	Section: A	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	esha	Dept	.: Electrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 1		Duration of	Lesson: 1 hr	
Lesson Title: INTRODUCTION	N & IMPORATANCE O	F SUBJECT.		
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson the student shall be able to:				
Various power plants located in the state and country.				
	· · · · · ·	1 .		

2.Importance of cost consideration for power generation and maintaining frequency and voltage constant.

3.Need of control systems concepts used in the subject

TEACHING AIDS	:PPTs
TEACHING POINTS	:
Cost of generation	
Economic operation	
Load frequency control	
Reactive power	

Assignment Question: 1.Collect various Thermal and Hydel power plants in Andhrapradesh with their capacities and location.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 02/07/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: El	lectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 1		Duration of Less	son: 1 hr
Lesson Title: INTRODUCTION	N & IMPORATANCE O	F SUBJECT.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	le to:	
1. Various power plants locate	d in the state and cour	ntry.	

2.Importance of cost consideration for power generation and maintaining frequency and voltage constant.

3.Need of control systems concepts used in the subject

TEACHING AIDS	:PPTs
TEACHING POINTS	:
Cost of generation	
Economic operation	
Load frequency control	
Reactive power	
-	

Assignment Question: 1.Collect various Thermal and Hydel power plants in Andhrapradesh with their capacities and location.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 02/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 2		Duration of Lesson: 30 min	
Lesson Title: I/P-O/P CHARAC	TERISTICS AND RELAT	ED DEFINITIONS.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the student shall be able to understand:			
1. I/P-O/P Characteristics			
2. Heat rate ,Incremental prod	luction cost,Incremen	tal efficiency	

TEACHING AIDS	:PPTs
TEACHING POINTS	:
Cost of generation	
Economic operation	
Load frequency control	
Reactive power	
-	

Assignment Question: 1.Collect various Thermal and Hydel power plants in Andhrapradesh with their capacities and location.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 02/07/2013
Semester	: I		
Name of the Program: B.Tec	h	Year: IV	Section: B
Course/Subject: Power Syste	em Operation Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha	Dept.: El	ectrical & Electronics Engineering
Designation: ASST.PROFES	SSOR		
Lesson No: 2		Duration of Less	on: 30 min
Lesson Title: I/P-O/P CHARA	CTERISTICS AND RELAT	TED DEFINITIONS.	
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be ab	le to understand:	
1. I/P-O/P Characteristics			
2. Heat rate ,Incremental pro	oduction cost,Increme	ntal efficiency	
TEACHING AIDS :PI TEACHING POINTS :	PTs		
Cost of generation Economic operation Load frequency control Reactive power			

Assignment Question: 1.Collect various Thermal and Hydel power plants in Andhrapradesh with their capacities and location.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 04/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System Operation Control			Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
Designation: ASST.PROFES	SOR		
Lesson No: 3		Duration o	f Lesson: 1.5 hr
Lesson Title: OPTIMIM GENERATION ALLOCATION WITH LINE LOSSES NECLEGTED.			

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand:

1.Optimum condition for economic operation of power system neglecting line losses.

2. Algorithm and flowchart of optimum generation allocation with line losses neglected.

TEACHING AIDS:PPTs,BoardTEACHING POINTS:Optimum condition:Economic operation.Algorithm.Flowchart.

Assignment Question: 1..Analyse Lagrangian multiplier method of optimization.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 04/07/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System Operation Control			Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	SOR			
Lesson No: 3		Duration o	f Lesson: 1.5 hr	
Lesson Title: OPTIMIM GENERATION ALLOCATION WITH LINE LOSSES NECLEGTED.				

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand:

1.Optimum condition for economic operation of power system neglecting line losses.

2. Algorithm and flowchart of optimum generation allocation with line losses neglected.

 TEACHING AIDS
 :PPTs,Board

 TEACHING POINTS
 :

 Optimum condition
 :

 Economic operation
 .

 Algorithm
 .

 Flowchart
 .

Assignment Question: 1.Analyse Lagrangian multiplier method of optimization.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014			Date: 09/07/2013	
Semester	: I				
Name of the Program: B.Tech	1	Year:	IV	Section: A	
Course/Subject: Power Syster	m Operation Control			Course Code: 57015	
Name of the Faculty: K.Sired	esha		Dept.: El	ectrical & Electronics Engineering	
Designation: ASST.PROFES	SOR				
Lesson No: 4			Duration of Lesson: 1.5 hr		
Lesson Title: NUMERICAL PR	OBLEMS IN UNIT-1.				
INSTRUCTIONAL/LESSON	NOBJECTIVES:				
On completion of this lesson	the student shall be at	ble to:			
1.Solve numerical problems i	n unit-1				
TEACHING AIDS :Bo TEACHING POINTS :	bard				
Max and min capacities of the	e unit				
cost expression					
Incremental cost expression					
optimum condition					

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

LESSON PLAN

Academic Year	: 2013-2014			Date: 08/07/2013
Semester	: I			
Name of the Program: B.Tech		Year:	IV	Section: B
Course/Subject: Power System	n Operation Control			Course Code: 57015
Name of the Faculty: K.Sirees	sha		Dept.: Elec	ctrical & Electronics Engineering
Designation: ASST.PROFESS	SOR			
Lesson No: 4		Duration of Lesson: 1.5 hr		
Lesson Title: NUMERICAL PRC	BLEMS IN UNIT-1.			
INSTRUCTIONAL/LESSON	OBJECTIVES :			
On completion of this lesson the	he student shall be ab	ole to:		
1.Solve numerical problems in	unit-1			
TEACHING AIDS :Boa TEACHING POINTS :	urd			
Max and min capacities of the	unit			
cost expression				
Incremental cost expression optimum condition				

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

LESSON PLAN

Academic Year	: 2013-2014		Date: 11/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 5		Duration of	Lesson: 1.5 hr
Lesson Title: EFFECT OF TRAN	SMISSION LOSSES ,LO	SS COEFICIENTS.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		

On completion of this lesson the student shall be able to understand:

1.Need of consideration of transmission losses in optimum operation of power plants.

2. loss coefficients matrix and their units.

TEACHING AIDS:PPTsTEACHING POINTS:Transmission lossBmn coefficients

Assignment Question: 1.What is the temperature & pressure at various stages of Thermal power plant.

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 10/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 5		Duration of	Lesson: 1.5 hr
Lesson Title: EFFECT OF TRAN	SMISSION LOSSES ,LC	SS COEFICIENTS.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		

On completion of this lesson the student shall be able to understand:

1.Need of consideration of transmission losses in optimum operation of power plants.

2. Loss coefficients matrix and their units.

TEACHING AIDS	:PPTs	
TEACHING POINTS	:	
Transmission loss		
Bmn coefficients		

Assignment Question: 1.What is the temperature & pressure at various stages of Thermal power plant.

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 16/07/2013
Semester	: I		
Name of the Program: B.Teo	ch	Year: IV	Section: A
Course/Subject: Power Syst	em Operation Control		Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
Designation: ASST.PROFE	SSOR		
Lesson No: 6		Duratio	n of Lesson: 1.5 hr
Lesson Title: OPTIMIM GENERATION ALLOCATION INGLUDING LINE LOSSES .			
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesso	n the student shall be a	ble to:	
1	с : ,:	C	

Derive optimum condition for economic operation of power system including line losses.
 Write Algorithm and draw flowchart of economic operation of power system including line losses.

TEACHING AIDS:PPTsTEACHING POINTS:Optimum condition:Economic operation:Algorithm:Flowchart:

Assignment Question: 1.Algorithm and flowchart of economic operation of power system including losses

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 15/07/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: B
Course/Subject: Power Syster	m Operation Control		Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
Designation: ASST.PROFES	SOR		
Lesson No: 6		Duration	of Lesson: 1.5 hr
Lesson Title:OPTIMIM GENE	RATION ALLOCATION	INGLUDING LINE L	LOSSES .
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be al	ble to:	
	с · ,·	C (

Derive optimum condition for economic operation of power system including line losses.
 Write Algorithm and draw flowchart of economic operation of power system including line losses.

TEACHING AIDS:PPTsTEACHING POINTS:Optimum condition:Economic operation:Algorithm:Flowchart:

Assignment Question: 1.Algorithm and flowchart of economic operation of power system including losses

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 18/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept.: I	Electrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 7		Duration	n of Lesson: 1.5 hr
Lesson Title: GENERAL TRANS	SMISSION LINE LOSS F	ORMULA.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
1. Derive general transmission	line loss formula.		
TEACHING AIDS :PP7	Гs		

TEACHING POINTS:Loss formulaBmn coefficientsgeneralized representation

 $\label{eq:Question:} Question: \\ 1. Analyse B_{mn} Coefficients for calculating transmission power loss. }$

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 17/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	sha	Dept.: Ele	ectrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 7		Duration of	of Lesson: 1.5 hr
Lesson Title: GENERAL TRANS	MISSION LINE LOSS F	ORMULA.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the	he student shall be ab	le to:	
1. Derive general transmission line loss formula.			
TEACHING AIDS :PP7	Ŝ		

TEACHING POINTS:Loss formulaBmn coefficientsgeneralized representation

 $\label{eq:Question:} Question: \\ 1. Analyse B_{mn} Coefficients for calculating transmission power loss. }$

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 23/07/2013
Semester	: I		
Name of the Program: B.Tec	ch	Year: IV	Section: A
Course/Subject: Power Syste	em Operation Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha	Dept.:]	Electrical & Electronics Engineering
Designation: ASST.PROFE	SSOR		
Lesson No: 8		Duration of Le	esson: 1.5 hr
Lesson Title: NUMERICAL PI	ROBLEMS IN UNIT-2.		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lessor	n the student shall be ab	le to:	
1.Solve numerical problems	related to UNIT-2.		
TEACHING POINTS :	PTs,Board		
Max and min capacities of the	ne unit		

cost expression Incremental cost expression Optimum condition Transmission loss formula

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

LESSON PLAN

Academic Year	: 2013-2014		Date: 22/07/2013
Semester	: I		
Name of the Program: B.Te	ch	Year: IV	Section: B
Course/Subject: Power Sys	tem Operation Control		Course Code: 57015
Name of the Faculty: K.Sin	reesha	Dept.	: Electrical & Electronics Engineering
Designation: ASST.PROFI	ESSOR		
Lesson No: 8		Duration of I	Lesson: 1.5 hr
Lesson Title: NUMERICAL F	PROBLEMS IN UNIT-2.		
INSTRUCTIONAL/LESSO	ON OBJECTIVES:		
On completion of this lesso	n the student shall be at	ole to:	
1.Solve numerical problems	s related to UNIT-2.		
TEACHING AIDS : H TEACHING POINTS :	PPTs,Board		
Max and min capacities of t	he unit		
cost expression			
Incremental cost expression	l		
Optimum condition			

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1 Outcome Nos.: 1,2,3,4

Transmission loss formula

LESSON PLAN

Academic Year	: 2013-2014		Date: 25/07/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: A
Course/Subject: Power System	m Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: El	lectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 9		Duration of Less	son: 1 hr
Lesson Title: HYDRO ELECTRI	C POWER PLANT MOI	DELS, HYDRO THEF	RMAL SCHEDULING.
INSTRUCTIONAL/LESSON	OBJECTIVES:		

On completion of this lesson the student shall be able to understand:

1.Optimal scheduling of Hydrothermal System 2.Optimal scheduling of Hydrothermal System-algorithm

TEACHING AIDS:PPTsTEACHING POINTS:

Optimal scheduling Hydrothermal System Algorithm

Question: 1.How to represent the fundamental hydrothermal model.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 24/07/2013
Semester	: I		
Name of the Program: B.Tec	h	Year: IV	Section: B
Course/Subject: Power Syste	em Operation Control		Course Code: 57015
Name of the Faculty: K.Sire	esha	Dept.: I	Electrical & Electronics Engineering
Designation: ASST.PROFE	SSOR		
Lesson No: 9		Duration of Lea	sson: 1 hr
Lesson Title: HYDRO ELECTRIC POWER PLANT MODELS, HYDRO THERMAL SCHEDULING.			
INSTRUCTIONAL/LESSO	N OBJECTIVES:		

On completion of this lesson the student shall be able to understand:

1.Optimal scheduling of Hydrothermal System 2.Optimal scheduling of Hydrothermal System-algorithm

TEACHING AIDS :PPTs TEACHING POINTS :

Optimal scheduling Hydrothermal System Algorithm

Question: 1.How to represent the fundamental hydrothermal model.

Objective Nos.: 1,2 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 30/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept.: Ele	ectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 10		Duration of Les	son: 1.5 hr
Lesson Title: LONG TERM HYD	DRO THERMAL SCHED	ULING,SCHEDULIN	IG PROBLEMS.
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the student shall be able to:			
1.Mathematical formulation o 2.Scheduling problems.	${ m f}~$ long term hydro the	ermal scheduling.	
TEACHING AIDS :PP	Гs		

TEACHING AIDS :PP TEACHING POINTS : Long term

Hydro thermal scheduling

Assignment Question: 1.Review Load flow studies.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 29/07/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Ele	ectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 10		Duration of Les	son: 1.5 hr
Lesson Title: LONG TERM HY	DRO THERMAL SCHED	ULING,SCHEDULI	NG PROBLEMS.
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	le to:	
1.Mathematical formulation of 2.Scheduling problems.	${ m f}$ long term hydro the	ermal scheduling.	
TEACHING AIDS :PP TEACHING POINTS :	Ts		

Long term Hydro thermal scheduling

Assignment Question: 1.Review Load flow studies.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 01/08/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: A
Course/Subject: Power Syster	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: El	ectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 11		Duration of Les	sson: 1.5 hr
Lesson Title: SHORT TERM H	YDRO THERMAL SCHEI	DULING.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the student shall be able to understand:			
1.Short term Hydrothermal schedul	ing problem		
TEACHING AIDS :PP TEACHING POINTS :	Ts		

Short term scheduling problem

Assignment Question: 1.Compare long term and short term hydrothermal scheduling problem.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 31/07/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System Operation Control			Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
Designation: ASST.PROFESSOR			
Lesson No: 11		Duration of Lesson: 1.5 hr	
Lesson Title: SHORT TERM HYDRO THERMAL SCHEDULING.			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to understand:			
1.Short term Hydrothermal scheduling problem			
TEACHING AIDS :PPT TEACHING POINTS : Short term	Гs		
scheduling problem			

Assignment Question: 1.Compare long term and short term hydrothermal scheduling problem.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 06/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	SOR			
Lesson No: 12		Duration of Les	sson: 1.5 hr	
Lesson Title: OPTIMAL UNIT C	OMMITMENT PROBLI	EM,NUMERICAL F	PROBLEMS IN UNIT-3.	
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
Understand Optimal unit commitment problem.				

Solve numerical problems in UNIT-3.

TEACHING AIDS: PPTsTEACHING POINTS:

Optimal unit commitment problem

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 05/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 12		Duration of Less	son: 1.5 hr	
Lesson Title: OPTIMAL UNIT (COMMITMENT PROBL	EM,NUMERICAL PI	ROBLEMS IN UNIT-3.	
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
Understand Optimal unit com	mitment problem.			

Solve numerical problems in UNIT-3.

TEACHING AIDS :PPTs TEACHING POINTS :

Optimal unit commitment problem

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 3 Outcome Nos.: 1,2,3,4

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 08/08/2013	
Semester	: I			
Name of the Program: B.Te	ch	Year: IV	Section: A	
Course/Subject: Power Syst	em Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFE	SSOR			
Lesson No: 13		Duration of Lesson: 1.5 hr		
Lesson Title: MODELLING OF TURBINE, GENERATOR LOAD MODEL.				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				

1.Modelling of Turbine: First order Turbine model.

2.Block Diagram representation of Steam Turbines and Approximate Linear Models.

3. Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)

TEACHING AIDS :PPTs TEACHING POINTS :

First order Turbine model Block Diagram representation Linear Models Swing Equation

Assignment Question: 1.Block diagram representation of important power system components.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 12/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	OR			
Lesson No: 13		Duration of Less	son: 1.5 hr	
Lesson Title: MODELLING OF TURBINE, GENERATOR LOAD MODEL.				
INSTRUCTIONAL/LESSON	OBJECTIVES:			

On completion of this lesson the student shall be able to:

 $1. \ensuremath{\mathsf{Modelling}}$ of Turbine: First order Turbine model.

2.Block Diagram representation of Steam Turbines and Approximate Linear Models.

3.Modelling of Generator (Steady State and Transient Models): Description of Simplified Network Model of a Synchronous Machine (Classical Model), Description of Swing Equation (No Derivation)

TEACHING AIDS :PPTs TEACHING POINTS :

First order Turbine model Block Diagram representation Linear Models Swing Equation

Assignment Question: 1.Block diagram representation of important power system components.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 13/08/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: A
Course/Subject: Power System	m Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Ele	ectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 14		Duration of Less	son: 45 min
Lesson Title: MODELLING OF	SPEED GOVERNOR.		
INSTRUCTIONAL/LESSON	<u>IOBJECTIVES:</u>		
On completion of this lesson	the student shall be ab	le to understand:	
1.State-Space II-Order Mathematic 2.Modelling of Governor	al Model of Synchronous N	lachine.	
TEACHING AIDS :PP	Ts		

Speed Governor Hydraullic amplifier

Assignment Question: 1.what is the importance of Speed governor operation in thermal power stations.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 14/08/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	ha	Dept.: Elec	ctrical & Electronics Engineering
Designation: ASST.PROFESS	OR		
Lesson No: 14		Duration of Less	on: 45 min
Lesson Title: MODELLING OF S	SPEED GOVERNOR.		
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson th	ne student shall be abl	e to understand:	
1.State-Space II-Order Mathematical 2.Modelling of Governor	Model of Synchronous Ma	achine.	
TEACHING AIDS : PPT TEACHING POINTS :	Ŝ		

Speed Governor Hydraullic amplifier

Assignment Question: 1.what is the importance of Speed governor operation in thermal power stations.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year :	2013-2014			Date: 13/08/2013
Semester	: I			
Name of the Program: B.Tech		Year: IV		Section: A
Course/Subject: Power System	Operation Control			Course Code: 57015
Name of the Faculty: K.Sirees	ha	De	ept.: Elec	etrical & Electronics Engineering
Designation: ASST.PROFESS	OR			
Lesson No: 15		D	uration of	Lesson: 45min
Lesson Title: MODELLING OF E	EXCITATION SYSTEM.			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson th	ne student shall be abl	e to:		
1.Modelling of Excitation System: Fu	ndamental Characteristics	of an Excit	ation syster	n.
2. Transfer function and Block Diagram	n Representation of IEEE	Type-1 Mod	del.	

TEACHING AIDS :PPTs TEACHING POINTS :

Excitation system IEEE Type-1 Model Transfer function Block Diagram

Assignment Question: 1.How Q-V control done using excitation control.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year :	2013-2014		Date: 19/08/2013		
Semester	: I				
Name of the Program: B.Tech		Year: IV	Section: B		
Course/Subject: Power System	Operation Control		Course Code: 57015		
Name of the Faculty: K.Sirees	ha	Dept.: Electrical & Electronics Engineering			
Designation: ASST.PROFESS	OR				
Lesson No: 15		Duration of I	Lesson: 45min		
Lesson Title: MODELLING OF E	XCITATION SYSTEM.				
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson th	On completion of this lesson the student shall be able to:				
1.Modelling of Excitation System: Fundamental Characteristics of an Excitation system.					
2. Transfer function and Block Diagram	n Representation of IEEE	Type-1 Model.			

TEACHING AIDS :PPTs TEACHING POINTS :

Excitation system IEEE Type-1 Model Transfer function Block Diagram

Assignment Question: 1.How Q-V control done using excitation control.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 22/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Ele	ctrical & Electronics Engineering	
Designation: ASST.PROFESS	SOR			
Lesson No: 16		Duration of Less	son: 1.5 hr	
Lesson Title: STATE SPACE II ORDER MATHEMATICAL MODEL OF SYNCHRONOUS MACHINE.				
INSTRUCTIONAL/LESSON	OBJECTIVES:			

On completion of this lesson the student shall be able to:

 $1. \\ State-Space \text{ II-Order Mathematical Model of Synchronous Machine.}$

TEACHING AIDS :PPTs TEACHING POINTS :

State-Space model Synchronous Machine

Assignment Question: 1.Importance of representation of synchronous machine in state-space.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 19/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	SOR			
Lesson No: 16		Duration of Les	son: 1.5 hr	
Lesson Title: STATE SPACE II ORDER MATHEMATICAL MODEL OF SYNCHRONOUS MACHINE.				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				

 $1. \\ State-Space \text{ II-Order Mathematical Model of Synchronous Machine.}$

TEACHING AIDS :PPTs TEACHING POINTS :

State-Space model Synchronous Machine

Assignment Question: 1.Importance of representation of synchronous machine in state-space.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 23/08/2013
Semester	: I		
Name of the Program: B.Tech	l	Year: IV	Section: A
Course/Subject: Power Syster	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 17		Duration of Less	on: 1.5 hr
Lesson Title: NUMERICAL PRO	OBLEMS IN UNIT-4		
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be abl	le to:	
1. Solve numerical problems	in UNIT-4		
TEACHING AIDS :PP' TEACHING POINTS :	Ts		
Transfer function Modelling of PS components			

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2,3 Outcome Nos.: 1,2,6

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 21/08/2013
Semester	: I		
Name of the Program: B.Te	ech	Year: IV	Section: B
Course/Subject: Power Sys	tem Operation Control		Course Code: 57015
Name of the Faculty: K.Si	reesha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROF	ESSOR		
Lesson No: 17		Duration of Less	son: 1.5 hr
Lesson Title: NUMERICAL	PROBLEMS IN UNIT-4		
INSTRUCTIONAL/LESS	ON OBJECTIVES:		
On completion of this lesso	on the student shall be ab	le to:	
1. Solve numerical probler	ns in UNIT-4		
TEACHING AIDS : TEACHING POINTS :	PPTs		
Transfer function Modelling of PS componen	ıts		

Assignment Question: 1.Example and exercise problems in various text books.

LESSON PLAN

Academic Year	: 2013-2014		Date: 29/08/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 18		Duration of Less	son: 45min	
Lesson Title: NECCCESITY OF AREA CONTROL.	KEEPING FREQUENCY	CONSTANT.DEFINI	TIONS OF CONTROL AREA, SINGLE	
INSTRUCTIONAL/LESSON	OBJECTIVES:			

On completion of this lesson the student shall be able to:

Relation between frequency and speed in ac motors.
 Necessity of keeping frequency constant.
 Definitions of control area, single area control.

TEACHING AIDS:PPTsTEACHING POINTS:

Load frequency control Control area Single area control

Assignment Question: 1.Control areas in India.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 02/09/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 18		Duration of Less	son: 45min	
Lesson Title: NECCCESITY OF AREA CONTROL.	KEEPING FREQUENCY	CONSTANT.DEFINI	TIONS OF CONTROL AREA, SINGLE	
INSTRUCTIONAL/LESSON	OBJECTIVES:			

On completion of this lesson the student shall be able to:

Relation between frequency and speed in ac motors.
 Necessity of keeping frequency constant.
 Definitions of control area, single area control.

TEACHING AIDS:PPTsTEACHING POINTS:

Load frequency control Control area Single area control

Assignment Question: 1.Control areas in India.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 29/08/2013
Semester	: I		
Name of the Program: B.Tec	h	Year: IV	Section: A
Course/Subject: Power Syste	em Operation Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha	Dept.:	Electrical & Electronics Engineering
Designation: ASST.PROFE	SSOR		
Lesson No: 19		Duration of I	Lesson: 45min
Lesson Title: BLOCKDIAGRA	M REPRESENTATION OF	ISOLATED POV	WER SYSTEM MODEL.
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson the student shall be abl		le to:	
1.Block diagram representat	tion of isolated power s	system model.	
TEACHING AIDS :PI	PTs		

TEACHING POINTS:Isolated power system modelLoad frequency controlBlock diagram

Assignment Question: 1.How individual block diagrams of PS components combined to get isolated power system model.

LESSON PLAN

Academic Year	: 2013-2014		Date: 02/09/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Ele	ectrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 19		Duration of Lesson: 45min		
Lesson Title: BLOCKDIAGRAM	REPRESENTATION OF	ISOLATED POWER	R SYSTEM MODEL.	
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson the student shall be able to:				
1.Block diagram representation	on of isolated power s	system model.		
TEACHING AIDS :PP	Гs			

TEACHING POINTS:Isolated power system modelLoad frequency controlBlock diagram

Assignment Question: 1.How individual block diagrams of PS components combined to get isolated power system model.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 03/09/2013	
Semester	: I			
Name of the Program: B.Te	ech	Year: IV	Section: A	
Course/Subject: Power Sys	tem Operation Control		Course Code: 57015	
Name of the Faculty: K.Sin	reesha	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFI	ESSOR			
Lesson No: 20		Duration of Lesson: 45min		
Lesson Title: STEADY STATE	AND DYNAMIC ANALYS	IS OF LFC-1.		
INSTRUCTIONAL/LESSO	<u>ON OBJECTIVES:</u>			
On completion of this lesso	on the student shall be ab	le to:		
 Steady state of LFC-1. Dynamic analysis of LFC-1 	Ι.			
TEACHING AIDS : H TEACHING POINTS :	PPTs			
Steady state				
Dynamic analysis				
Single area control				

Assignment Question: 1.Final value theorem proof. 2.Formulate Laplace and Inverse Laplace transforms.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 11/09/2013		
Semester	: I				
Name of the Program: B	.Tech	Year: IV	Section: B		
Course/Subject: Power S	ystem Operation Control		Course Code: 57015		
Name of the Faculty: K.	Sireesha	De	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PRC	DFESSOR				
Lesson No: 20		Duration	n of Lesson: 45min		
Lesson Title: STEADY STA	ATE AND DYNAMIC ANALYS	SIS OF LFC-	1.		
INSTRUCTIONAL/LES	SON OBJECTIVES:				
On completion of this les	sson the student shall be al	ble to:			
 Steady state of LFC-1. Dynamic analysis of LF 	C-1.				
TEACHING AIDS TEACHING POINTS	:PPTs :				
Steady state					
Dynamic analysis Single area control					

Assignment Question: 1.Final value theorem proof. 2.Formulate Laplace and Inverse Laplace transforms.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 03/09/2013	
Semester	: I			
Name of the Program: B.Tech	l	Year: IV	Section: A	
Course/Subject: Power Syster	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Ele	ctrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 21		Duration of Lesson: 45min		
Lesson Title: DYNAMIC ANAL	SIS -UNCONTROLLED	CASE.		
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson t	the student shall be ab	le to:		
1. Analyse dynamic response	for uncontrolled case.			
TEACHING AIDS :PP' TEACHING POINTS :	Гs			

Uncontrolled case Dynamic response

Assignment Question: 1.Formulate Laplace and Inverse Laplace transforms.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 11/09/2013	
Semester	: I			
Name of the Program: B.Tech	1	Year: IV	Section: B	
Course/Subject: Power System	m Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	esha	Dept.: Ele	ctrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 21		Duration of Lesson: 45min		
Lesson Title: DYNAMIC ANAL	YSIS -UNCONTROLLED	CASE.		
INSTRUCTIONAL/LESSON	<u>NOBJECTIVES:</u>			
On completion of this lesson	the student shall be ab	le to:		
1. Analyse dynamic response	for uncontrolled case.			
TEACHING AIDS:PPTEACHING POINTS:	Ts			
Uncontrolled case				
Dynamic response				

Assignment Question: 1.Formulate Laplace and Inverse Laplace transforms.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 10/09/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sirees	sha	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	OR			
Lesson No: 22		Duration of Lesson: 1.5 hr		
Lesson Title: NUMERICAL PRO	BLEMS IN UNIT-5.			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson th	ne student shall be ab	le to:		
1.Solve numerical problems in	UNIT-5.			
TEACHING AIDS :PPT	ς. Σ			

TEACHING POINTS :

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 18/09/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 22		Duration of Less	son: 1.5 hr
Lesson Title: NUMERICAL PRC	BLEMS IN UNIT-5.		
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the	he student shall be ab	le to:	
1.Solve numerical problems in	u UNIT-5.		
TEACHING AIDS :PPT	S		

TEACHING POINTS :

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

LESSON PLAN

Academic Year	: 2013-2014			Date: 12/09/2013
Semester	: I			
Name of the Program: B.Tech	1	Year: IV	7	Section: A
Course/Subject: Power Syster	m Operation Control			Course Code: 57015
Name of the Faculty: K.Sired	esha	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 23		Duration of Lesson: 1.5 hr		
Lesson Title: LFC-2 FOR UNC	ONTOLLED CASE WITH	BLOCK D	IAGRAM.	
INSTRUCTIONAL/LESSON	NOBJECTIVES:			
On completion of this lesson Derivations related to tie line Block diagram representatior	power and change in		у.	
TEACHING AIDS :PP TEACHING POINTS :	Ts			
Tie line power				
Block diagram representation	I			
LFC-2				
Assignment Question:				

1.Generalise for n-area power system.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date:23/09/2013	
Semester	: I			
Name of the Program: B.Teo	ch	Year: IV	Section: B	
Course/Subject: Power Syste	em Operation Control		Course Code: 57015	
Name of the Faculty: K.Sire	eesha	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFE	SSOR			
Lesson No: 23		Duration of Lesson: 1.5 hr		
Lesson Title: LFC-2 FOR UNG	CONTOLLED CASE WITH	BLOCK DIAGRAM.		
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lessor Derivations related to tie lin Block diagram representatio	e power and change in			
TEACHING AIDS :P. TEACHING POINTS :	PTs			
Tie line power Block diagram representatio LFC-2	n			
Assignment Ouestion:				

1.Generalise for n-area power system.

LESSON PLAN

Academic Year	: 2013-2014		Date: 19/09/2013	
Semester	: I			
Name of the Program: B.Tec	ch	Year: IV	Section: A	
Course/Subject: Power Syste	em Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFE	SSOR			
Lesson No: 24		Duration of Lesson: 1 hr		
Lesson Title: LFC-2 FOR CON	ITOLLED CASE WITH BI	LOCK DIAGRAM.		
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson the student shall be able to:				
1 A malazza the standay state m	an ange for LEC 2			

Analyse the steady state response for LFC-2.
 Representing block diagram for LFC-2

TEACHING AIDS:PPTsTEACHING POINTS:

Two area load frequency control. Block diagram represention.

Assignment Question: 1.Compare LFC-1 and LFC-2.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 23/09/2013	
Semester	: I			
Name of the Program: B.Tecl	h	Year: IV	Section: B	
Course/Subject: Power Syste	m Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SSOR			
Lesson No: 24		Duration of Le	sson: 1 hr	
Lesson Title: LFC-2 FOR CON	TOLLED CASE WITH BL	OCK DIAGRAM.		
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
I.Analyse the steady state response for LFC-2.				

2.Representing block diagram for LFC-2

TEACHING AIDS:PPTsTEACHING POINTS:

Two area load frequency control. Block diagram represention.

Assignment Question: 1.Compare LFC-1 and LFC-2.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 19/09/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: A
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Elec	ctrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 25		Duration of Less	on: 30min
Lesson Title: TIE-LINE BIAS Co	ONTROL.		
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	le to:	
1.Formulating Tie-line bias cc	ontrol for LFC-2.		
TEACHING AIDS:PPTEACHING POINTS:	Ts		
Tie-line			
Tie-line bias control			
LFC-2			

Assignment Question: 1.Importance of tie line bias control in frequency control in LFC-2.

LESSON PLAN

Academic Year	: 2013-2014			Date: 25/09/2013
Semester	: I			
Name of the Program: B.Tech		Year: IV		Section: B
Course/Subject: Power System	n Operation Control			Course Code: 57015
Name of the Faculty: K.Siree	sha	Dep	pt.: Elect	trical & Electronics Engineering
Designation: ASST.PROFESS	SOR			
Lesson No: 25		Duration	of Lesso	n: 30min
Lesson Title: TIE-LINE BIAS CC	NTROL.			
INSTRUCTIONAL/LESSON	OBJECTIVES :			
On completion of this lesson t	he student shall be abl	e to:		
1.Formulating Tie-line bias co	ntrol for LFC-2.			
TEACHING AIDS:PPTTEACHING POINTS:	ſs			
Tie-line Tie-line bias control LFC-2				

Assignment Question: 1.Importance of tie line bias control in frequency control in LFC-2.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 24/09/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Ele	ectrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 26		Duration of Lesson: 1.5 hr		
Lesson Title: NUMERICAL PRO	DBLEMS IN UNIT-6.			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson t	he student shall be abl	e to:		
1.Solve numerical problems in	n UNIT-6.			
TEACHING AIDS:PPTEACHING POINTS:	ſs			

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year : 201	3-2014		Date: 25/09/2013
Semester :	Ι		
Name of the Program: B.Tech	Year	r: IV	Section: B
Course/Subject: Power System Oper	ration Control		Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Elec	trical & Electronics Engineering
Designation: ASST.PROFESSOR			
Lesson No: 26	Du	ration of Lesso	on: 1.5 hr
Lesson Title: NUMERICAL PROBLEN	1S IN UNIT-6.		
INSTRUCTIONAL/LESSON OBJE	ECTIVES:		
On completion of this lesson the stu-	dent shall be able to:		
1.Solve numerical problems in UNIT	Г-6.		
TEACHING AIDS:PPTsTEACHING POINTS:			

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 26/09/2013	
Semester	: I			
Name of the Program: B	B.Tech	Year: IV	Section: A	
Course/Subject: Power S	System Operation Control		Course Code: 57015	
Name of the Faculty: K	.Sireesha	Dept	:: Electrical & Electronics Engineering	
Designation: ASST.PRO	DFESSOR			
Lesson No: 27		Duration of Lesson: 45min		
Lesson Title: PI CONTRC)L LFC-1 BLOCK DIAGRAM I	REPRESENTAT	ION.	
INSTRUCTIONAL/LES	SSON OBJECTIVES:			
On completion of this le	sson the student shall be at	ole to:		
 Steady state analysis o Block diagram represe 	f LFC-1 with PI control. ntation of LFC-1 with PI cc	ontrol .		
TEACHING AIDS <u>TEACHING POINTS</u> Proportional and integra	:PPTs :			

Proportional and integral contro LFC-1 Steady state analysis Block diagram representation

Assignment Question: 1.Analyse for stability if integral control included in LFC-1.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 30/09/2013
Semester	: I		
Name of the Program: B.Tecl	h	Year: IV	Section: B
Course/Subject: Power Syste	m Operation Control		Course Code: 57015
Name of the Faculty: K.Sire	esha	Dept.: E	lectrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 27		Duration of Le	sson: 45min
Lesson Title: PI CONTROL LF	C-1 BLOCK DIAGRAM R	EPRESENTATION.	
INSTRUCTIONAL/LESSON	NOBJECTIVES:		
On completion of this lesson	the student shall be ab	le to:	
 Steady state analysis of LFC-1 with PI control. Block diagram representation of LFC-1 with PI control. 			
TEACHING AIDS:PPTEACHING POINTS:	Ts		
Proportional and integral con	trol		

LFC-1 Steady state analysis Block diagram representation

Assignment Question: 1.Analyse for stability if integral control included in LFC-1.

LESSON PLAN

Academic Year	: 2013-2014		Date: 26/09/2013	
Semester	: I			
Name of the Program: B.Tech	l	Year: IV	Section: A	
Course/Subject: Power Syster	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Elec	ctrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 28		Duration of Lesson: 45min		
Lesson Title: LFC-1 WITH PI C	ONROL ,STEADY STATE	CONTROL.		
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson t	the student shall be abl	e to:		
 Steady state analysis of LFC-1 with PI control. Block diagram representation of LFC-1 with PI control. 				
TEACHING AIDS :PP' TEACHING POINTS :	Ts			

Proportional and integral control LFC-1 Steady state analysis Block diagram representation

Assignment Question: 1.Analyse for stability if integral control included in LFC-1.

LESSON PLAN

Academic Year :	2013-2014		Date: 30/09/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	ha	Dept	.: Electrical & Electronics Engineering
Designation: ASST.PROFESS	OR		
Lesson No: 28		Duration o	of Lesson: 45min
Lesson Title: LFC-1 WITH PI CC	NROL ,STEADY STATE	E CONTROL.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson th	ne student shall be ab	le to:	
 Steady state analysis of LFC-1 with PI control. Block diagram representation of LFC-1 with PI control. 			
TEACHING AIDS:PPTTEACHING POINTS:Proportional and integral control			

LFC-1 Steady state analysis Block diagram representation

Assignment Question: 1.Analyse for stability if integral control included in LFC-1.

LESSON PLAN

Academic Year : 2	2013-2014		Date: 01/10/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System O	peration Control		Course Code: 57015	
Name of the Faculty: K.Sireesha	l	Dept.: Elec	ctrical & Electronics Engineering	
Designation: ASST.PROFESSO	R			
Lesson No: 29		Duration of Less	on: 1.5 hr	
Lesson Title: LFC AND ECONOMI	C DISPATCH CONTR	OL.		
INSTRUCTIONAL/LESSON OI	BJECTIVES:			
On completion of this lesson the	student shall be able	e to:		
1.Understand LFC AND Economic Dispatch Control. 2.Block diagram representation of LFC AND Economic Dispatch Control.				
TEACHING AIDS:PPTsTEACHING POINTS:				

LFC Control Economic Dispatch Control Block diagram representation

Assignment Question: 1.What is the importance of co-ordinating LFC with EDC

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 07/10/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sirees	sha	Dept.: I	Electrical & Electronics Engineering	
Designation: ASST.PROFESS	SOR			
Lesson No: 29		Duration of L	esson: 1.5 hr	
Lesson Title: LFC AND ECONOMIC DISPATCH CONTROL.				
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson the	he student shall be abl	e to:		
1.Understand LFC AND Economic Dispatch Control. 2.Block diagram representation of LFC AND Economic Dispatch Control.				
TEACHING AIDS :PPT TEACHING POINTS :	Ŝ			

LFC Control Economic Dispatch Control Block diagram representation

Assignment Question: 1.What is the importance of co-ordinating LFC with EDC

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 03/10/2013
Semester	: I		
Name of the Program: B.T.	ech	Year: IV	Section: A
Course/Subject: Power Sys	tem Operation Control		Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
Designation: ASST.PROF	ESSOR		
Lesson No: 30		Duration of	Lesson: 1.5 hr
Lesson Title: NUMERICAL	PROBLEMS IN UNIT-7.		
INSTRUCTIONAL/LESS	<u>ON OBJECTIVES:</u>		
On completion of this lesson the student shall be able to:			

1. Solve numerical problems in UNIT-7.

TEACHING AIDS :PPTs TEACHING POINTS :

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 07/10/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: B	
Course/Subject: Power System	Operation Control		Course Code: 57015	
Name of the Faculty: K.Sirees	sha	Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFESS	SOR			
Lesson No: 30		Duration of Less	son: 1.5 hr	
Lesson Title: NUMERICAL PROBLEMS IN UNIT-7.				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				

1. Solve numerical problems in UNIT-7.

TEACHING AIDS:PPTsTEACHING POINTS:

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 1,2 Outcome Nos.: 1,3,5,7

Signature of HOD Date:

LESSON PLAN

Academic Year	2013-2014		Date: 08/10/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	OR		
Lesson No: 31		Duration of Less	on: 45min
Lesson Title: OVERVIEW OF RE	EACTIVE POWER CON	TROL.	
INSTRUCTIONAL/LESSON	<u>OBJECTIVES:</u>		
On completion of this lesson th	ne student shall be ab	le to:	
1.Reactive power absorption a 2.Need for reactive power cont	•		
TEACHING AIDS :PPT TEACHING POINTS :	ĴS		

Power factor Reactive power capacitors ac motors and generators

Assignment Question: 1.Indicate reactive power generators and observers in power system.

LESSON PLAN

Academic Year	: 2013-2014		Date: 09/10/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept	t.: Electrical & Electronics Engineering
Designation: ASST.PROFESS	SOR		
Lesson No: 31		Duration of	of Lesson: 45min
Lesson Title: OVERVIEW OF R	EACTIVE POWER CON	ITROL.	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
1.Reactive power absorption a 2.Need for reactive power con	•		
TEACHING AIDS :PPT	Гs		

TEACHING POINTS Power factor Reactive power capacitors ac motors and generators

Assignment Question: 1.Indicate reactive power generators and observers in power system.

LESSON PLAN

Academic Year	: 2013-2014		Date: 08/10/2013	
Semester	: I			
Name of the Program: B.Tech	1	Year: IV	Section: A	
Course/Subject: Power System	m Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	esha	Dept.:	Electrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 32		Duration of I	Lesson: 45min	
Lesson Title: REACTIVE POW	ER COMPENSATION IN	N TRANSMISSIOI	N SYSTEMS.	
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson	the student shall be at	ole to:		
1. Reactive power compensation in transmission systems				
TEACHING AIDS:PPTEACHING POINTS:	Ts			

Reactive power compensation Transmission systems

Assignment Question: 1.Compare compensated and uncompensated transmission line.

LESSON PLAN

Academic Year	: 2013-2014		Date: 09/10/2013
Semester	: I		
Name of the Program: B.7	Гесh	Year: IV	Section: B
Course/Subject: Power Sy	vstem Operation Control		Course Code: 57015
Name of the Faculty: K.S	Sireesha	Dept.: E	lectrical & Electronics Engineering
Designation: ASST.PROI	FESSOR		
Lesson No: 32		Duration of Le	esson: 45min
Lesson Title: REACTIVE PC	OWER COMPENSATION IN	I TRANSMISSION	SYSTEMS.
INSTRUCTIONAL/LESS	SON OBJECTIVES:		
On completion of this less	son the student shall be ab	le to:	
1. Reactive power compe	nsation in transmission sy	vstems	
TEACHING AIDS TEACHING POINTS :	:PPTs		
Reactive power compensa Transmission systems	ation		

Assignment Question: 1.Compare compensated and uncompensated transmission line.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year :	2013-2014		Date: 10/10/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: A
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	ha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	OR		
Lesson No: 33		Duration of Less	son: 1.5 hr
Lesson Title: ADVANTAGES AND DISADVANTAGES OF DIFFERENT TYPES OF COMPENSATING EQUIPMENT FOR TRANSMISSION SYSTEMS.			

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1.Advantages and disadvantages of different types of compensating equipment for transmission systems.

TEACHING AIDS :PPTs TEACHING POINTS :

Compensating equipment Transmission systems Reactive power

Assignment Question: 1.How compensating equipment used for reactive power control in transmission lines.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year :	2013-2014		Date: 09/10/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	Operation Control		Course Code: 57015
Name of the Faculty: K.Sirees	ha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFESS	OR		
Lesson No: 33		Duration of Less	son: 1.5 hr
Lesson Title: ADVANTAGES AN EQUIPMENT FOR TRANSMISSIO		F DIFFERENT TYPE	S OF COMPENSATING

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1.Advantages and disadvantages of different types of compensating equipment for transmission systems.

TEACHING AIDS:PPTsTEACHING POINTS:

Compensating equipment Transmission systems Reactive power

Assignment Question: 1.How compensating equipment used for reactive power control in transmission lines.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 17/10/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power System	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 34		Duration of Less	son: 45min	
Lesson Title: LOAD COMPENSATION AND ITS SPECIFICATIONS.				
INSTRUCTIONAL/LESSON	OBJECTIVES:			

On completion of this lesson the student shall be able to:

Importance of Load compensation.
 Specifications of Load compensation .

TEACHING AIDS:PPTsTEACHING POINTS:

Load compensation Specifications Reactive power

Assignment Question: 1.Collect any one load compensator specifications.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 21/10/2013	
Semester	: I			
Name of the Program: B.Tech	1	Year: IV	Section: B	
Course/Subject: Power Syster	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering		
Designation: ASST.PROFES	SOR			
Lesson No: 34		Duration of Le	sson: 45min	
Lesson Title: LOAD COMPENSATION AND ITS SPECIFICATIONS.				

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

Importance of Load compensation.
 Specifications of Load compensation .

TEACHING AIDS:PPTsTEACHING POINTS:

Load compensation Specifications Reactive power

Assignment Question: 1.Collect any one load compensator specifications.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 17/10/2013	
Semester	: I			
Name of the Program: B.Tech		Year: IV	Section: A	
Course/Subject: Power Syster	n Operation Control		Course Code: 57015	
Name of the Faculty: K.Siree	sha	Dept.: Ele	ectrical & Electronics Engineering	
Designation: ASST.PROFES	SOR			
Lesson No: 35		Duration of Les	son: 45min	
Lesson Title: UNCOMPENSAT	ED AND COMPENSATE	D TRANSMISSION	LINES,COMPARISION.	
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson t	he student shall be abl	le to:		
 Analysing Uncompensated transmission lines Analysing compensated transmission lines Comparing both cases. 				
TEACHING AIDS :PP' TEACHING POINTS :	Гs			
Uncompensated transmission lines				
Reactive power in transmissio	n lines			

compensated transmission lines

Assignment Question: 1.Need for compensating transmission lines for reactive power control.

LESSON PLAN

Academic Year	: 2013-2014		Date: 21/10/2013
Semester	: I		
Name of the Program: B.Tech	1	Year: IV	Section: B
Course/Subject: Power Syster	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: I	Electrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 35		Duration of L	esson: 45min
Lesson Title: UNCOMPENSAT	ED AND COMPENSATE	D TRANSMISSIC	ON LINES,COMPARISION.
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be abl	e to:	
 Analysing Uncompensated Analysing compensated translocation Comparing both cases. 			
TEACHING AIDS:PP'TEACHING POINTS:	Ts		
Uncompensated transmission			
Reactive power in transmissic			
compensated transmission lin	es		

Assignment Question:

1.Need for compensating transmission lines for reactive power control.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 24/10/2013
Semester	: I		
Name of the Program: B.	Tech	Year: IV	Section: A
Course/Subject: Power S	ystem Operation Control		Course Code: 57015
Name of the Faculty: K.	Sireesha	Dept.:	Electrical & Electronics Engineering
Designation: ASST.PRO	DFESSOR		
Lesson No: 36		Duration of I	Lesson: 30min
Lesson Title: SHUNT AND	D SERIES COMPENSATION.		
INSTRUCTIONAL/LES	SON OBJECTIVES:		
On completion of this les	sson the student shall be ab	le to:	
Shunt compensation Series compensation			
TEACHING AIDS TEACHING POINTS	:PPTs		
Shunt compensation Series compensation capacitor Reactive power SVC			

Assignment Question: 1.Basic idea about STATCOM operation and control.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 23/10/2013
Semester	: I		
Name of the Program: B.T	Tech	Year: IV	Section: B
Course/Subject: Power Sy	stem Operation Control		Course Code: 57015
Name of the Faculty: K.S	ireesha	Dept.:	Electrical & Electronics Engineering
Designation: ASST.PROF	FESSOR		
Lesson No: 36		Duration of I	Lesson: 30min
Lesson Title: SHUNT AND	SERIES COMPENSATION.		
INSTRUCTIONAL/LESS	SON OBJECTIVES:		
On completion of this less	on the student shall be ab	le to:	
Shunt compensation Series compensation			
TEACHING AIDS TEACHING POINTS :	:PPTs		
Shunt compensation Series compensation capacitor Reactive power SVC			

Assignment Question: 1.Basic idea about STATCOM operation and control.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014			Date: 24/10/2013
Semester	: I			
Name of the Program: B.Tech	L	Year: I	V	Section: A
Course/Subject: Power Syster	n Operation Control			Course Code: 57015
Name of the Faculty: K.Siree	esha]	Dept.: Elec	trical & Electronics Engineering
Designation: ASST.PROFES	SOR			
Lesson No: 37		Durat	on of Less	on: 1 hr
Lesson Title: NUMERICAL PRO	OBLEMS IN UNIT-8.			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson	the student shall be abl	e to:		
1.Solve numerical problems i	n UNIT-8.			
TEACHING AIDS :PP' TEACHING POINTS :	Тs			
Capacity of synchronous cond Reactive power	ensor			

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

LESSON PLAN

Academic Year	: 2013-2014		Date: 23/10/2013
Semester	: I		
Name of the Program: B.Tech		Year: IV	Section: B
Course/Subject: Power System	n Operation Control		Course Code: 57015
Name of the Faculty: K.Siree	sha	Dept.: Ele	ctrical & Electronics Engineering
Designation: ASST.PROFES	SOR		
Lesson No: 37		Duration of Less	son: 1 hr
Lesson Title: NUMERICAL PRO	OBLEMS IN UNIT-8.		
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be abl	le to:	
1.Solve numerical problems in	n UNIT-8.		
TEACHING AIDS:PPTEACHING POINTS:	Гs		
Capacity of synchronous cond Reactive power	ensor		

Assignment Question: 1.Example and exercise problems in various text books.

Objective Nos.: 3 Outcome Nos.: 2,3

Signature of HOD Date:

ASSIGNMENT SHEET – 1

Academic Year	: 2013-2014	Date: 10-07-2013
Semester	: I	
Name of the Program: B.Tech	Year: IV	Section: A,B
Course/Subject: Power Syster	n Operation Control	Course Code: 57015
Name of the Faculty: K.Siree	esha	Dept.: Electrical & Electronics Engineering
Designation: ASST.PROFES	SOR.	
This Assignment corresponds	to Unit No. 1	
Q1.Collect various Thermal a	nd Hydel power plants in A	Andhrapradesh with their capacities and location.

Q2. Analyse Lagrangiean multiplier method of optimization.

Objective Nos.: 1,2

Outcome Nos.: 1,2,3,4

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 2

Academic Year	: 2013-2014		Date: 24-07-2013
Semester	: I		
Name of the Program: B.Tech	Year	r: IV	Section: A,B
Course/Subject: Power System	n Operation Cont	rol	Course Code: 57015
Name of the Faculty: K.Siree	sha		Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PRO	FESSOR.		
This Assignment corresponds	to Unit No. 2		
Q1.What is the temperature &	pressure at vario	ous stages	of Thermal power plant.

Objective Nos.: 1

Outcome Nos.: 1,2,3,4

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 3

Academic Year	: 2013-201	4		Date: 10-08-2013
Semester	: I			
Name of the Program: B.Tec	h	Year:	IV	Section: A,B
Course/Subject: Power Syste	em Operation	Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha			Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PR	OFESSOR.			
This Assignment correspond	s to Unit No.	3		

Q1.What is the reason of grid failure (29-07-2012) in the recent black out of northern, western eastern and north eastern grids.

Objective Nos.: 1,2

Outcome Nos.: 3,5,7

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 4

Academic Year	: 2013-2014	Date: 24-08-2013
Semester	: I	
Name of the Program: B.	Tech Year: IV	Section: A,B
Course/Subject: Power S	ystem Operation Control	Course Code: 57015
Name of the Faculty: K.S.	Sireesha	Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.	PROFESSOR.	
This Assignment correspo	onds to Unit No. 4	
Q1.Derivation of speed g	overnor model	
Q2. Derivation of Genera	tor load model	
Q3. Derivation of IEEE T	Sype-1 Excitation system	

Objective Nos.: 1,2,3

Outcome Nos.: 1,2,6

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 5

Academic Year	: 2013-2014		Date: 10-09-2013
Semester	: I		
Name of the Program: B.Tec	h	Year: IV	Section: A,B
Course/Subject: Power Syste	em Operation C	Control	Course Code: 57015
Name of the Faculty: K.Sire	esha		Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PROFESSOR.			
This Assignment corresponds to Unit No. 5			
Q1.Derive the steady state frequency error of single area load frequency system.			

Q2. Obtain the dynamic response of load frequency control of isolated power system for first order approximation.

Objective Nos.: 1,2

Outcome Nos.: 1,3,5,7

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 6

Academic Year	: 2013-2014	4	Date: 24-09-2013
Semester	: I		
Name of the Program: B.	Tech	Year: IV	Section: A,B
Course/Subject: Power System Operation Control			Course Code: 57015
Name of the Faculty: K.Sireesha		Dept.: Electrical & Electronics Engineering	
DESIGNATION: ASST.PROFESSOR.			
This Assignment corresponds to Unit No. 6			

Q1.Show that by interconnecting two areas the steady state frequency error is reduced by 50% as compared to single area control system.

Objective Nos.: 1,2

Outcome Nos.: 1,3,5,7

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET - 7

Academic Year	: 2013-2014	Date: 10-10-2013
Semester	: I	
Name of the Program: B.T	Year: IV	Section: A,B
Course/Subject: Power Sy	stem Operation Control	Course Code: 57015
Name of the Faculty: K.S	ireesha	Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.P	ROFESSOR.	
This Assignment correspon	nds to Unit No. 7	

Q1.Show how the steady state error of frequency in a typical Load Frequency Control (LFC) of a power system is reduced to zero.

Q2. Obtain the dynamic response of load frequency controller with and without integral control action.

Objective Nos.: 1,2

Outcome Nos.: 1,3,5,7

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 8

Academic Year	: 2013-2014	Date: 24-10-2013
Semester	: I	
Name of the Program: B.Te	ech Year: IV	Section: A,B
Course/Subject: Power Sys	tem Operation Control	Course Code: 57015
Name of the Faculty: K.Si	reesha	Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PH	ROFESSOR.	
This Assignment correspon	ds to Unit No. 8	
Q1.Seminar Load compen-	sation	
Q2.Seminar on shunt and s	series compensation.	

Objective Nos.: 3

Outcome Nos.: 2,3

Signature of HOD

Date:

Signature of faculty

TUTOTIAL SHEET - 1

Academic Year	: 2013-2014	Date:					
Semester	: I						
Name of the Program: B.Tech	Year:	IV Section: A,B					
Course/Subject: Power System	n Operation Control	Course Code: 57015					
Name of the Faculty: K.Siree	esha	Dept.: Electrical & Electronics Engineering					
DESIGNATION: ASST.PRC	DESIGNATION: ASST.PROFESSOR.						
This Tutorial corresponds to Unit No. 1							
Q1.Algorithm and flowchart of economic operation of power system neglecting losses							
Q2. Problems on economic load dispatch.							
Q3.Problems on saving in cost by utilizing optimum condition for economic generations.							
Q4. Problems on considering	importance of the co	nstraints for optimum operation.					

Objective Nos. 1, 2

Outcome Nos. 1, 3

Signature of HOD

Date:

Signature of faculty

TUTOTIAL SHEET - 2

Academic Year	: 2013-2014	Date:				
Semester	: I					
Name of the Program: B.Te	ch Year: IV	Section: A,B				
Course/Subject: Power Syst	em Operation Control	Course Code: 57015				
Name of the Faculty: K.Sir	eesha	Dept.: Electrical & Electronics Engineering				
DESIGNATION: ASST.PR	OFESSOR.					
This Tutorial corresponds to Unit No. 2						
Q1.Algotithm and flowchart of economic operation of power system including losses						
Q2. Problems on economic load dispatch including losses. Significance of penalty factor.						
Q3.Problems on saving in cost by utilizing optimum condition for economic generations.						
Q4. Problems on considering importance of the constraints for optimum operation.						
Q5. Analysing B _{mn} Coefficients for calculating transmission power loss.						

Objective Nos. 1, 2

Outcome Nos. 1, 3

Signature of HOD

Date:

TUTOTIAL SHEET - 3

Academic Year	: 2013-2014			Date:		
Semester	: I					
Name of the Program: B.Tech	Ye	ear:	IV	Section: A,B		
Course/Subject: Power System	n Operation Con	ntrol		Course Code: 57015		
Name of the Faculty: K.Siree	sha			Dept.: Electrical & Electronics Engineering		
DESIGNATION: ASST.PROFESSOR.						
This Tutorial corresponds to Unit No. 3						
Q1.solving Optimum Unit Commitment problem						
Q2. Long term hydrothermal s	scheduling,i.e.,	findi	ng water	discharge rate.		

Q3. Problems on short term hydrothermal scheduling, i.e., finding hydrogenation, cost quantity of water used.

Objective Nos. 1, 3

Outcome Nos. 1, 3

Signature of HOD

Signature of faculty

Date:

TUTOTIAL SHEET - 4

Academic Year :	2013-2014	Date:			
Semester	: I				
Name of the Program: B.Tech	Year: IV	Section: A,B			
Course/Subject: Power System	Operation Control	Course Code: 57015			
Name of the Faculty: K.Sireesh	na	Dept.: Electrical & Electronics Engineering			
DESIGNATION: ASST.PROF					
This Tutorial corresponds to Unit No. 4					
Q1.Generator load model repres	sentation.				

Q2. Problems on free governor operation and calculating change in system frequency.

Objective Nos. 1, 2

Outcome Nos. 1, 3,6

Signature of HOD

Signature of faculty

Date:

TUTOTIAL SHEET - 5

Academic Year	: 2013-201	4		Date:
Semester	: I			
Name of the Program: B.Te	ch	Year: I	V	Section: A,B
Course/Subject: Power Syst	em Operation	Control		Course Code: 57015
Name of the Faculty: K.Sireesha			D	ept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PR	OFESSOR.			
This Tutorial corresponds to Unit No. 5				
Q1.Problems on single area	load frequent	ey control		

Objective Nos. 1, 2

Outcome Nos. 1, 3,5

Signature of HOD

Date:

Signature of faculty

TUTOTIAL SHEET - 6

Academic Year	: 2013-201	4		Date:
Semester	: I			
Name of the Program: B.Tec	ch	Year:	IV	Section: A,B
Course/Subject: Power Syste	em Operation	Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha			Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PR	OFESSOR.			
This Tutorial corresponds to	Unit No. 6			

Q1.Problems on two area load frequency control calculating tie line power and change in steady state frequency.

Objective Nos. 1, 2

Outcome Nos. 1, 3,7

Signature of HOD

Signature of faculty

Date:

TUTOTIAL SHEET - 7

Academic Year	: 2013-201	14		Date:
Semester	: I			
Name of the Program: B.Tec	h	Year:	IV	Section: A,B
Course/Subject: Power Syste	em Operation	o Control		Course Code: 57015
Name of the Faculty: K.Sire	eesha			Dept.: Electrical & Electronics Engineering
DESIGNATION: ASST.PR	OFESSOR.			
This Tutorial corresponds to	Unit No. 7			
Q1.Problems on load freque	ncy control v	with and v	without p	roportion and integral control (PI).

Objective Nos. 1, 2

Outcome Nos. 1, 3,5

Signature of HOD

Date:

Signature of faculty

TUTOTIAL SHEET - 8

Academic Year	: 2013-2014	1		Date:			
Semester	: I						
Name of the Program: B.Tech	l	Year:	IV	Section: A,B			
Course/Subject: Power Syster	n Operation (Control		Course Code: 57015			
Name of the Faculty: K.Siree	sha			Dept.: Electrical & Electronics Engineering			
DESIGNATION: ASST.PROFESSOR.							
This Tutorial corresponds to Unit No. 8							
Q1.Problems on calculating ca	Q1.Problems on calculating capacity of synchronous condenser for reactive power control.						
Q2 Seminars by students on re	eactive powe	r comp	ensation.				

Objective Nos. 1, 3

Outcome Nos. 1, 2

Signature of HOD

Date:

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology(Autonomous)

Department of EEE

IV B.Tech I Sem	MODEL PAPER	Time duration: 3 hr
Subject: Power System Operation	<u>Max. Marks</u> : 75	
Note: Answer any FIVE questions	.All questions carry equal marks	Paper set by: K.Sireesha

1. a) Write about (i) Cost curve (ii) System variables.

b) 150MW, 220MW & 220MW are ratings of three units located in a thermal power station. Their respective incremental fuel costs are:

 $dC_1/dP_{G1} = (0.11P_{G1}+12) \text{ Rs/MWh}$ $dC_2/dP_{G2} = (0.095P_{G2}+14) \text{ Rs/MWh}$ $dC_3/dP_{G3} = (0.1P_{G3}+13) \text{ Rs/MWh}$

Where P_{G1} , P_{G2} & P_{G3} are power outputs in MW. Determine the economic load allocation between the three units, when the total load on station is 500 MW.

- 2. Derive general transmission loss formula in terms of B_{mn} coefficients.
- 3. A two plant system having thermal station near to the load centre and hydro power station at a remote location. The characteristics of both the stations are given as :

 $C_T(P_T) = (26+0.045P_T)P_T \text{ Rs/hr}$

 $W_{\rm H} = (7+0.004P_{\rm H})P_{\rm H} m^3/sec$

 $\gamma = 4 \times 10^{-4} \operatorname{cost/m^3}$

The transmission loss coefficients is 0.0025MW⁻¹. Determine the power generation at each station and power received by the load when λ =65 Rs/MWh.

- 4. a) With a neat sketch explain about speed governing system.b) Derive the transfer function of generator load model and draw its block diagram.
- 5. a) Explain the necessity of maintaining a constant frequency in power system operation?

b) Define (i) Control area (ii) Single area control (iii) Area Control Error(ACE).

- 6. For two area load frequency control with gain blocks, for simultaneously applied unit step load disturbance inputs in the two areas, derive an expression for steady state values of
 - a) Change in frequency and b) Tie line power.

7. a) Obtain the dynamic response of load frequency control of isolated power system for first order approximation.

b) Obtain the dynamic response of load frequency controller with and without integral control action.

8. What is load compensation? Discuss its objectives in power system.

EVALUATION STRATEGY

Academic Year	: 2013-201	4				
Semester	: I					
Name of the Program: B.Tech	1	Year:	IV		Section: A,B	
Course/Subject: Power System	m Operation	Control			Course Code: 57015	
Name of the Faculty: K.Siree	esha			Dept.: Elec	trical & Electronics Engineer	ing

DESIGNATION: ASST.PROFESSOR.

1. TARGET:

- a) Percentage for pass: 90%
- b) Percentage of class: 70%

2. COURSE PLAN & CONTENT DELIVERY

- 1. By presenting PowerPoint presentation for giving clear idea about theory part in subject.
- 2. Using OHP slides for representing block diagrams.
- 3. Displaying videos of speed governor (mechanical) operation used for controlling steam valve of steam turbines.
- 4. Giving assignments related to subject and conducting seminars.
- 5. Utilizing marker board for deriving derivations and doing numerical problems.
- 6. Giving various models in numerical problems and allow students to solve different model problems.

3. METHOD OF EVALUATION

- Regular attendance to classes.)1
- Viva-voce during the class.)2
- Written tests clearly linked to learning objectives)3
- Classroom assessment techniques like tutorial sheets and assignments)4
- Seminars.)5

List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

•

Introduce concept of grid systems in India and about national grid.

Signature of HOD Date:

COURSE COMPLETION STATUS

Academic Year	: 2013-202	14	
Semester	: I		
Name of the Program: B.Tee	ch Ye	ear: IV	Section: A
Course/Subject: Power Syst	em Operatior	n Control	Course Code: 57015
Name of the Faculty: K.Sir	eesha		Dept.: Electrical & Electronics Engineering
Designation: ASST.PROFE	SSOR.		

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Completed on 09/07/13	1	1,2,3,4
Unit 2	Completed on 23/07/2013	1	1,2,3,4
Unit 3	Completed on 06/08/13	3	1,2,3,4
Unit 4	Completed on 23/08/13	1,2,3	1,2,3,6
Unit 5	Completed on 10/09/13	1,2	1, 3,5,7
Unit 6	Completed on 24/09/13	1,2	1, 3,5,7
Unit 7	Completed on 03/10/13	1,2	1,3,5,7
Unit 8	To be completed by 24/10/13	-	-

Signature of HOD

Signature of faculty

Date:

COURSE COMPLETION STATUS

Academic Year	2013-2014				
Semester	: I				
Name of the Program: B.Tech	Year: IV	Section: B			
Course/Subject: Power System	Operation Control	Course Code: 57015			
Name of the Faculty: K.Sirees	ha	Dept.: Electrical & Electronics Engineering			
DESIGNATION: ASST.PROF	ESSOR.				

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Completed on 08/07/13	1	1,2,3,4
Unit 2	Completed on 22/07/13	1	1,2,3,4
Unit 3	Completed on 05/08/13	3	1,2,3,4
Unit 4	Completed on 21/08/13	1,2,3	1,2,3,6
Unit 5	Completed on 18/09/13	1,2	1, 3,5,7
Unit 6	Completed on 25/09/13	1,2	1, 3,5,7
Unit 7	Completed on 08/10/13	1,2	1,3,5,7
Unit 8	To be completed by 23/10/13	-	-

Signature of HOD

Signature of faculty

Date:

Previous Result Analysis

Academic Year : 2013-2014

Semester : I

Name of the Program: B.Tech

Name of the Faculty:

Year: IV

Section: A,B

Course/Subject: Power System Operation Control

K.Sireesha

Course Code: 57015

Dept.: Electrical & Electronics Engineering

Designation: ASST.PROFESSOR.

Academic Year	No. of students appeared	No. of students passed	No. of students failed	<60	60- 70	>70	100% Marks	Pass Percentag e
2010-2011	132	126	6	30	27	68	1	95.45
2011-2012	131	129	2	21	29	77	2	98.47
2012-2013	126	117	9	61	30	26	-	92.85

Signature of HOD

Signature of faculty

Date:

Date:25-09-13