
With the widespread use of computers in the bio-
medical domain, a vast, rich range of biomedical
data, including coded data, as well as free-text data

has been stored in digital format. Computer applica-
tions can interpret coded data automatically while
free-text data pose challenges to system developers.
To enable access to free text in the biomedical
domain, natural language processing (NLP) systems
have been developed that facilitate information
retrieval (IR), information extraction (IE), and text
mining on free text.1–3 However, all NLP systems
require identification of terms (a term can be a single
word or a multi-word phrase) in free text with entries
in a lexical table.3,4 Terms in free text can be ambigu-
ous and may have multiple unrelated senses in the
lexical table. For example, capsule in discharge sum-
maries can mean a unit for a medication, such as in
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Automatic Resolution of
Ambiguous Terms Based on
Machine Learning and
Conceptual Relations
in the UMLS

A b s t r a c t Motivation. The UMLS has been used in natural language processing applications
such as information retrieval and information extraction systems. The mapping of free-text to
UMLS concepts is important for these applications. To improve the mapping, we need a method to
disambiguate terms that possess multiple UMLS concepts. In the general English domain, machine-
learning techniques have been applied to sense-tagged corpora, in which senses (or concepts) of
ambiguous terms have been annotated (mostly manually). Sense disambiguation classifiers are then
derived to determine senses (or concepts) of those ambiguous terms automatically. However, man-
ual annotation of a corpus is an expensive task. We propose an automatic method that constructs
sense-tagged corpora for ambiguous terms in the UMLS using MEDLINE abstracts. 

Methods. For a term W that represents multiple UMLS concepts, a collection of MEDLINE abstracts
that contain W is extracted. For each abstract in the collection, occurrences of concepts that have
relations with W as defined in the UMLS are automatically identified. A sense-tagged corpus, in
which senses of W are annotated, is then derived based on those identified concepts. The method
was evaluated on a set of 35 frequently occurring ambiguous biomedical abbreviations using a gold
standard set that was automatically derived. The quality of the derived sense-tagged corpus was
measured using precision and recall. 

Results. The derived sense-tagged corpus had an overall precision of 92.9% and an overall recall of
47.4%. After removing rare senses and ignoring abbreviations with closely related senses, the over-
all precision was 96.8% and the overall recall was 50.6%. 

Conclusions. UMLS conceptual relations and MEDLINE abstracts can be used to automatically
acquire knowledge needed for resolving ambiguity when mapping free-text to UMLS concepts. 
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“He was put on Dyazide one capsule daily over the
past two days” or a body region, such as in “There
may be faint lucency in the left internal capsule.” It
may have related senses, such as the chemical term
potassium, which can mean a laboratory test item in
“Her potassium had been as low as 2.7 on July 27” or
a drug item in “Her discharge medications are
digoxin five days a week and potassium supple-
ments 10 mEq each week day.” It can also be an
abbreviation that has multiple full forms, or that has
the same spelling as a general English word, such as
HR, which denotes hour or heart rate, and SOB,
which denotes short of breath as well as the general
English word sob. Resolving the ambiguity of
ambiguous terms is a case of word sense disam-
biguation (WSD). In the general English domain,
some WSD systems  resolve ambiguity caused by
entries in machine-readable dictionaries that have
multiple senses. Note that entries in machine-read-
able dictionaries can be phrases as well as words.

The need for resolving term ambiguity has been real-
ized in information retrieval, information extraction,
and text mining applications in the biomedical
domain. Aronson1 found that ambiguity resolution is
important for improving the performance of
MetaMap, a free text to UMLS concept mapping pro-
gram. An information extraction system, MedLEE,
which was originally developed for radiology
reports, encountered ambiguity problems when
broadened to a larger domain.5 Nadkarni et al.6

found that completely automated concept indexing
in medical reports cannot be achieved without
resolving ambiguity in free text. In an automatic
knowledge discovery system, DAD-system, Weeber
et al.7 found that in order to replicate Swanson’s lit-
erature-based discovery of the involvement of mag-
nesium deficiency in migraine,8 it was important to
resolve the ambiguity of an ambiguous abbreviation
mg, which denotes magnesium or milligram.

Several preliminary attempts to resolve term ambi-
guity in biomedical NLP applications utilized hand-
crafted rules. Rindflesch and Aronson9 used a set of
handcrafted rules based on semantic types of neigh-
boring words to resolve ambiguity when mapping
free text to UMLS concepts. The MedLEE system10

applies rules based on local contextual information.
However, it is expensive and difficult to write a com-
prehensive set of the necessary disambiguation rules.
Furthermore, manual maintenance and further
extension of rule sets become increasingly complex.

In the computational linguistics field, the disam-
biguation knowledge for WSD problem can be

acquired automatically through three different
sources11:

1. Knowledge-bases, usually a machine-readable dic-
tionary, such as WordNet,12 Longman Dictionary of
Contemporary English,13 Roget’s Thesaurus.14

2. Sense-tagged corpora, usually manually assembled,
such as the Semcor corpus,12 or the DSO corpus.15

3. Raw corpora, a WSD method using raw corpora
only, is usually referred as sense discrimination.16

Supervised machine learning techniques have been
used to acquire disambiguation knowledge from
sense-tagged corpora, where senses of ambiguous
words have been manually tagged. Performance of
the resulting systems was promising,17–19 but manual
sense-annotation of a corpus is an expensive task and
inter-agreement among annotators is low.20 Some
researchers attempt to acquire disambiguation
knowledge from large resources, such as machine-
readable dictionaries with or without combination
with large raw corpora.21–23

In a previous study,24 we investigated an unsuper-
vised sense disambiguation approach that consists of
two phases: automatic acquisition of sense-tagged
corpora from raw corpora using unambiguous syn-
onyms in the UMLS (i.e., terms that are not ambigu-
ous in the UMLS and hold one sense of the corre-
sponding ambiguous term), and automatic
construction of WSD classifiers from the acquired
sense-tagged corpora using supervised machine
learning techniques. The WSD classifiers could accu-
rately determine senses of ambiguous terms in
untagged instances. However, there are some limita-
tions of using unambiguous synonyms to derive
sense-tagged corpora, as described later. In this
paper, we followed the two-phase approach while
using conceptual relationships defined in UMLS25 to
acquire sense-tagged corpora. The method was eval-
uated on a set of ambiguous biomedical abbrevia-
tions. The remainder of the paper is organized as fol-
lows. The following section provides related work
and background knowledge; the Methods section
presents our methods; the Experiment section and
the Results section describe an experiment and its
results; and the last section contains a discussion as
well as future directions of the current study. 

Related Work and Background

We first introduce previous WSD research that
applies conceptual relationships defined in a
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machine-readable dictionary in the computational
linguistics domain, i.e., acquires disambiguation
knowledge by using relations defined in a machine-
readable dictionary. We then discuss the one sense per
discourse hypothesis, which is an assumption of our
method. Supervised machine-learning techniques are
presented next. Finally, the background knowledge
about the resources, the summary of our method and
differences from related work are provided. 

WSD Research Using Relations

Many machine-readable dictionaries contain a rich
set of relationships linking senses. For example, all
nouns in WordNet,12 which is a handcrafted online
lexicon, are organized into one conceptual network
through IS-A relationships. For a term W, we define a
term that has relations with a sense S of W in a con-
ceptual network as a conceptual relative of W via an
associated sense S. For example, the word summer is
a conceptual relative of the word spring with an asso-
ciated sense the springtime sense of spring, since sum-
mer and the springtime sense of spring are seasons of
the year and the relation between them is a sibling
relation (i.e., they share a common parent—the sea-
son of the year). There are two observations for WSD
methods that use conceptual relatives. One is that
conceptual relatives with certain relations tend to
appear in similar contexts. For example, the summer
and springtime sense of spring can appear in similar
contexts, such as “Spring is my favorite season” and
“Summer is my favorite season.” The other observa-
tion is that correct senses for the words in a natural
language expression will have closer sense relations
(in a conceptual network) than incorrect combina-
tions of senses. For instance, in “Spring is my favorite
season,” the springtime sense of spring has a IS-A rela-
tion with the season of the year, while other combina-
tion of senses (e.g., spring as a fountain and season as
sports season) have weaker relationships.

There are two different WSD methods using concep-
tual relatives based on the above two observations.
One method uses unambiguous conceptual relatives
with certain relations, such as IS-A or synonymy, in a
concept-oriented dictionary to derive sense-tagged
corpora automatically for use with supervised WSD
classifiers. Our previous work,24 as described earlier,
belongs to this category. For example, we can build a
sense-tagged corpus for CSF by extracting all
instances that contain the full forms cerebral spinal
fluid or colony-stimulating factor and then replacing
the full forms by the ambiguous term CSF along with
the corresponding senses. A WSD classifier is then

constructed automatically from the sense-tagged cor-
pus by applying supervised machine learning tech-
niques (the detailed information about supervised
machine learning will be described later). An experi-
ment demonstrated that classifiers trained on the
derived sense-tagged corpora achieved an overall
precision of about 97% for terms that had unambigu-
ous synonyms found in the UMLS, with greater than
90% precision for each individual ambiguous term.

The other method consists of looking up the concep-
tual relatives of an ambiguous term W in the context.
The method takes a number of conceptual relatives
via a relation and a formula to measure the related-
ness of conceptual relatives with each of the senses of
W in a concept-oriented dictionary, and then uses
them to determine the sense of W in the context. In
the general English domain, researchers usually
choose WordNet as the concept-oriented dictionary.
Sussna26 used several relation types (such as IS-A
relation, synonymy) in WordNet and chose a meas-
ure that takes account of the shortest path, the num-
ber of edges associated with the same type leaving a
node, the depth of a given edge in the overall tree,
and a weight assignment for each relation type.
Sussna evaluated his method on five documents from
Time magazine and compared it to human experts
using the same evidence, with a precision measure of
52.3%. Agirre and Rigau23 proposed a method that
used conceptual relatives via the relation IS-A and
chose a measure which is sensitive to the following
parameters: the length of the shortest path that con-
nects the concepts involved, the depth in the hierar-
chy and the density of concepts in the hierarchy.
Agirre and Rigau27 evaluated their method on the
noun portion of a document that contained 2,079
words. The overall performance was measured in
terms of precision and recall, with 66.4% for precision
and 58.8% for recall.

One Sense per Discourse

In their experiments with WSD, Gale, Church, and
Yarwosky28 observed a strong relationship between
discourse and sense. They proposed a hypothesis: one
sense per discourse. When a word occurs more than
once in a discourse, all occurrences of that word will
share the same meaning. They conducted an experi-
ment using 9 ambiguous words and a total of 82 pairs
of concordance lines for those words and showed that
94% occurrences of ambiguous words from the same
discourse have the same meaning. However,
Krovetz29 reported that 94% is only true for coarse-
grained distinctions (i.e., to distinguish between bank
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as a bank of a river or as a financial bank) among senses;
it is only 67% using fine-grained distinction (i.e., a
financial bank sense of bank will split into several
senses such as a depository financial institution, savings
bank, or the funds held by a gambling house) among
senses when evaluated on two manually tagged cor-
pora, Semcor12 and DSO,30 using WordNet as the
sense inventory. However, Krovetz’s29 result was
based on two manually sense-tagged corpora in
which the agreement was 57%20 for the overlapping
part. The hypothesis has been used by Yarowsky22 for
WSD in the general English domain.

Supervised Machine Learning Techniques on
Sense-tagged Corpora

Generally, supervised machine learning techniques31

use annotated data to make a decision for un-anno-
tated data. It is widely used to learn classifiers for
decision support systems in the biomedical domain.
For example, given a set of medical reports each
describing a pregnancy and a birth using 200 features
(e.g., patient’s weight, height), machine-learning tech-
niques can be used to learn a classifier to categorize
patients with high risk of emergency cesarean sec-
tion. In order to use supervised machine-learning
technique, the first step requires transforming each
annotated instance to a feature representation, usu-
ally a feature set fv = {(f1, v1), (f2, v2), . . . (fn, vn)}, where
fi is a feature and vi is its corresponding value. For
example, each medical report is transformed to a set
with 200 elements in the above example. After trans-
forming each instance to a feature representation, a
supervised learning algorithm can be used to build
classifiers, i.e., to categorize an un-annotated instance
to a fixed number of categories. A large number of
learning algorithms have been proposed in the litera-
ture including Bayesian probabilistic algorithms, arti-
ficial neural networks, decision trees, support vector
machines, and instance-based algorithms.31

When supervised machine-learning techniques are
used to resolve the ambiguity of a term W, we first
need to transform each sense-annotated instance of
W to a feature vector based on the context of W,
which is formed by terms surrounding W. An impor-
tant issue in using supervised learning for generating
a WSD classifier is the appropriate choice of features.
Intuitively, a good feature should capture sources of
knowledge critical for determining the sense of W.
Various kinds of features representing different
knowledge sources have been presented in WSD
research.17 Features can be the surrounding terms of

W in a fixed window size and their values can be
Boolean values to indicate their existence in a given
instance. For instance in Sentence I below, the fea-
tures with nonzero values in the corresponding fea-
ture vector when considering the ambiguous word
CSF and a window size of 3, are the, origin, of, and, the,
processes. Features can also be derived from the sur-
rounding terms of W in a fixed window size in the
universe through different mappings, such as the ori-
entation and/or distance of the surrounding terms
(e.g., the features for Sentence I when considering
the orientation and distance in a window size 3 are
the/L3, origin/L2, of/L1, and/R1, the/R2, processes/R3,
where L is for left, R is for right and the number is for
the distance), local collocations (i.e., a short sequence
of words near W taking the word order into account),
utilization of further linguistic knowledge such as
part of speech (POS) tags (i.e., verb or noun) or stem-
ming techniques (discharge, discharged, discharging, and
discharges are treated as the same feature discharg), or
domain knowledge, such as the semantic categories
in a semantic lexicon.

Sentence 1. After a brief summary of current views on the
origin of CSF and the processes underlying its elaboration,
the author discusses studies of isolated chorid plexus in
extracorporeal perfusion.

Several supervised learning algorithms have been
implemented in the general English domain includ-
ing Naïve Bayes algorithm, decision lists, neural net-
work, and instance-based learning. We used Naive
Bayes algorithm. For other supervised machine
learning algorithm, readers can refer to a survey
paper of Marquez.32 A Bayes classifier applies the
Bayes decision rule when choosing a sense S from a
set of senses {S1, S2, . . . , Sm} given a feature set fv,
the rule that minimizes the probability of error33:

Equation 1. Decide S if P(S | fv) > P(Sk | fv) for all k
= 1, . . . , m that Sk ≠ S,

The Bayes decision rule is optimal because it mini-
mizes the probability of error. For each individual
case, it chooses the sense with the highest conditional
probability and hence the smallest error rate. The
conditional probability P(SK | fv) is computed using
Bayes’ Theorem:

P(fv | Sk) P(Sk)
Equation 2. P(Sk | fv) = ______________

P(fv)

P(Sk) is the prior probability of sense Sk: the proba-
bility that we have an instance of Sk if we do not have
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any knowledge about the context. P(fv | Sk) is the
likelihood probability of fv given Sk, and P(fv) is the
prior probability of the feature set fv; fv usually can
be eliminated (since it is a constant for all senses and
hence does not influence what the maximum is). By
applying the logarithm on the probabilities, Equa-
tion 1 is equivalent to the following equation:

Equation 3. S = argmax(log P(fv | Sk) + log P(Sk))
Sk

P(fv | Sk) is usually estimated using the Naïve Bayes
assumption, i.e., features are conditionally independ-
ent of each other:

Equation 4. P(fv | Sk) = P({(fj, vj) | j = 1, . . . , n} | sk)
n

= � P((fj, vj) | sk)
j = 1

Using the Naive Bayes assumption, we get the fol-
lowing modified decision rule:

Equation 5.
S = argmax[log P(Sk) + � log P((fj, vj) | Sk)]

Sk (fj, vj) � fv

P((fj, vj), Sk) and P(Sk) are computed via maximum
likelihood estimation from the sense-tagged corpus:

Equation 6.

occu((fj, vj), Sk)
P((fj, vj) | Sk) = _____________ ,

occu(Sk)

where occu((fj, vj), Sk) is the number of (fj, vj) co-
occurring with sense Sk in the sense-tagged corpus,
occu(Sk) is the number of occurrences of Sk in the
sense-tagged corpus, and occu(W) is the total number
of occurrence of W. 

The power of Naïve Bayes learning is due to its effi-
ciency and its ability to combine evidence from a
large number of features that are derived from a large
number of instances.

Resources 

Below we present information about several resources
on which our method and evaluation are based.

MEDLINE 34 is the NLM bibliographic database that
contains over 11 million references to journal articles
in life sciences with a concentration on biomedicine.
Each entry contains the citation information for the
corresponding journal article, and also often contains
an abstract.

The UMLS integrates various terminologies pertain-
ing to biomedicine.35 The Metathesaurus (META) is
one component of the UMLS that contains informa-
tion about biomedical concepts and terms from many
controlled terminologies. The META is organized by
concept, where each distinct concept has been
assigned a unique concept identifier (CUI). All con-
cept names corresponding to the same concept are
assigned the same CUI. For instance, congestive heart
failure and biventricular heart failure are two different
concept names with the same CUI (C0018802). Each
concept name has a term status to indicate whether it
is the preferred concept name of the corresponding
concept, or if it is suppressed (i.e., abbreviated or
problematic). In the 2001 version of the UMLS, the
table MRCON lists all concept names with their cor-
responding CUIs. It has 797,359 English concepts and
1,462,202 different English concept names (in the fol-
lowing, the 2001 version of the UMLS is assumed).

Another table called MRREL lists relationships
between UMLS concepts. There are 9,524,132 entries
in MRREL. Among them, 9,518,798 were derived
directly from the source vocabularies. The remaining
5,334 entries are relationships between different
sources that were created during the construction of
the UMLS. There are 9 different relationship types,
including broader (RB), narrower (RN), other-related
(RO), parent (PAR), child (CHD), sibling (SIB), simi-
lar (RL), qualifier (AQ), and be-qualified (QB). How-
ever, since relations in the UMLS were mostly
derived from different source vocabularies, the defi-
nition of relationship types may not be consistent.
Two concepts may have multiple relationship types
defined in the MRREL table. For example, the con-
cepts C0004015 (i.e., aspartic acid) and C0085845 (i.e.,
aspartate) have a parent relation and a broader rela-
tion from source vocabulary AOD99; they have a nar-
rower relation from source vocabulary MSH2001; in
source vocabulary LNC10o, they have an other-
related relation. A concept may have a relation with
itself. For example, the concept C0022709 angiotensin
= converting enzyme has RO relation with itself in
source vocabularies CSP2000 and LNC10o.

The SPECIALIST Lexicon, an English language lexi-
con, is another component of the UMLS. The lexicon
consists of a set of lexical entries with one entry for
each spelling or set of spelling variants with a partic-
ular part of speech. The table LRAGR lists all variant
forms for each entry in the lexicon. The UMLS also
contains a Semantic Network where each CUI in
META has been assigned to one or multiple semantic
categories. 
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There are two different kinds of ambiguities present-
ing in the UMLS: conceptual and semantic. Concep-
tual ambiguity refers to the ambiguity caused by
terms with multiple concepts, whereas semantic
ambiguity refers to the ambiguity caused by terms
that have multiple semantic categories. For example,
concepts that are organic chemicals most likely are also
pharmacologic substances.

There are 187,943 (of 797,359) concepts possessing
multiple semantic categories in the UMLS. There
were 4,547 conceptually ambiguous terms that repre-
sented 11,178 concepts in the UMLS ambiguous term
table AMBIG.SUI, with an average ambiguity of 2.46.
Johnson4 investigated the semantic ambiguity of a
semantic lexicon that was based on the UMLS and
discharge summaries and proposed a set of prefer-
ence rules to reduce the semantic ambiguity. For
example, in the discharge summary domain, chemi-
cal concepts occur only under the semantic category
chemicals viewed functionally instead of under chemical
viewed structurally. After applying his preference
rules to the derived semantic lexicon, occurrences of
entries with multiple semantic types were reduced
from 9.41% to 1.46% in discharge summaries. Rind-
flesch and Aronson9 considered the conceptual ambi-
guity of the UMLS and proposed to use semantic cat-
egories of neighboring concepts to resolve the
ambiguity. They conducted a preliminary study and
found that a manually crafted set of rules based on
semantic categories of neighboring concepts success-
fully resolved conceptual ambiguity around 80% of
the time. Aronson and colleagues37 proposed that
machine-learning techniques could be used to derive
rules instead of the manual crafting process. How-
ever, there is no published study of this approach
according to our knowledge. 

Below we introduce two programs that are discussed
in the Methods section and the Experiment section:
MetaMap1 and the UMLS abbreviation extraction
program.38

MetaMap1 is a highly configurable program that
maps biomedical text to concepts in the META.
Options control MetaMap’s output as well as its
internal behavior, such as how aggressive to be in
generation of word variants, whether or not to ignore
META strings containing very common words, and
whether to consider or to ignore word order. The ini-
tial purpose of the MetaMap program was to
improve retrieval of bibliographic material such as
MEDLINE citations. It has also been applied to sev-
eral data mining efforts such as to detect clinical find-

ings,39 molecular binding expressions,40 or novel rela-
tionships between drugs and diseases.7

The UMLS abbreviation extraction program38 was
developed for extracting (abbreviation, full form)
pairs from the UMLS. It utilizes several fixed patterns
associated with abbreviations in the META as well as
the fact that abbreviations are considered synonyms
in the META. The program was executed using the
2000 version of the UMLS. It extracted 163,666 differ-
ent (abbreviation, full form) pairs with a recall of 96%
and precision of 97.5%. The UMLS abbreviations
were highly ambiguous: 54% of abbreviations with
three characters had multiple full forms; the number
of different full forms for all abbreviations with three
characters was 3.05, while it was 10.9 for abbrevia-
tions with two characters. The UMLS abbreviations
covered 66% of unique full forms found in the med-
ical reports, and for frequently occurring abbrevia-
tions, the coverage was around 80%.

Our Method and Its Difference from Related Work

The method proposed in this article considers con-
ceptual ambiguity in the UMLS. It utilizes conceptual
relations defined in the UMLS to automatically
derive sense-tagged corpora for ambiguous terms.
WSD classifiers can then be automatically con-
structed using the derived sense-tagged corpora.

Our methods differ from related work in several
ways. The previous investigations for resolving
UMLS ambiguity were based on manually crafted
rules. Johnson’s method concentrated on reducing
semantic ambiguity in a semantic lexicon; it was
based on a particular sub-domain and manually
crafted rules, but provided no solution for resolving
ambiguity in the context. The method suggested by
Aronson and colleagues,37 which proposes to apply
machine learning techniques to derive a set of WSD
rules based on semantic categories of neighboring
concepts, requires an annotated corpus, where
semantic categories of neighboring concepts are
annotated and senses of the corresponding ambigu-
ous terms are also annotated.

The previous WSD work23,26,27 that utilized concep-
tual relatives disambiguated all nouns in general
English text; the conceptually oriented dictionary
used was WordNet. Our method concentrates on
automatic construction of a sense-tagged corpus for
each individual ambiguous biomedical term in the
biomedical domain. Instead of using WordNet, we
use the UMLS as our conceptually oriented knowl-
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edge source. WordNet and the UMLS are different in
the following ways. The goal of WordNet is to pro-
vide a database of lexical relations for computational
linguistic research, and the power of WordNet lies in
a manual handcrafting process and domain-inde-
pendence. The goal of the UMLS is to overcome
retrieval problems caused by differences in terminol-
ogy by integrating different electronic biomedical ter-
minologies into one concept-oriented knowledge
base. Almost all relationships are directly mapped
from original source terminologies. WordNet has a
strict definition about its relationship types such as
IS-A etc. However, in the UMLS, the definition of
relationship types in MRREL is vague, and different
terminologies have their own definition for the same
relationship type. For example, a parent relation may
be considered as a child relation in two different
sources, causing circular hierarchical relationships.41

Our previous work,24 which used unambiguous syn-
onyms to derive a sense-tagged corpus, is limited
because it can only be used to build a WSD classifier
for an ambiguous term W under the following two
assumptions: each sense of W has unambiguous syn-
onyms; and there are enough sense-tagged instances
for each sense. However, some senses may not have
unambiguous synonyms, or may not occur in enough
instances. The current method does not require that
each sense have unambiguous synonyms. It utilizes
conceptual relatives that occur in the context to deter-
mine the sense and then to derive a sense-tagged cor-
pus. Our previous method and the current method
can be combined to increase our ability to acquire
sense-tagged corpora automatically, and then used to
train supervised WSD classifiers.

Methods

Let W be an ambiguous word and let the set SEN( W) =
{S1, S2, ..., Sm} be its m senses. The method is based on
the observation that terms with related senses of Si tend
to co-occur with the sense Si rather than other senses of
W. We assume that multiple occurrences of W hold the
same sense in the MEDLINE abstract, i.e., one sense per
abstract. The context for acquiring disambiguation
knowledge in this paper is the whole abstract.

Let CUISi be the concept identifier that represents the
sense Si. We denote the concept identifier sense rep-
resentation set {CUIS1, CUIS2, ..., CUISm} as SCUI(W).
For example, the SCUI(W) for the following four
senses of the abbreviation CSF is {C0007806,
C0009392, C0072454, C0893357}:

■ CSF1: cerebrospinal fluid (C0007806), 

■ CSF2: colony stimulating factor (C0009392), 

■ CSF3: cytostats factor ( C0072454), 

■ CSF4: competence and sporulation factor (C0893357).

Figure 1 illustrates the construction process of a
sense-tagged corpus of W as well as the process of
constructing a WSD classifier. The conceptual rela-
tives of W are acquired through the MRREL table. A
collection of MEDLINE abstracts that contain W,
denoted as CMA(W), is extracted. For each abstract in
the collection, occurrences of conceptual relatives of
W from the collection are automatically identified.
The sense-tagged corpus of W is derived using con-
ceptual relatives identified in the context. A super-
vised WSD classifier is then constructed using the
derived sense-tagged corpus. In the following, we
first introduce the method for establishing concep-
tual relatives for W from the UMLS. We then discuss
the method, CRMap (for Conceptual Relatives Map-
ping program), which maps conceptual relatives in
abstracts. The construction of the sense-tagged cor-
pus is presented next. 

Establishing Conceptual Relatives for Each Sense

For each sense Si of W, we use concepts that have a
direct relation with Si (i.e., concepts with CUIs that
co-occur with CUISi in the MRREL table) to derive
conceptual relatives. We consider concepts with rela-
tion types that are conceptual such as “Broader”,
“Narrower,” and “Parent.” We exclude concepts with
qualifier relation types (i.e., “Qualifier” or “Be-Qual-
ified”) since they have high frequency, and provide
little sense disambiguation information. Each CUI is
added to the relative CUI set of W (RCUI(W)) with its
associated sense Si and the relations. We consider
that each concept has a synonymy relation with itself,
and add each CUISi of W in the relative CUI set of W
with its associated sense Si and a relationship type
synonymy, but disregard relations among different
senses of W in the MRREL table. For example,
C0020255 (i.e., hydrocephalus) and C0007806 (i.e.
CUIS1 of CSF) have an “Other” relation in MRREL;
therefore C0020255 is added to the relative CUI set of
CSF with its associated sense CSF1.

For each CUI in the relative CUI set of W, we gather all
unambiguous English concept names. Because con-
cept names with a term status “suppressed” are prob-
lematic, we exclude them; in addition, because abbre-
viations are highly ambiguous, we exclude those
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identified as abbreviations by the UMLS abbreviation
extraction program. Each concept name is normalized
by changing it to lower-case, removing symbols such
as nos in cerebrospinal fluid, nos or unspecified in hydro-
cephalus, unspecified, removing some patterns such as
parenthetical expressions (ck) in creatine kinase (ck), or
ck – in ck – creatine kinase, and substituting punctua-
tions by blanks. The resulting strings with length
greater than 4 are considered as conceptual relatives of
W with corresponding associated senses. Note that
strings with length less than or equal to 4 are excluded
because they usually have a high level of ambiguity. In
addition, they may be problematic because many of
them are abbreviations in the context but are not iden-
tified as abbreviations by the UMLS abbreviation
extraction program. For example, FOX is not an
abbreviation in the UMLS; but in the text Lipid
hydroperoxides were measured by the FOX assay, it abbre-
viates ferrous oxidation with xylenol orange.

Identifying Conceptual Relatives in Each Abstract

CRMap identifies conceptual relatives in an abstract
using the following phases: preprocessing, exact-
string matching, UMLS-SPECIALIST normalization
matching, and stem normalization matching. 

In the preprocessing phase, we remove parenthetical
expressions that contain a capitalized term with fewer
than six characters. This is based on the observation
that parenthetical expressions containing a short cap-
italized term inside are usually abbreviation-type par-

enthetical expressions. The punctuation is replaced by
blank and the text is changed to lower case. As an
example, the text The influence of prednisone on S-
angiotensin-converting enzyme (S-ACE) activity was
examined is changed to the influence of prednisone on s
angiotensin converting enzyme activity was examined.

The three matching phases are processed subse-
quently. All three matching phases match conceptual
relatives of the longest possible length. The matching
phases differ in whether they require normalization
or not, and if so, the normalization method used. In
the exact-matching phase, conceptual relatives are
used without normalization, while in the UMLS-SPE-
CIALIST normalization matching phase, CRMap
normalizes each word in the conceptual relative set
and abstracts and maps it to its base-form in accor-
dance with the SPECIALIST Lexicon LRAGR table, if
applicable. In the stem-normalization matching
phase, CRMap uses the Porter-stemmer42 to normal-
ize each word to its stem.

For example, in Abstract 1, which contains the abbre-
viation CSF, three conceptual relatives are identified,
each associated with the sense CSF1 (i.e., cerebrospinal
fluid): hydrocephalus, spinal cord, and brain).

Abstract 1. The brain (CSF1_SIB) from an infant with a cys-
tic occipital mass present at birth is examined in serial section.
The occipital mass proved to be a rhombic roof ventriculocele.
Within the posterior fossa, it was bound to an occipital lobe
encephalocele which issued as a diverticulum of the left lateral
ventricle through a microgyric cortical defect in the territory
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F i g u r e  1  The process of constructing a sense-tagged corpus (STC(W)) for a specified word W from MEDLINE abstracts
based on UMLS conceptual relations. CMA(W) consists of MEDLINE abstracts that contain W. The conceptual relations of
W are acquired through the UMLS. Conceptual relatives of W (i.e., terms have conceptual relations with W) in each abstract
are automatically identified using a program we developed called CRMap. The sense-tagged corpus STC(W) is derived using
the majority vote of associated senses of identified conceptual relatives. Supervised learning is then used to automatically
construct a WSD classifier for W.
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of the left posterior cerebral artery. The posterior medial
aspects of both cerebral hemispheres were herniated downward
into the widened tentorial gap. Craniolacunae were prominent
on the inner aspect of the skull. The aqueduct and central canal
of the spinal cord (CSF1_SIB) were widely dilated, although
the lateral ventricles were collapsed. It is suggested that
hydrocephalus (CSF1_RO) secondary to obstruction to flow
of CSF through the rhombic roof entrained a sequence of
events giving rise to the rhombic roof ventriculocele and caus-
ing occlusion of the posterior cerebral artery and subsequent
diverticulation of the lateral ventricle through an infarcted
region of the posterior-medial hemisphere. 

Besides CRMap, the MetaMap program can also be
used to identify concepts that have relations with
senses of W.

Deriving a Sense-Tagged Corpus

For an abstract that contains W, since all occurrences of
W in the abstract hold the same sense S based on the
one sense per abstract assumption, we call S the sense
of W in that abstract. Note that not every abstract con-
tains conceptual relatives that can be identified using
CRMap. For an abstract that has conceptual relatives
identified by CRMap, if all conceptual relatives are
associated with one sense, the sense of W in the
abstract is assigned with that sense without any doubt.
For example, the sense of CSF in Abstract 1 is assigned
to CSF1 (i.e., cerebrospinal fluid). For abstracts that
contain conceptual relatives with multiple associated
senses, a sense assignment scheme is needed in order
to assign senses to those abstracts. For simplicity, we
use the following sense assignment scheme while
leaving other possible sense assignment schemes to
discussion: assign the majority vote of the associated
senses of the identified conceptual relatives; if there is
a tie, randomly choose one of the tied senses.

The collection of abstracts in which the sense of W
can be determined using conceptual relatives is the
resulting sense-tagged corpus for W (STC(W)). More
sense-tagged abstracts can be derived by construct-
ing a supervised WSD classifier of W that is trained
on the derived sense-tagged corpus and then by per-
forming the disambiguation task on the whole
abstract collection of W. A large sense-tagged corpus
for W is formed by combining instances in STC(W)
and instances that are sense-tagged by the con-
structed WSD classifier of W.

Experiment

The proposed method can be applied to almost all
ambiguous terms in the UMLS. There are 1,262,668

(CUI1, CUI2) unique relation pairs defined in MRREL,
where CUI1 is one of the 11,178 concepts that contain
an ambiguous concept name. An average of 113 con-
cepts have relations with each CUI1. There are only 6
(out of 4,547) ambiguous terms, where one concept
has no relations defined in MRREL. 

We performed a study to evaluate the above method
using a set of ambiguous abbreviations. There were
several reasons for using ambiguous abbreviations to
evaluate the method:

■ From the study of UMLS abbreviations, we have
frequency information for abbreviations in a col-
lection of one-year’ worth of medical reports in the
following domains: discharge summary, radiol-
ogy, neurophysiology, pathology, GI endoscopy,
ob/gyn, cardiology, and surgery.

■ Abbreviations paired with their full forms in a par-
enthetical expression provide an automatic way to
annotate the senses of abbreviations, and therefore
provide a gold standard for the study. 

■ The same abbreviation throughout one abstract
corresponds to the same full form (i.e., one sense
per abstract for abbreviations, even though one
sense per abstract may need to be measured for
other terms). 

■ Abbreviations are highly ambiguous compared
with other terms.

In the following, we discuss the derivation of
ambiguous abbreviations, and the derivation of the
gold standard. The evaluation method is presented
next. 

Derivation of Ambiguous Abbreviations

The UMLS (2001 version) was processed using the
UMLS extraction program to obtain a list of (abbrevi-
ation, full form) pairs. We chose three-letter abbrevi-
ations since they were moderately ambiguous in the
UMLS, and appeared frequently in writing. We kept
only those pairs where the abbreviation was listed as
an ambiguous term in AMBIG.SUI, had multiple full
forms, appeared more than 100 times in the collection
of medical reports, and full form was a UMLS con-
cept name.

Derivation of the Gold Standard

For each abbreviation A, conceptual relatives for each
sense of A were then established using MRREL. We
extracted a collection of MEDLINE abstracts that con-
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tained A in upper case. The collection was divided
into two sets I and II : Set I consisted of abstracts with
an occurrence of A inside a parenthetical expression,
and Set II consisted of all others. The gold standard
sense of A for each abstract in Set I was then auto-
matically derived using synonyms of A (i.e., concep-
tual relatives with concept identifiers from the sense
representation set of A).

For each abstract in Set I, if a synonym (SYN) of A
occurred in the abstract with a pattern SYN (A), we
considered the gold standard for the correct sense of
A in the abstract to be the associated sense of SYN.
After determining the correct sense of A, the abstract
was automatically modified by replacing the pattern
SYN (A) with A, and then added to the gold standard
set of A (GSS(A)). For instance, Abstract 2 was modi-
fied to Abstract 2� with the gold standard sense
attached at the beginning (separated using the sign
“|”). Only modified abstracts were used for further
processing. The sense at the beginning of each
abstract was used for evaluation purposes to deter-
mine correctness, but not used by the disambiguation
method itself.

Abstract 2. After a brief summary of current views on the
origin of cerebrospinal fluid (CSF) and the processes
underlying its elaboration, the author discusses studies of
isolated chorid plexus in extracorporeal perfusion. . . .

Abstract 2�. CSF1 | After a brief summary of current
views on the origin of CSF and the processes underlying
its elaboration, the author discusses studies of isolated
chorid plexus in extracorporeal perfusion. . . .

Evaluation 

We identified conceptual relatives in each abstract
from the MEDLINE abstracts collection of A using
CRMap and subsequently derived a sense-tagged
corpus for A (STC(A)). Additional sense-tagged
abstracts were derived by constructing a supervised
WSD classifier that was trained on STC(A) and then
performing the disambiguation task on the entire
abstract collection of A. A large sense-tagged corpus
for A was formed by combining instances in STC(A)
and instances that were sense-tagged by the WSD
classifier of A.

We evaluated STC(A) using the gold standard set of A
(i.e., GSS(A)) with two measures: recall, i.e. the ratio of
the number of abstracts with correctly identified sense
to the total number of abstracts in GSS(A), and preci-
sion, the ratio of the number of abstracts with cor-

rectly identified sense to the number of abstracts that
were sense-tagged using conceptual relatives.

We constructed a WSD classifier for A by applying
the Naive Bayes algorithm on the derived sense-
tagged corpus for A. We transformed each abstract in
the corpus to a feature set where features were words
after stemming (A was excluded for consideration as
a feature, and the Porter Stemmer42 was used) and
values were Boolean values that indicate their exis-
tence in a context. For example, features with the
value 1 in the feature set for Abstract 2� are after, a,
brief, summari ,..., in, extracorpor, and perfus. Note that
in the Naive Bayes algorithm, the inclusion of stop
words (i.e., words that occur frequently disregarding
different instances and terms) as features does not
affect the decision process, because they contribute
almost the same conditional probability to all senses. 

The constructed WSD classifier of A was executed to
assign senses for the MEDLINE abstracts that con-
tained A but were not in STC(A). A larger sense-
tagged corpus for A was then derived by combining
instances in STC(A) and instances that were sense-
assigned by the WSD classifier of A and consisted of
all abstracts that contained A. The quality of the cor-
pus was related to the quality of STC(A) and the per-
formance of the WSD classifier. The performance of
the WSD classifier was evaluated for precision on
abstracts that were in the gold standard set of A but
were not in STC(A). Note that there is no recall meas-
ure since a Naive Bayes WSD classifier determines
the sense for each instance. We also compared the
quality of sense-tagged corpora using two different
mapping programs (i.e., CRMap and MetaMap, for
several abbreviations). 

Results

Thirty-five abbreviations from the UMLS abbrevia-
tion extraction program met the criteria for the exper-
iment. The average ambiguity for the set (i.e., the
average number of senses), was 3.77, with a standard
deviation of 1.91. The ambiguity here was the poten-
tial ambiguity captured by the UMLS. The detailed
information for a few representative abbreviations is
provided in Table 1. For example, the two full forms
of BSA are body surface area and bovine surface area,
which have been assigned sense identifiers BSA1 with
a CUI C0005902 and BSA2 with a CUI C0036774.

We extracted 155,723 abstracts from MEDLINE;
80,681 of them had an occurrence of the correspond-
ing abbreviation inside a parenthetical expression;

LIU, ET AL., Automatic Resolution of Ambiguous Terms630
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70,764 had gold standard senses identified for the
corresponding abbreviations and consisted of the
gold standard set. The average ambiguity in the gold
standard set was 3. The number of abstracts in the
derived sense-tagged corpus was 85,554. Detailed
information about the collection of MEDLINE
abstracts, the derived sense-tagged corpus, and the
gold standard set for each abbreviation is listed in
columns 2, 3, and 4 of Table 2. For example, the num-
ber of abstracts in the collection of MEDLINE
abstracts for CSF was 34,483, and the number of
abstracts in the gold standard set of CSF was 10,771.

The average recall of the derived sense-tagged cor-
pus was 48.0% when evaluated on the gold standard
set, and the average precision of the derived sense-
tagged corpus was 92.5% when evaluated on the joint
set of the derived sense-tagged corpus and the gold
standard set. The average precision of the WSD clas-
sifier was 87.4% when evaluated on instances that
were in the gold standard set but not in the sense-
tagged corpus. The average precision of the large size
sense-tagged corpus was 90.0% when evaluated on
the gold standard set. The detailed information about
the performance for each abbreviation is listed in
Columns 5, 6, 7, and 8 of Table 2. In Table 2, we see
that performance differed widely among the abbrevi-
ations. For example, the sense-tagged corpora for 27
out of 35 abbreviations had a precision of over 94%
(e.g., ACE, CAD), while there were four abbreviations
(i.e., ASP, DVT, EMG, and MAC) for which the sense-
tagged corpus had a precision that was lower than
80%. Figure 2 shows the performance of the WSD
classifier in relation to the precision of the sense-
tagged corpus for different abbreviations. The X-axis
represents abbreviations ordered by ascending order
of the precision of the sense-tagged corpus. The Y-
axis represents the precision. Based on Figure 2, the
performance of the WSD classifier was generally
related to the precision of the sense-tagged corpus:
WSD classifiers trained on sense-tagged corpora with
high precision tended to perform better than those on
sense-tagged corpora with low precision. However,
there were some exceptions, for example, the sense-
tagged corpus for CPI had a precision of 100%, but
the WSD classifier trained on the sense-tagged cor-
pus for CPI had a precision of 10.7%. 

The result of the comparison between CRMap and
MetaMap is summarized in Table 3. CRMap was sig-
nificantly better than MetaMap with respect to the
quality of the derived sense-tagged corpora, except
for APC and BSA. CRMap was superior to MetaMap

with respect to the performance of the WSD classifier
for all abbreviations except for VCR and APC. The
large sense-tagged corpus derived using CRMap had
a better precision that that derived using MetaMap
for all abbreviations except VCR.
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Table 1 ■

Full Forms, Assigned Sense Identifiers (SID), and
Corresponding Concept Identifiers (CUI) for Some
Abbreviations (AW)

AW SID CUI Full Form

ACE ACE1 C0001044 acetylcholinesterase
ACE2 C0022709 angiotensin converting enzyme
ACE3 C0050385 doxorubicin cyclophosphamide
ACE4 C0108844 doxorubicin cyclophosphamide

etoposide
ACE5 C0286421 amsacrine cytarabine etoposide
ACE6 C0304721 adrenocortical extract
ACE7 C0473028 antegrade colonic enema

APC APC1 C0003315 antigen-presenting cells
APC2 C0032580 adenomatous polyposis coli
APC3 C0033036 atrial premature complexes
APC4 C0085171 aphidicholin
APC5 C0809732 activated protein c

ASP ASP1 C0038013 ankylosing spondylitis
ASP2 C0003431 antisocial personality
ASP3 C0003993 asparaginase
ASP4 C0004015 aspartic acid
ASP5 C0052546 aspartylglycine
ASP6 C0085845 aspartate

BSA BSA1 C0005902 body surface area
BSA2 C0036774 bovine serum albumin

CSF CSF1 C0007806 cerebrospinal fluid
CSF2 C0009392 colony stimulating factors
CSF3 C0072454 cytostatic factor
CSF4 C0893357 competence and sporulation factor

EMG EMG1 C0004903 exomphalos macroglossia
gigantism

EMG2 C0013839 electromyography
EMG3 C0180677 electromyographs
EMG4 C0393125 electromyogram

IBD IBD1 C0021390 inflammatory bowel diseases
IBD2 C0022104 irritable bowel syndrome

MAS MAS1 C0016065 mccune albright syndrome
MAS2 C0025048 meconium aspiration syndrome
MAS3 C0451273 macandrew alcoholism scale

PVC PVC1 C0032624 polymer vinyl chloride
PVC2 C0151636 premature premature complex
PVC3 C0280556 cisplatin cyclophosphamide

etoposide

RSV RSV1 C0035236 respiratory syncytial virus
RSV2 C0086943 rous sarcoma virus

VCR VCR1 C0042679 vincristine
VCR2 C0182936 videocassette recorder
VCR3 C0526312 vanadyl ribonucleoside complex
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Discussion

Our method can function for terms that are not
abbreviations without any change. However, in this
study we used abbreviations only because we could
automatically obtain the gold standard, and then use
it to evaluate the quality of the derived sense-tagged
corpus automatically. Therefore, we avoided the

expense and effort that is associated with obtaining a
gold standard set using experts.

We analyzed the causes of low precision for the
derived sense-tagged corpora, and there were two
causes: relatedness among different senses and the
existence of poor conceptual relatives. The cause of
low precision of the WSD classifier trained on the

LIU, ET AL., Automatic Resolution of Ambiguous Terms632

Table 2 ■

Statistical Information Associated with the Collection of MEDLINE Abstracts (CMA), Derived Sense-tagged
Corpus (STC), Gold Standard Set (GSS), and Performance Measures*

Number of Abstracts Performance (%)
________________________________________ ____________________________________________________________

ABBR CMA STC GSS STC-R STC-P WSD-P LSTC-P

ACE 9,387 6,750 (6,714) 5,856 76.7 (76.8) 97.9 (98.2) 79.6 (92.8) 93.9 (97.0)
ANA 1,898 1,206 (1,199) 896 73.3 100 98.3 (99.6) 99.6 (99.9)
APC 5,079 4,099 2,310 68.8 (68.6) 84.3 84.9 (83.5) 84.4 (84.2)
ASP 643 300 (299) 141 63.8 (63.8) 74.4 55.0 71.6
BPD 1,351 494 (482) 906 39.5 (39.7) 97.5 (99.2) 93.7 (97.1) 95.3 (97.9)
BSA 6,794 1,913 3,162 9.0 89.9 93.9 (94.3) 93.5 (93.9)
CAD 4,762 3,480 (3,478) 3,325 85.5 (85.1) 99.9 99.6 (94.5) 99.8 (99.1)
CAT 3,421 1,534 (880) 36 41.7 100 90.5 (95.2) 94.4 (97.2)
CML 5,075 3,236 3,350 61.5 99.0 96.2 (95.9) 97.9 (97.8)
CMV 7,841 4,344 (4,276) 4,944 63.1 99.4 (100) 88.2 (99.6) 95.3 (99.8)
CPI 430 48 72 22.2 100 10.7 (12.5) 30.6 (31.9)
CSF 34,483 23,469 10,771 38.4 88.6 86.7 (88.6) 87.5 (88.6)
CVA 584 408 (407) 226 76.1 100 77.8 (100) 94.7 (100)
CVP 1,094 172 587 11.4 100 98.8 (99.8) 99.0 (99.8)
DIP 649 87 112 28.6 94.1 91.0 92.0
DOB 194 25 (11) 2 100 100 NA 100
DVT 1,891 1,607 1,598 26.3 33.0 15.4 (14.5) 29.4 (29.2)
EMG 10,317 2,186 (2,149) 3,770 8.8 38.7 (39.0) 49.9 (49.2) 47.4 (46.9)
FDP 1,280 765 431 55.0 100 95.9 (96.4) 98.1 (98.4)
HSV 9,195 5,890 3,479 38.9 99.9 99.5 (99.6) 99.7 (99.7)
IBD 1,634 1,201 1,149 80.7 (81.7) 96.2 (100) 94.1 (100) 95.8 (100)
LAM 445 127 183 30.6 87.5 80.7 (82.4) 83.1 (84.2)
LDH 8,140 4,451 (4,450) 3,390 48.3 100 99.9 100
MAC 3,873 1,340 (1,308) 862 58.5 78.3 (78.5) 63.8 (64.5) 74.6 (74.9)
MAS 900 114 112 60.7 98.6 100 99.1
MCP 2,670 1,715 (1,712) 461 72.2 98.2 84.4 (85.2) 94.6 (94.8)
PCA 3,788 847 1,553 22.7 (23.3) 94.4 (98.6) 96.2 (96.7) 95.8 (97.2)
PCP 3,534 2,000 (1,991) 2,225 50.6 (50.0) 94.5 (96.3) 76.9 (99.4) 86.3 (96.9)
PEG 2,233 1,190 70 34.3 100 100 100
PSA 5,179 1,528 (1,512) 3,227 28.0 (27.6) 98.5 (100) 97.7 (99.5) 97.9 (99.6)
PVC 1,483 475 (463) 571 25.4 94.2 (98.6) 59.0 (92.0) 68.5 (93.7)
RSV 2,933 739 1,954 17.6 99.7 93.7 (94.0) 94.7 (95.0)
SLE 9,300 6,094 6,772 59.8 99.5 99.2 99.4
TPN 2,200 1,170 (1,145) 1,623 47.4 (48.3) 96.6 (100) 98.3 (99.8) 97.5 (99.9)
VCR 1,043 550 638 65.7 100 63.5 (100) 87.5 (100)

Total 155,723 85,554 (84,565) 70,764 48.0 (47.4) 92.5 (92.9) 87.4 (90.4) 90.0 (91.1)

*STC-R is the recall measure of the sense-tagged corpus when evaluated on the gold standard set. STC-P is the precision measure of the
sense-tagged corpus when evaluated on instances that were in both the sense-tagged corpus and the gold standard set. WSD-P is the preci-
sion measure of the WSD classifier that used Naïve Bayes algorithm as the machine learning algorithm and bag of stemmed word as fea-
tures through a measure when evaluated on instances that were in the gold standard set but not in the sense-tagged corpus. LSTC-P is the
precision measure of the large sense-tagged corpus when evaluated on the gold standard set (note the number of instances in the large sense-
tagged corpus is the same as the number of instances in the collection of MEDLINE abstracts). The number inside the parentheses is the cor-
responding number after removing rare sense for each abbreviation.
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derived sense-tagged corpora with high precision
was the lack of enough training instances.

The low precision of the derived sense-tagged cor-
pora for some abbreviations was caused by the exis-
tence of closely related senses. For example, there
were four senses of EMG: EMG1 (exomphalos
macroglossia gigantism), EMG2 (electromyography),
EMG3 (electromyographs), and EMG4 (electromyo-
gram). Three of them (i.e, EMG2, EMG3 and EMG4),

were closely related (every pair had a relation
defined in MRREL). The precision of STC(EMG) was
37%. ASP had two closely related senses: ASP4

(aspartic acid) and ASP6 (aspartate). They had rela-
tions defined in MRREL, and they also related to 21
concepts in common in MRREL. The precision of the
sense-tagged corpus for ASP was 74.4%. All four
abbreviations with sense-tagged corpora with a pre-
cision lower than 80% had closely related senses.
After ignoring these four abbreviations, the average
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F i g u r e  2  The precision of the WSD classifier in relation to the precision of the sense-tagged corpus. The x-axis represents
abbreviations ordered by the ascending order of the precision of STC (STC-P). Lines with diamond points denote the preci-
sion of STC (STC-P) and the precision of STC after remove rare senses (STC-P (RMRS)); and lines with circular points denote
the precision of the WSD classifier (WSD-P) and the precision of the WSD classifier after removing rare senses (WSD-P)
(RMRS).

Table 3 ■

Comparing Results of Two Mapping Programs: CRMap and Metamap*

Performance (%)
Original (Remove-Rare-Sense)______________________________________________________________________________________________________________

STC-R STC-P WSD-P LSTC-P________________________ ________________________ ________________________ ________________________
ABBR CRMap Metamap CRMap Metamap CRMap Metamap CRMap Metamap

APC 68.8 (68.6) 60.6 84.3 86.3 84.9 (83.5) 82.7 84.4 (84.2) 85.2
BSA 9.0 29.9 89.9 89.8 93.9 (94.3) 90.7 93.5 (93.9) 90.4
LAM 30.6 16.4 87.5 63.8 80.7 (82.4) 59.6 83.1 (84.2) 60.7
MAS 60.7 8.0 (53.6) 98.6 13.6 (98.4) 100.0 30.4 (100) 100.0 20.5 (99.1)
PVC 25.4 17.5 94.2 (98.6) 56.8 59.0(92.0) 39.7 (49.6) 68.5 (93.7) 45.0 (51.8)
VCR 65.7 57.5 (58.0) 100.0 99.2 (100) 63.5 (100) 97.0 (99.6) 87.5 (100) 98.3 (99.8)

*Refer to Table 2 for notation of STC-R, STC-P, WSD-P, and LSTC-P. 
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recall of the sense-tagged corpora, the average preci-
sion of the sense-tagged corpora, the precision of the
WSD classifiers, and the precision of the large sense-
tagged corpora were 50.6%, 96.4%, 91.9%, and 94.3%
respectively. 

The quality of the sense-tagged corpus was also
related to the quality of conceptual relatives for each
sense. For example, a conceptual relative of APC1

(antigen presenting cell), was cells, and textual vari-
ants of cells occurred in many abstracts; therefore our
method favored APC1. 

The low precision of the WSD classifiers was due to
the existence of rare senses (i.e., those occur less than
0.5% of the total occurrences). We excluded those rare
senses from the sense definition and re-evaluated
performance. For example, we excluded VCR3

(vanadyl ribonucleoside complex) from the sense
definition of VCR since it occurred only once. The
change of measures is presented in Table 2 using par-
enthetical expressions. The change of measures is
presented in Figure 2 using dotted lines. Generally,
the precision of sense-tagged corpora improved only
slightly, but there was a dramatic improvement in
WSD classifiers. For example, the precision of the
WSD classifier for CMV increased from 88.2% to
99.6%; and the precision of the WSD classifier for
VCR increased from 63.5% to 100%. There were a few
abbreviations with senses that had less than 10
instances in sense-tagged corpora, but had more than
0.5% of the total number of occurrences (for example,
CPI1 occurred once and CPI3 occurred once). Since
those senses were not considered to be rare, the cor-
responding WSD classifier performed poorly. For
example, the precision of the WSD classifier for CPI
was only 12.5%. After ignoring four abbreviations
with closely related senses and removing rare senses,
the average recall of the sense-tagged corpora, the
average precision of the sense-tagged corpora, the
precision of the WSD classifiers, and the precision of
the large sense-tagged corpora were 50.6%, 96.8%,
95.3%, and 96.0% respectively.

The difference in performance using CRMap and
MetaMap indicated the different goals of the two
programs. The goal of CRMap is to match only con-
ceptual relatives, while the goal of MetaMap is to
map every noun phrase in the context to UMLS con-
cepts. MetaMap fails to find conceptual relatives that
contain prepositional noun phrases whereas CRMap
does not have such limitation. For example,
MetaMap failed to identify persistent pulmonary hyper-

tension of the newborn, which is a sibling of MAS2

(meconium aspiration syndrome), as a relative of MAS2

in abstracts that contain it (e.g., MAS can easily
develop persistent pulmonary hypertension of the new
born). The running time of CRMap is much faster
than MetaMap since CRMap considers only concep-
tual relatives of a specific term.

Sense-tagged corpora derived using the proposed
method can be combined with sense-tagged corpora
derived using our previous method, i.e., using unam-
biguous synonyms, to construct WSD classifiers for
NLP systems that use the UMLS as a sense inventory.
The applied domain of WSD classifiers can be MED-
LINE abstracts as well as other text in the specialized
domain, such as medical reports. Since MEDLINE
abstracts consist of free-text from almost all sub-
domains in biomedicine, such as the biological
domain, clinical domain, and bioinformatics. 

We assumed one sense per discourse in our method.
It is almost certainly valid in MEDLINE abstracts for
domain-specific terms. However, for general English
terms, such as cold or discharge, the validity of this
assumption remains to be tested.

One limitation of the proposed method is that there
may not be enough instances for each sense. We think
that WSD classifiers derived using Naive Bayes algo-
rithm are not appropriate for terms that have senses
with less than 10 instances in the training set. With-
out enough instances, the evidence for assigning rare
senses is insufficient, and the existence of them in the
sense-tagged corpus will affect the overall perform-
ance. For example, there was only one abstract with
sense VCR3 in the sense-tagged corpus for VCR and
no abstract with sense VCR3 in the gold standard set
for VCR; this caused the WSD classifier to incorrectly
assign 80 (out of 219) abstracts to VCR3, although
here 77 abstracts had the gold standard sense VCR1,
and 3 abstracts had the gold standard sense VCR2.

We believe that rare-senses should be separated from
frequent senses when constructing a WSD system. A
hybrid WSD system seems to be unavoidable. One
part of the system should handle rare senses by using
handcrafted WSD rules or WSD knowledge learned
using machine learning techniques that do not depend
on statistical information, such as instance-based
methods,43 where the sense assignment depends on
the similarity measure of two instances. The other part
of the system should handle frequent senses using
WSD knowledge learned from many instances.
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In this study, each conceptual relative appeared to
contribute equally to the sense assignment. However,
different relations and different sources may have dif-
ferent levels of contribution to the sense assignment.
We plan to further investigate relations defined in dif-
ferent sources and to formulate a new sense assign-
ment scheme. For abstracts with conceptual relatives
from multiple senses, a weight-sense assignment
scheme should be possible to formulate. In addition,
we plan to use clustering techniques to find instances
that are associated with rare senses or unknown
senses. Finally, we plan to evaluate our method on a
manually sense-tagged WSD test collection, the
National Library of Medicine WSD test collection,36

which consists of 50 ambiguous terms from the UMLS
and 100 sense-tagged instances for each term.

Conclusion

The mapping of free-text to UMLS concepts is an
important task for NLP applications. To improve the
performance of the mapping, a method to resolve
terms that possess multiple concepts is necessary.
Several preliminary attempts were based on manual
handcrafted rules, which were often incomplete and
unscalable. Supervised machine-learning techniques
have been used to construct WSD classifiers auto-
matically from sense-tagged corpora. However, man-
ual sense-annotation of a corpus is also a manual
task. In this article, we acquired sense-tagged corpora
automatically by utilizing conceptual relations in the
UMLS and abstracts in MEDLINE so that WSD clas-
sifiers can be constructed automatically. The method
can be used on almost all ambiguous terms in the
UMLS. The derived sense-tagged corpora had a pre-
cision of 96.8% and a recall of 50.6% when evaluated
on majority senses of a set of abbreviations after
ignoring abbreviations with closely related senses.
The large size sense-tagged corpora that contained all
abstracts in MEDLINE with an occurrence of the cor-
responding abbreviation had a precision of 96.0%
when evaluated on the majority senses of a set of
abbreviations after ignoring abbreviations with
closely related senses. The gold standard set used for
the evaluation was derived automatically. This work
demonstrated that sense-tagged corpora can be used
to construct WSD classifiers using Naive Bayes learn-
ing for NLP systems, provided that there are enough
instances for each sense.

The authors thank Dr. Alan Aronson at National Library of Medi-
cine for sharing the MetaMap.
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