Divisibility Rules

A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise:

1. Cross out 1 by Shading in the box completely.

1 is neither prime nor composite. It has only 1 factor - itself.
2. Use a forward Slash \backslash to cross out all multiples of 2 , starting with 4.

2 is the first prime number.
3. Use a backward Slash / to cross out all multiples of 3 starting with 6.
4. Multiples of 4 have been crossed out already when we did \#2.
5. Draw a Square on all multiples of 5 starting with 10.5 is prime.
6. Multiples of 6 should be X'd already from \#2 and \#3.
7. Circle all multiples of 7 starting with 14.7 is prime.
8. Multiples of 8 were crossed out already when we did \#2.
9. Multiples of 9 were crossed out already when we did \#3.
10. Multiples of 10 were crossed out when we did \#2 and \#5.

All of the remaining numbers are prime.

How many prime numbers are left between 1 and $100 ?$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Answer: use your chart for help.
Is 51 prime? If not, what are its factors? \qquad
Is 59 prime? If not, what are its factors? \qquad
Is 87 prime? If not, what are its factors? \qquad
Is 91 prime? If not, what are its factors? \qquad

Divisibility Rules

There are some easy tricks you can use to determine if a number is divisible by $2,3,4,5,6$, 8,9 and 10.

A number is divisible by:

2 - if it is even.
3 - if the sum of its digits is divisible by 3.
4 - if the number formed by the last 2 digits is divisible by 4.
5 - if the ones digit is 5 or 0 .
6 - if it is divisible by 2 AND 3. (All even multiples of 3.)
7 - there is no good trick for 7 .
8 - if the number formed by the last 3 digits is divisible by 8 .
9 - if the sum of the digits is divisible by 9.
10 - if the last digit is a 0.
11: We will learn this trick separately.

Practice: Write yes or no in each blank.

Determine whether 21,408 is divisible by:
2 - \qquad 6 - \qquad
3 - \qquad 8 - \qquad
4 - \qquad 9 - \qquad
5 - \qquad 10 - \qquad

Determine whether $1,345,866$ is divisible by:
2 - \qquad 6 - \qquad
3 - \qquad 8 - \qquad
4 - \qquad 9 - \qquad
5 - \qquad 10 - \qquad

Determine whether 222,222,225 is divisible by:
2 - \qquad 6 - \qquad
3 - \qquad 8 - \qquad
4 \qquad 9 - \qquad
5 - \qquad 10 - \qquad

Write the complete prime factorization for each number below. Use a factor tree if necessary:
Ex: 1,600

1. 210
2. 297
3. 192
$=2^{6} \cdot 5^{2}$

The GCF is the Greatest Common Factor between two or more numbers.
Sometimes the GCF is obvious:
Find the GCF for each pair of numbers.
$\begin{array}{lll}\text { 1. } 50 \text { and } 75 & \text { 2. } 49 \text { and } 56 & \text { 3. } 45 \text { and } 60\end{array}$

When the GCF is not obvious:
Ex.
Find the GCF between 405 and 585 .
$405=3 \cdot 3 \cdot 3 \cdot 3 \cdot 5$
$585=3 \cdot 3 \cdot 5 \cdot 13 \quad$ Common factors are $3 \cdot 3 \cdot 5=45$, the GCF is 45 .
notes:
The GCF between a pair or set of numbers is the product of their common prime factors.

Practice:

Find the GCF.

1. 108 and 126
2. 154 and 210
3. 108 and 288

The LCM is the Least Common Multiple. This means the smallest number that both numbers divide with no remainder.

The LCM is rarely obvious:
Find the LCM for each pair of numbers.
$\begin{array}{lll}\text { 1. } 5 \text { and } 7 & \text { 2. } 10 \text { and } 15 & \text { 3. } 16 \text { and } 24\end{array}$
When the LCM is not obvious:
Ex.
Find the LCM between 144 and 168.
$144=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$ Shared factors are $2 \cdot 2 \cdot 2 \cdot 3 \ldots$,
$168=2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 \quad$ other factors are $2 \cdot 3 \cdot 7 \ldots$ so

$$
\mathrm{GCF}=2 \cdot 2 \cdot 2 \cdot 3 \cdot 2 \cdot 3 \cdot 7=1,008
$$

Review Practice:

Find the GCF and LCM for each:

1. 36 and 168
2. 28,42 , and 105

Venn Diagrams are a great way to solve GCF and LCM problems.
Example: Use a Venn diagram to find the GCF and LCM between 84 and 140.
$84=2 \cdot 2 \cdot 3 \cdot 7$
$140=2 \cdot 2 \cdot 5 \cdot 7$

Example: Use a Venn diagram to find the GCF and LCM for 75 and 105:

Practice: Use a Venn diagram to find the GCF and LCM for each.

1. 45 and 60
2. 80 and 112
3. 28, 42, and 105

Find the GCF and LCM for each pair or set of numbers:
You may use a calculator, and Venn diagrams are encouraged but not required.

1. 54 and 80

GCF \qquad LCM \qquad
3. 90 and 105

GCF \qquad LCM \qquad
5. 96 and 160
6. 153 and 180

GCF \qquad
\qquad
\qquad LCM \qquad
GCF \qquad LCM \qquad

GCF
8. 64 and 88

GCF \qquad LCM \qquad
GCF \qquad LCM \qquad
9. 270 and 351
10. 143 and 221 (neither one is prime)

GCF \qquad LCM \qquad

GCF \qquad LCM \qquad

Factoring the GCF

You can find the GCF of expressions which include variables and exponents:

Examples:

1. Find the GCF of $72 x^{5} y^{2}$ and $120 x^{3} y^{7}$:
2. Find the GCF of $93 a^{3} b^{11}$ and $124 a^{5} b^{7}$:

Practice: Find the GCF for each pair or set:

1. $15 x^{10}$ and
2. $78 m^{3} n^{4}$ and
$130 m^{5} n$
3. $28 a^{2} b$ and
$21 a b^{2}$ and $30 a^{2} b^{2}$

We have learned to Factor. Factoring is like Reverse Distribution.

To factor an expression:

a. Look for the GCF of all terms, including the variables.
b. Place the GCF outside of the parenthesis.
c. Divide each original term by the GCF to get the terms inside the parenthesis.

Examples: Factor each.

1. $57 x^{2}-152 x y$
2. $110 x^{5} y^{10}-132 x^{15} y^{5}$

Practice: Factor each.

1. $160 x^{3} y-96 x^{2} y^{2}$
2. $25 x^{4}-45 x^{3}+15 x^{2}$

Practice: Factor each.

1. $65 x^{3} y-91 x^{2} y+13 x y$
2. $44 x^{40} y^{7}-144 x^{10} y^{2}$

Factoring the GCF

For each polynomial, factor the GCF from the expression.
These should be easy enough to factor the GCF in your head.

1. $18 x^{3}-24 x$
2. \qquad
3. $3 a^{3}-6 a^{2} b+9 a b^{2}$
4. \qquad
5. $16 a-32 a b+20 b$
6. \qquad
7. $14 m^{5}-28 m^{3}+12 m^{2}$
8. \qquad
9. $10 a^{3}-8 a^{2} b^{2}+14 a^{2} b$
10. \qquad
11. $8 x^{2} y-18 x^{2}+12 x y^{2}$
12. \qquad
13. $30 x y^{4}-20 x y^{3}-15 x y^{2}$
14. \qquad

Factoring the GCF

For each polynomial, factor the GCF from the expression.
You will likely need to find the GCF separately with these problems.
8. $80 x^{3}-64 x$
8. \qquad
9. $52 a^{3}-68 a^{2} b+60 a b^{2}$
9. \qquad
10. $70 a^{2}-56 a b+42 b^{2}$
10. \qquad
11. $60 m^{5}-48 m^{3}+108 m^{2}$
11. \qquad
12. $95 a^{9} b^{8}-70 a^{6} b^{12}$
12.
13. \qquad

A polynomial is a sum of one or more terms called monomials.
Examples: $\begin{array}{cc}x+y & 2 x^{3}-x y+4 y \quad 12 x^{3}\end{array}$

A monomial is the product of variables and constants (numbers).
Examples: $2 a b c^{3} \quad x^{7} \quad-\frac{5}{7} x$

A binomial is the sum of two monomials.

Examples: $2 a^{2}+a$

$\frac{2}{3} x^{4}-5 x^{2}$

A trinomial is the sum of three monomials.
Examples: $2 a-b+c \quad x^{7}-y^{5}-3$

The degree of a monomial is the sum of the exponents of its variables.
Examples: $2 a^{2}{ }^{2^{\text {nd }} \text { degree }} \quad 5 a b^{6} c=1+6+1=8^{\text {th }}$ degree note: The degree of a constant is zero.

The degree of a polynomial is the largest degree of its monomial terms.
Examples: $\quad 2 a^{2}-7 a$ is a $2^{\text {nd }}$ degree binomial $5 a^{5}+2 b^{2}-3 c$ is a $5^{\text {th }}$ degree trinomial

Polynomials

Ordering Polynomials:

The general rule for ordering a polynomial is to write the terms in descending order by powers of a given variable:
Example: Arrange by descending powers of $\mathrm{x}: 2 x+x^{3}-5-3 x^{5}$

Example: Arrange by descending powers of $\mathrm{x}: x y+x y^{2}-x+y$

Practice:

Order the following polynomials by descending powers of x .

1. $5 x y-3 x^{2}-x^{3}+2 x y^{2}$
2. $3 x^{2}+4 x^{3} y^{2}+5 x^{2} y^{3}$
3. $a x^{2}-a x^{3}-a^{3} x+a^{2}$
4. $7+2 x-x^{3} y+x^{5}$

Answer:

What degree is each of the polynomials above?

Other tiebreakers: Alphabetical order.
Ex: Arrange by descending powers of a: $2 a^{3} c^{2}+a^{3} b-5 a^{3} b^{2}-3 a^{3} c$

Practice:

Order the following polynomials by descending powers of a.

1. $-3 a b+a^{2}-c^{2}+2 b^{2}$
2. $3 a^{2}+a^{3} b+5 a^{2} b^{3}-a^{3} c^{2}$
3. $a x^{2}-a x^{3}-a^{3} y+a^{2} y$
4. $7 a z^{2}+3 a x-2 a y^{2}+a$

Find the area of each rectangle below:

Multiplying Binomials:

Setup a grid like the one above to solve the following:

1. $(x+3)(x+5)$
2. $(2 x+5)(x-2)$

The FOIL Method:
First ac
Outer ad
Inner bc
Last bd

$$
(a+b)(c+d)=a c+a d+b c+b d
$$

Examples: Expand each using the FOIL Method.

1. $(a+1)(a-3)$
2. $(2 x-y)(3 x+y)$

Practice: Expand each using the FOIL Method.

1. $(x+3)(x-5)$
2. $(2 a-c)(3 a+c)$
3. $(1-2 a)(3-a)$
4. $\left(x^{2}-y^{2}\right)(x+4)$

Multiplying Polynomials

Find the area of each rectangle below:

$$
(x+2 y)(x-y+3)
$$

$(a+4 b+3)(2 a+3 b-4)$

Multiplying longer polynomials is easier using the grid method:
Setup a grid like the one above to solve the following:
Remember to combine like terms and place answers in descending order.

1. $(x+y+3)(y+5)$
2. $(2 a+5 b-3)(a-b+2)$

Practice:
Expand each.

1. $(x+y+3)(y+5)$
2. $(2 a+5 b-3)(a-b+2)$

Practice:
Express the area of the shaded region below as a polynomial in simplest form:

Beyond the Grid

Once you have learned the grid and FOI L methods, you should begin to see multiplying polynomials is just distribution.

Examples:

1. $(x+y)(2 x-y+5)$
2. $(5 a-4 b)(2 a-3 b+1)$

Practice:
Multiply each.

1. $(x-2 y)(x+y+5)$
2. $(a-2 b)(2 a+3 b-4)$

Now, multiply each using the Distributive Property.
You should notice something about the answers.

1. $(3 x-2 y)(x+5 y)$
2. $a(2 a-b)-6 b(2 a-b)$
3. $3 x(x+5 y)-2 y(x+5 y)$
4. $(a-6 b)(2 a-b)$

Work Backwards: write each as a product of binomials.

1. $x(2 x+3)-y(2 x+3)$
2. $a(2 a+3 b)-2 b(2 a+3 b)$
3. $2 x(x+3 y)-5(x+3 y)$
4. $2 a(a-7)-5 b(a-7)$

Use the grid method when problems get more complex:

1. $(x-2 y+5)(2 x+3 y-2)$
2. $\left(a^{3}-2 a^{2}+5 a\right)\left(a^{2}+3 a-2\right)$

Multiply each pair of binomials using the FOIL Method.
Simplify answers.

1. $(x+3)(x+5)$
2. $(a+5 b)(2 a-3 b)$
3. $(x+3)(x-3)$
4. $(a+5 b)(a-5 b)$
5. $(x+3)(x+3)$
6. $(a-5 b)^{2}$
\# 1 and \# 2 are typical trinomials.
\# 3 and \# 4 are called DI FFERENCE OF SQUARES. Why?
\# 5 and \# 6 are called PERFECT SQUARE trinomials.
More practice: Difference of Squares.
Solve each using FOIL, try to recognize a shortcut.
7. $(2 x-3)(2 x+3)$
8. $(2 a+3 b)(2 a-3 b)$
9. $\left(x^{2}+5 x\right)\left(x^{2}-5 x\right)$
10. $\left(a^{3}+3\right)\left(a^{3}-3\right)$

How do you recognize a difference of squares?

More practice: Perfect Squares.
Solve each using FOIL, try to recognize a shortcut.

1. $(2 x-3)^{2}$
2. $(2 a+3 b)^{2}$
3. $\left(x^{2}+5 x\right)^{2}$
4. $\left(a^{3}-3\right)^{2}$

Challenge: Expand $(a-b)(a-b)(a+b)(a+b)$ in 1 minute.

Factor out the GCF for each trinomial.
100. $15 x^{3} y^{2}-20 x^{2} y^{2}+10 x y^{3}$
200. $108 a^{4} b^{2}+135 a^{4} b-36 a^{2} b^{2}$
300. $136 a^{3} x-72 a x^{2}+48 a x$
400. $119 x^{3}-68 x^{2}+187 x$

Multiply each:
Order your answers by descending powers of x or a .
100. $2 x y(x-3 y)+3 x\left(x^{2}-x y\right)$
200. $\left(2 a^{2}+b\right)\left(b^{2}-a\right)$
300. $\left(x^{2}+5 x-3\right)\left(x^{2}-4 x\right)$
400. $(a-3 b+c)(2 a+2 b-c)$

Multiply each.

Order your answers by descending powers of x or a .
100. $(30+3)(30-3) \quad$ 200. $(a+5 b)^{2}$
300. $\left(x^{4}-3 x^{3}\right)\left(x^{4}+3 x^{3}\right) \quad$ 400. $\left(a^{2}-3\right)^{2}\left(a^{2}+3\right)^{2}$

Factor each expression (Reverse distribution):

1. $42 x^{3} y^{3}-21 x^{2} y^{4}+30 x y^{5}$
2. \qquad
3. $48 a^{5} b^{3}-80 a^{4} b^{2}$
4. \qquad
5. $57 x^{6} y^{2}-95 x^{5} y+152 x^{4}$
6. \qquad

Simplify each

(Distribute, combine like terms, and then reorder the terms by descending powers of x or a):
4. $4\left(x^{2} y-x y\right)+x(x y-3 y)$
4. \qquad
5. $a b(a+3)-2 a(4-b-5 a b)$
5. \qquad
6. $x^{2}\left(2 x y-x^{2}\right)-2(x-7)$
6. \qquad

Multiply

(FOIL or Grid method)
7. $\left(x^{2}-4\right)(x+3)$
7. \qquad
8. $(a-3)(2-a)$
8. \qquad
9. $(3 x-2)(x-y)$
9. \qquad

Factoring and FOILPractice Quiz

Multiply each (Look for perfect squares and difference of squares):
10. $(x+y)(x-y)$
10. \qquad
11. $(2 a+3)^{2}$
12. $(3+2 a)(3-2 a)$
13. $\left(2 x+y^{3}\right)\left(2 x-y^{3}\right)$
14. $(2 a+b)(2 a+b)(2 a-b)$
13. \qquad
15. $(3+2 x)^{2}$
14. \qquad
15. \qquad
16. $[(x-1)(x+1)]^{2}$
16.

A common use for multiplying polynomials involves finding area.
Example: Express the area of the shaded regions in terms of x .

I will call these 'frame' problems because the diagrams usually look like frames.

Practice: Express the area of the shaded regions in terms of x.

Polynomial Applications

Word problems can involve similar area problems, but the diagrams must be given.

Example:

You are matting a photograph that is twice as tall as it is wide. You want to have five inches of matting around the entire photograph. Express the area of matting you will need based on the width (w) of the photograph.

Example:

Barry bought a new rectangular rug for his rectangular dining room. The rug is three feet longer than it is wide. The room is six feet wider than his rug, and seven feet longer than the rug. Express the area of bare floor that will be showing in terms of the rug's width (w).

Answer: If there are 190 square feet of bare floor showing, what ar the dimensions of the rug?

Practice:

Jeremy has a backyard pool surrounded by a tiled walkway that is two yards wide. The pool is 5 yards longer than it is wide. Express the area of the walkway in terms of the width (w) of the pool.

Answer: If the walkway is 196 square yards, how long is the pool?

Practice:

A painting has a frame that is 7 inches wider and 8 inches taller than the artwork it surrounds. The artwork is 5 inches taller than it is wide. Express the area of the frame in terms of the painting's width (w).

Answer: If the area of the frame is 196 square inches, what is the height of the painting?

Polynomial Applications

Express the area of each shaded region in terms of x.

Express the area of each shaded region in terms of x.
4.

5.

6.

Polynomial Applications

Solve each. Include a sketch for each.
7. Connor is planting a garden surrounded by 1 -foot square concrete blocks. The garden will be 10 feet longer than it is wide. Express the number of square blocks he will need based on the width (w) of the garden.

If he uses 56 blocks, how many square feet is the area enclosed by the blocks? \qquad
8. Kerry takes a sheet of paper that is 3 inches shorter than it is wide. He cuts a hole out of the paper that leaves 2 inches of paper on all sides of the hole. Express the area of the remaining paper rectangle in terms of w, the width of the original sheet.

If there are $52 \mathrm{in}^{2}$ of paper remaining, what were the dimensions of the cut-out hole? \qquad
9. A company manufactures windows that are 30 inches taller than they are wide. The window comes with an aluminum frame that is 6 inches wide on three sides, and 10 inches wide at the bottom. Express the area of the aluminum frame in terms of the window's width (w).

If the area of the frame is $1,392 \mathrm{in}^{2}$, what is the height of the window? \qquad

Standard Form and Factoring

A Quadratic Equation written as a function looks like this:

$$
y=A x^{2}+B x+C \text { we will call this Standard Form. }
$$

Examples: List values for A, B, and C:

$$
y=2 x^{2}+3 x-5 \quad y=x^{2}+5 x
$$

When you multiply a pair of ($1^{\text {st }}$ degree) binomials, you get a quadratic expression.

$$
(x+3)(x-5)=x^{2}-2 x-15
$$

Think!

In the equation above, what are the A, B, and C values?
How did we get the values for B and C ?

Factoring: Easy ones.

Today we will learn to factor simple quadratics by reversing the FOIL method.

Review: Multiply $(x+2)(x+4)$

$x^{2}+6 x+8$ Factoring:

Find two numbers which can be added to get 6 and multiplied to get 8.

More Examples: Factor.

1. $x^{2}-5 x+6$
2. $x^{2}-9 x-10$

Practice: Factor. Write Prime for any that cannot be factored.

1. $x^{2}+8 x+12$
2. $x^{2}+8 x+15$
3. $x^{2}+10 x+24$
4. $x^{2}+10 x+9$
5. $x^{2}+8 x-33$
6. $x^{2}-4 x+5$
7. $x^{2}+16 x-36$
8. $x^{2}-5 x+4$

Practice: Factor. Write Prime for any that cannot be factored.

1. $x^{2}-8 x+7$ 2. $x^{2}-7 x-30$
2. $x^{2}+x-30$
3. $x^{2}+19 x-42$
4. $x^{2}-2 x+1$
5. $x^{2}-3 x+4$
6. $x^{2}+7 x+10$
7. $x^{2}-x-2$

Factoring: GCFwith 'Easy Ones'

Examples: Factor completely.
Begin by factoring out the GCF.
Finish by using reverse FOIL.
$2 x^{3}-10 x^{2}+8 x$
$2 x^{2} y-14 x y+24 y$

Practice: Factor Completely.

1. $5 x^{2}+40 x+60$
2. $x^{5}+8 x^{4}+15 x^{3}$
3. $a x^{2}+10 a x-24 a$
4. $3 x^{2}+39 x+90$
5. $2 x^{3}+10 x^{2}-72 x$
6. $-x^{2} y^{2}-13 x y^{2}+30 y^{2}$

Practice: Factor. Write Prime for any that cannot be factored.

1. $3 x^{2}-24 x+21$
2. $x^{3}-2 x^{2}+x$
3. $-14 x^{2}+28 x-14$
4. $5 x^{2}-65 x-150$
5. $9 x^{2}+63 x+90$
6. $-24 x^{2} y+24 x y+48 y$

Factoring 'Easy Ones' with GCFs

Factor eact expression by first factoring the GCF and then using reverse FOI L. Write Prime for any that cannot be factored.

1. $4 x^{2}-4 x-24$
2. $2 x^{2}-28 x+98$
3. $-5 x^{2}-35 x-60$
4. $x^{2} y-18 x y+17 y$
5. $9 x^{2}+36 x-108$
6. $6 x^{2} y-12 x y-48 y$
7. $10 x^{3}-30 x^{2}-100 x$
8. $2 x^{2}+4 x-70$
9. $7 x^{2}+49 x+42$
10. $x^{2} y^{2}-x y^{2}-72 y^{2}$
11. $9 x^{2}+27 x-36$
12. $-3 x^{2}+6 x-3$
13. $a x^{2}+32 a x+31 a$

Examples: Factor completely.

$$
x^{2}-9 \quad 25 x^{2}-49 \quad x^{4}-36
$$

Practice: Factor Completely.

1. $x^{2}-1$
2. $9 x^{2}-121$
3. $x^{8}-25$
4. $100 x^{2}-169$
5. $9 x^{4}-1$
6. $2 x^{2}-50$

You can factor out the GCF first.
Examples: Factor completely.

$$
x^{3}-25 x \quad 16 x^{2}-100 \quad 3 x^{4}-27
$$

Practice: Factor Completely.

1. $5 x^{2}-45$
2. $4 x y^{2}-36 x$
3. $x^{7}-x$
4. $x^{3} y^{3}-4 x y$
5. $6 x^{5}-6 x$
6. $-4 x^{2}+64$

Examples: Factor completely.

$$
x^{2}-6 x+9 \quad 25 x^{2}-70 x+49
$$

Practice: Factor Completely.

1. $x^{2}-10 x+25$
2. $x^{2}+16 x+64$
3. $4 x^{2}+12 x+9$
4. $x^{4}+14 x^{2}+49$

Recognizing Perfect Squares:

Don't be fooled by these imposters!
Only one is a perfect square. Can you find it? Factor and Check!

1. $x^{2}-14 x-49$
2. $4 x^{2}+18 x+81$
3. $25 x^{2}-20 x+4$
4. $9 x^{4}-6 x+1$

Easy Ones, Perfect Squares, and Difference of Squares:
Put it all together. Try to recognize how to factor each.

1. $2 x^{2}-16 x-40$
2. $a^{2}-81$
3. $x^{2}-6 x+5$
4. $17 x^{2}-34 x-51$

Factoring and FOILReview

Multiply
(FOIL or Grid method)

1. $\left(x^{2}-3 x+1\right)(x+5)$
2. \qquad
3. $(4 a-3)^{2}$
4. $(3 x-2)(x-y)$
5. $\left(12 x^{3}-7\right)\left(12 x^{3}+7\right)$

Factor Each Completely

(Look for GCFs, Perfect Squares, and Difference of Squares. Write PRIME for any that cannot be factored.)
5. $x^{2}-13 x-30$
5. \qquad
6. $x^{4}-16$
6. \qquad
7. $x^{2}-9 x+20$
7. \qquad
8. $x^{3}-3 x^{2}+18 x$
9. $x^{2}+17 x+42$
10. $3 x^{2}-27$
10. \qquad
11. $9 x^{2}-30 x+25$
\qquad
12. $3 x^{4}-39 x^{2}+108$
4. \qquad

Factoring Practice

Challenge 1:
Factor Completely.

$$
256 x^{8} y-y^{9}
$$

Ch. 1.

Challenge 2:

The number 65,535 is equal to $2^{16}-1$. Use what you know about a difference of squares to find the four prime factors of 65,535 without a calculator (be ready to explain how this can be done).

Ch. 2.

Factoring and FOILPractice Quiz

Multiply
(FOIL or Grid method)

1. $\left(a^{2}-b\right)(a+2 b-3)$
2. \qquad
3. $(2 x-5)^{2}$
4. $(3 x-y)(3 x+y)$
\qquad
5. $\left(x^{3}-2\right)(2 x+3)$
6. \qquad

Factor Each Completely

(Look for GCFs, Perfect Squares, and Difference of Squares.
Write PRIME for any that cannot be factored.)
5. $x^{2}-13 x-30$
5. \qquad
6. $121 a^{2}-b^{2}$
6. \qquad
7. $x^{2}-19 x+48$
7. \qquad

Factoring and FOILPractice Quiz

Factor Each Completely
(Look for GCFs, Perfect Squares, and Difference of Squares.
Write PRIME for any that cannot be factored.)
8. $x^{2} y-8 x y+15 y$
8. \qquad
9. $x^{2}-12 x+11$
\qquad
10. $5 x^{2}+15 x$
10. \qquad
11. $25 x^{2}-40 x+16$
12. $2 x^{2}+2 x-40$
12. \qquad
13. $x^{4}-81$
13.
14.
14. $144 x^{2}-24 x+1$

Factoring and FOILSelf-Check

Factor each (Look for perfect squares and difference of squares, GCF, and easy ones).

1. $x^{2}-6 x+9$
2. $x^{2} y-5 x y+6 y$
3. $9 x^{2}-49$
4. $x^{2}-7 x-30$
5. $4 x^{2}-28 x+49$
6. $4 x^{2}-64$
\qquad

Factoring and FOILSelf-Check

Factor each (Look for perfect squares and difference of squares, GCF, and easy ones).

1. $x^{2}-6 x+9$
2. $x^{2} y-5 x y+6 y$
3. $9 x^{2}-49$
4. $x^{2}-7 x-30$
5. $4 x^{2}-28 x+49$
6. $4 x^{2}-64$

Easy Ones: Factor completely. Write PRIME for any that cannot be factored.
Ex.: $x^{2}-9 x+20$

1. $x^{2}+6 x-16$
2. $x^{2}-3 x-28$
3. $x^{2}-25 x-54$
4. $3 x^{2} y+12 x y-15 y$

Difference of Squares: Factor completely. Write PRIME where applicable. Ex.: $16 x^{2}-9$

1. $49 x^{2}-144$
2. $x^{2}-100$
3. $a x^{2}-a y^{2}$
4. $4 x^{2}+36$

Perfect Squares: Factor completely. Write PRIME where applicable.
Ex.: $x^{2}-10 x+25$

1. $x^{2}+8 x+16$
2. $4 x^{2}-40 x+100$
3. $x^{2}-2 x-1$
4. $25 x^{2}+60 x y+36 y^{2}$

Hard Ones 'Magic Number'
Look at the trinomial below.
Is there a GCF to be factored?
Is it an 'Easy One', a Perfect Square, or a Difference of Squares?

$4 x^{2}-16 x+15$

The answer to all of these questions is "No." We will call this type of factoring the 'Magic Number' Method.

Example: Factor $4 x^{2}-16 x+15$

1. Find/Factor the Magic Number.
2. Rewrite the middle term.
3. Regroup.
4. Factor out the GCFs.
5. Finish \qquad (__)

Two more examples. Watch Carefully!

1. $3 x^{2}+11 x-20$
2. $10 x^{2}-9 x+2$

Practice: Factor each completely.

1. $9 x^{2}-3 x-2$
2. $4 x^{2}+13 x+10$

Practice: Factor each completely.

1. $25 x^{2}+20 x+4$
2. $3 x^{2}-30 x+27$
(hint: there are two of each)
3. $x^{2}+4 x-5$
4. $81 x^{2}-72 x+16$
5. $x^{2}-144$
6. $x^{2}+22 x+40$
7. $x^{2} y^{2}-9$
8. $16 x^{2}+56 x+49$
9. $3 x^{2}+25 x-18$

Now, try to factor them.

1. $x^{2}+4 x-5$
2. $81 x^{2}-72 x+16$
3. $x^{2}-144$
4. $5 x^{2}-46 x+9$
5. $x^{2}+22 x+40$
6. $x^{2} y^{2}-9$
7. $16 x^{2}+56 x+49$
8. $3 x^{2}+25 x-18$

Factor each: Write Prime for any that cannot be factored.

1. $x^{2}-14 x+49$
2. $x^{2}+3 x-28$
3. $10 x^{2}+11 x-6$
4. $25 x^{2}-y^{2}$
5. $9 x^{2}-12 x+4$
6. $9-x^{2}$
7. $x^{2}-4 x+3$
8. $8 x^{2}-22 x-21$

Factoring Review

Factor each: Write Prime for any that cannot be factored.
9. $x^{2}-21 x+54$
11. $4 x^{2}-14 x+49$
12. $81 x^{2}-121 y^{2}$
13. $12 x^{2}-11 x-5$
14. $4 x^{2} y^{2}-81$
15. $2 y^{2}-5 x y+2 x^{2}$
16. $x^{4}-2 x^{2} y^{2}+y^{4}$

Factor each: Write Prime for any that cannot be factored.
100. $x^{2}-16$
200. $x^{2}-3 x-54$
300. $12 x^{2}-25 x+12$
400. $6 x^{2}-21 x y+9 y^{2}$

Factor each: Write Prime for any that cannot be factored.
$\begin{array}{ll}\text { 100. } 169-x^{2} & \text { 200. } x^{2}-19 x+48 \\ \text { 300. } x^{6}-x^{2} & \text { 400. } 2 x^{2} y^{2}-9 x y+9\end{array}$

Factor each: Write Prime for any that cannot be factored.
100. $7 x-49 \quad$ 200. $25 x^{2}-10 x+1$
300. $10 x^{2}+11 x-8 \quad$ 400. $x^{4}-5 x^{2}+4$

Factoring and FOILPractice Quiz

Multiply each (Look for perfect squares and difference of squares, order the terms by descending powers of x):

1. $(x-3)^{2}$
2. \qquad
3. $(3 a+1)(3 a-1)$
4. \qquad
5. $(3 x+y)(2 y-x)$
6. \qquad

Factor each COMPLETELY

NONE OF THE PROBLEMS BELOW ARE PRIME.
(Look for perfect squares and difference of squares, easy ones and hard ones).
4. $9 x^{2}-y^{2}$
4. \qquad
5. $a^{3}-9 a$
5. \qquad
6. $x^{2}-17 x+60$
6. \qquad
7. $2 x^{2}-10 x+12$
\qquad

Factoring and FOILPractice Quiz

Factor each COMPLETELY

Write PRIME for any that cannot be factored.
(Look for perfect squares and difference of squares, easy ones and hard ones).
8. $25 x^{2}-100 y^{2}$
8. \qquad
9. $4 x^{2}-36 x+81$
9. \qquad
10. $x^{2}-3 x+40$
10. \qquad
11. $10 x^{2}-39 x+14$
11.
12. $x^{4}-2 x^{2} y^{2}+y^{4}$
12. \qquad

Simplifying Expressions

Practice: Factor each.

1. $x^{2}+3 x$
2. $x^{2}-9$
3. $2 x^{2}+x-15$

Now, try to simplify the following:
$x^{2}+3 x$
$x^{2}-9$
$2 x^{2}+x-15$

1. $x^{2}-9$
2. $2 x^{2}+x-15$
3. $x^{2}+3 x$

Practice: Simplify each expression.

1. $\frac{x(x+7)}{(x+7)(x+2)}$
2. $\frac{x^{2}-9 x+20}{x^{2}+x-20}$

Practice: Simplify each expression.

1. $\frac{x^{2}-25}{x^{2}-10 x+25}$
2. $\frac{x^{2}-5 x+4}{2 x^{2}-9 x+4}$

Practice: Simplify each expression.
$2 x(x-3)(x+3)$

1. $x(x+3)(x+3)$
$5 x^{3}-10 x^{2}$
2. $3 x^{2}-6 x+2$
$6 x^{2}-23 x+20$
$x^{4}-18 x^{2}+81$
3. $4 x^{2}-20 x+25$
4. $x^{2}+6 x+9$

Simplify by Factoring

Factor each and simplify where possible.
. $\frac{x(x-7)}{}$

1. $(x-7)^{2}$
2. $\frac{x^{2}+5 x+6}{x^{2}+x-6}$
3. $\frac{x^{2}+12 x-13}{x^{2}-2 x+1}$
$3 x^{2}-15 x+12$
4. $3 x^{2}+15 x+12$
$x^{3}-9 x^{2}+14 x$
5. $x^{3}-4 x^{2}+4 x$
$5 x^{2}-40 x+35$
6. $x^{2}-8 x+7$
$x^{4}-5 x^{2}+4$
7. $x^{2}-3 x+2$

Solving Equations by Factoring

Practice: Solve each.

1. $3 x+5=5$
2. $3(x+5)=15$
3. $x(x+3)=0$

If $a b=0$ then either $a=0$ or $b=0$.
If $(x-3)(x+5)=0$ then either $(x-3)=0$ or $(x+5)=0$.
Examples: Solve each for x. Each will have two solutions.

1. $x(x+7)=0$
2. $(x-9)(x+5)=0$
3. $x^{2}-6 x-16=0$
4. $2 x^{2}-7 x-15=0$

Practice: Solve for x. Each will have two solutions.

1. $x^{2}-3 x=0$
2. $x^{2}+9 x+20=0$
3. $x^{2}-16=0$
4. $6 x^{2}+7 x-10=0$

Tricky Examples: Solve each for x.

1. $x^{2}-x=2$
2. $\frac{1}{5} x^{2}+5=2 x$

Tricky Practice: Solve each for x .
3. $x^{2}-3 x=10$
4. $\frac{1}{2} x^{2}-x=12$

Solving Quadratics by Factoring

Factor each and simplify where possible.

1. $(x-3)(x-5)=0$
2. $2 x^{2}-5 x+2=0$
3. $x^{2}+12 x+36=0$
4. $25 x^{2}-1=0$
5. $x^{2}-x-12=0$
6. $6 x^{2}-19 x+10=0$
7. $9 x^{2}+3 x-2=0$
8. $x^{2}+6 x=7$
9. $8 x^{2}+1=6 x$

Challenge: $x^{4}+9=10 x^{2}{ }^{(}$a solutions)

Factoring Problems

For the problems below, you must know the Pythagorean Theorem:

In any right triangle:

$$
a^{2}+b^{2}=c^{2}
$$

Example:

Find the lengths of the sides of the right triangle below.

Practice:

Find the lengths of the sides of the right triangle below.

Practice:

1. In a right triangle, the hypotenuse is 9 inches longer than the shortest side. The length of the medium side is just one inch longer than the length of the shortest side. What is the perimeter in inches of the triangle?
2. The hypotenuse of a right triangle is 1 cm longer than the long leg. The short leg is 1 cm shorter than half the long leg. What is the triangle's area?

Solving Quadratics by Factoring

1. $x^{2}-10 x+21=0$
2. $16 x^{2}-9=0$
3. $x^{2}-x=56$
4. $25 x^{2}+3=20 x$
5. $9 x^{2}+9 x=10$
6. $x^{2}=3 x+10$
7. $8 x^{2}=18 x+5$
8. $x^{3}-4 x=0$ (3 solutions)
9. The equation $x^{2}+k x+36=0$ has only one solution for positive integer k. What is k ?
10. Find the perimeter of the triangle below.

Clever Factoring:

Some tricks and more difficult problems:

Example:

One of the solutions to the equation $x^{2}+a=6 x$ is 5 .
a. What is the value of a ?
b. What is the other solution?

Practice:

1. The equation $3 x^{2}-a x=8$ has $x=4$ as a solution.
a. What is the value of a ?
b. What is the other solution?
2. The equation $a x^{2}-5 x=2$ has $x=1$ as a solution.
a. What is the value of a ?
b. What is the other solution?

Example:

How can the polynomial $(x+y)^{2}-9$ can be factored into the product of two trinomials?

Practice:

1. Factor the following into a product of trinomials: $(x-2)^{2}-y^{2}$.
2. Factor the following into a product of trinomials: $x^{2}-y^{2}-10 x+25$.

Solving Trickier Equations Practice:

1. Solve for x : $3\left(x^{2}-4\right)-x\left(x^{2}-4\right)=0$.

Hint: Where have you seen something similar to this before?
2. Solve for $\mathrm{x}: \frac{10}{x^{2}}-\frac{9}{x}+2=0$.

Hint: use a common denominator.
3. Solve for $\mathrm{x}: \frac{x-6}{14-3 x}=\frac{3}{x-2}$.

Perfect Squares and Difference of Squares: Factor each.
100. $9-x^{2} \quad$ 200. $6 x^{2}-24$
300. $2 x^{2} y^{2}+12 x y+18$
400. $x^{4}-81$

Easy Ones and Magic Number:
Write Prime for any that cannot be factored.
$\begin{array}{ll}\text { 100. } x^{2}-6 x+8 & \text { 200. } x^{2}-22 x+72 \\ \text { 300. } 12 x^{2}+5 x-3 & \text { 400. } 6 x^{2}+x y-2 y^{2}\end{array}$

Solve each: Write Prime for any that cannot be factored.
100. $\frac{1}{3} x^{2}-30 x=0 \quad$ 200. $x^{2}+24=11 x$
300. $\frac{4}{7} x^{2}+7=4 x \quad$ 400. $6 x^{3}=25 x^{2}-14 x$

Factoring and FOILPractice Test

Factor each COMPLETELY

Write PRIME for any that cannot be factored.
(Look for perfect squares and difference of squares, easy ones and hard ones, and GCF problems).

1. $x^{2}-4 y^{2}$
2. \qquad
3. $34 x^{2}-85 x$
4. \qquad
5. $x^{2}-13 x-30$
6. \qquad
7. $3 x^{2}+x+10$
8. \qquad
9. $a^{3}-4 a^{2}+4 a$
10. \qquad
11. $2 x^{2}+19 x+24$
12. \qquad
13. $x^{4}-11 x^{2}-80$
14. \qquad

Factoring \& FOILPractice Test (4)

Solve for x :
Some problems may have more than one solution. List all solutions in the blank provided.
8. $3 x(x-7)=0$
8. $x=$
9. $x^{2}-6 x+9=0$
9. $x=$ \qquad
10. $10 x^{2}+6=17 x$
10. $x=$
11. $x^{2}+72=18 x$
11. $\mathrm{x}=$

Multiply:
12. $(5 x-4)(x-5)$
12. \qquad
13. $\left(3 x^{2}-5 x\right)^{2}$
13. \qquad
14. $(x-2)(x-3)(x+2)$

Factoring and FOILPractice Test

Solve for x :
Some problems may have more than one solution. List all solutions in the blank provided.
8. $3 x(x-7)=0$
8. $x=$
9. $x^{2}-6 x+9=0$
9. $x=$
10. $10 x^{2}+6=17 x$
10. $\mathrm{x}=$
11. $\frac{1}{6} x^{2}+12=3 x$
11. $\mathrm{x}=$

Simplify each:
12. $\frac{x^{2}-5 x+6}{x^{2}-x-6}$
12. \qquad
13. $\frac{4 x^{2}-36 x+81}{4 x^{2}-81}$
14. $\frac{4 x^{3}-10 x^{2}}{5 x^{2}-20}$
14.

