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Abstract

This paper employs non-parametric specification tests developed
in Hong and Li (2005) to evaluate several one-factor reduced-form credit
risk models for actual default intensities. Using estimates for actual de-
fault probabilities provided by Moody’s KMV from 1994 to 2005 for
106 U.S. firms in seven industry groups, we strongly reject popular
univariate affine model specifications. As a good compromise between
goodness-of-fit and model simplicity we propose to assume that the log-
arithm of the actual default intensity follows an Ornstein-Uhlenbeck
process, also known as the Black-Karasinski (BK) model. For the BK
model specification, we find that there is substantial mean-reversion in
actual log-default intensities, with an average half-time of roughly 18
months. Our results also show that the level of pairwise correlation in
log-default intensities differs across industries. It is higher among oil
and gas companies, and lower for healthcare firms.
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1 Introduction

This paper estimates a time-series model for U.S. corporate default intensities
using one-year default probabilities as estimated by Moody’s KMV EDF rates.
Our data consists of 12 years of monthly EDF rates for 106 firms from five
industry groups: broadcasting and entertainment, cars, healthcare, oil and
gas, and retail. We employ the non-parametric specification tests developed
in Hong and Li (2005) to evaluate several one-factor reduced-form credit risk
models for actual default intensities. Our findings strongly reject popular
univariate affine model specifications such as the Ornstein-Uhlenbeck model,
the CIR model and the CIR model with jumps. As a good compromise between
goodness-of-fit and model simplicity we propose to assume that the log default
intensity follows an Ornstein-Uhlenbeck process, also known as the Black-
Karasinski (BK) model.

Because of a substantial small-sample bias in the firm-specific maximum-
likelihood estimates of the mean-reversion coefficients, and to account for the
co-movement in default risk across firms, we then impose a joint distribution
of EDF rates across firms in the same industry. We employ the EM algorithm
together with Gibbs sampling to account for missing and censored data in our
sector-by-sector estimation strategy. Using the BK model specification, we
find that there is substantial mean-reversion in actual log-default intensities,
with an average half-time of roughly 18 months. Our results also show that
the level of pairwise correlation is different for different industry groups. It is
higher among oil and gas companies, and lower for healthcare firms.

The remainder of this paper is structured as follows. Section 2 describes our
data source for conditional default probabilities. In Section 3, we introduce
four parametric models for default intensities, and Section 4 describes the
strategy and results for the reduced-form time-series model estimation. In
Section 5, we perform nonparametric tests of the different model specifications.

2 Data

We use the one-year Expected Default Frequency (EDF) data provided by
Moody’s KMV as our measure of actual default probabilities. We will discuss
this measure only briefly, referring the reader to Berndt, Douglas, Duffie, Fer-
guson, and Schranz (2005) for a more detailed description. The concept of
the EDF measure is based on structural credit risk framework of Black and
Scholes (1973) and Merton (1974). In these models, the equity of a firm is
viewed as a call option on the firm’s assets, with the strike price equal to
the firm’s liabilities. The “distance-to-default” (DD), defined as the number
of standard deviations of asset growth by which its assets exceed a measure
of book liabilities, is a sufficient statistic of the likelihood of default. In the
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current implementation of the EDF model, to the best of our knowledge, the
liability measure is equal to the firms short-term book liabilities plus one half
of its long-term book liabilities. Estimates of current assets and the current
standard deviation of asset growth (volatility) are calibrated from historical
observations of the firms equity-market capitalization and of the liability mea-
sure. For a detailed discussion, see, for example, Appendix A in Duffie, Saita,
and Wang (2005).

Crosbie and Bohn (2001) and Kealhofer (2003) provide more details on
the KMV model and the fitting procedures for distance to default and EDF.
Unlike the Merton model, where the likelihood of default is the inverse of the
normal cumulative distribution function of DD, Moody’s KMV EDF measure
uses a non-parametric mapping from DD to EDF that is based on a rich his-
tory of actual defaults. Therefore, the EDF measure is somewhat less sensitive
to model mis-specification. The accuracy of the EDF measure as a predictor
of default, and its superior performance compared to rating-based default pre-
diction, is documented in Bohn, Arora, and Korbalev (2005). Duffie, Saita,
and Wang (2005) construct a more elaborate default prediction model, using
distance to default as well as other covariates. Their model achieves accuracy
that is only slightly higher than that of the EDF, suggesting that EDF is a
useful proxy for the physical probability of default. Furthermore, the Moodys
KMV EDF measure is extensively used in the financial services industry. As
noted in Berndt, Douglas, Duffie, Ferguson, and Schranz (2005), 40 of the
worlds 50 largest financial institutions are subscribers.

We obtain monthly one-year EDF values from Moody’s KMV for the time
period July 1993 through March 2004. For the majority of firms in our sample,
we observe all 12 years of data. As indicated by Kurbat and Korbalev (2002),
Moody’s KMV caps its one-year EDF estimate at 20%. Since this truncation,
if untreated, would bias our estimator, we explicitly account for this censoring
with the associated conditional likelihood, as explained below. Moody’s KMV
also truncates the EDF below at 2 basis points. Moreover, there is a signif-
icant amount of integer-based granularity in EDF data below approximately
10 basis points. We therefore remove from the sample any firm whose sample
average EDF is below 10 basis points. There were occasional missing data
points. These gaps were also treated exactly, assuming the event of censoring
is independent of the underlying missing observation. Table 1 lists the firms
for which we have EDF data, showing the number of monthly observations
for each as well as the number of EDF observations that were truncated from
above at 20% or truncated from below at 0.02%. We also report the firm’s
average one-year EDFs. Figure 2 displays the time series of the median EDF
rates for the healthcare, oil-and-gas, and broadcasting-and-entertainment sec-
tors.
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Figure 1: Median one-year EDF rates by sector. Source: Moody’s KMV.

3 Parametric Model for Default Intensity

The default intensity of an obligor is the instantaneous mean arrival rate of
default, conditional on all current information. To be slightly more precise, we
suppose that default for a given firm occurs at the first event time of a (non-
explosive) counting process N with intensity process λ, relative to a given
probability space (Ω,F , P ) and information filtration {Ft : t ≥ 0} satisfying
the usual conditions. In this case, so long as the obligor survives, we say that
its default intensity at time t is λt. Under mild technical conditions, this means
that, conditional on survival to time t and all information available at time t,
the probability of default between times t and t + h is approximately λth for
small h. We also adopt the relatively standard simplifying doubly-stochastic,
or Cox-process, assumption, under which the conditional probability at time
t, for a currently surviving obligor, that the obligor survives to some later time
T , is

p(t, T ) = E
(

e−
R T
t

λ(s) ds
∣

∣ Ft

)

. (1)

We study four one-factor models for the default intensity that are a special
case of the system of stochastic dynamic equations

dλt = [α0 + α1λt + α2λt log λt] dt + [β0 + β1λ
ν
1] dBt + γJλt∆Jt. (2)

Here, α0, α1, α2, β0, and β1 are constants, ν ∈ {0.5, 1} and γJ ∈ {0, 1}.
(B, Bv) is a two-dimensional standard Brownian motion and ∆J is a pure

5



Table 2: Model specifications for actual default intensities.

Id Model α0 α1 α2 β0 β1 β2 ν γJ

OU Ornstein-Uhlenbeck
√ √ √

CIR Cox-Ingersoll-Ross
√ √ √

0.5

CIRJ Cox-Ingersoll-Ross w jumps
√ √

0.5 1

BK Black-Karasinski
√ √ √

1

jump process, whose jump sizes are independent and whose jump times are
those of an independent Poisson process with mean jump arrival rate l. Table 2
gives the details for each of the six model specifications that are subject of our
study by showing the values of the exponent ν and the indicator γJ and by
indicating with “

√
” those coefficients that appear in nonzero form.

Each of the specifications in Table 2 models the default intensity as a mean-
reverting stochastic and, except for the OU model, non-negative process. The
first three specifications OU, CIR and CIRJ belong to the class of affine pro-
cesses with jump diffusions, and closed-form solutions for the survival probabil-
ities in (1) are available. (See Duffie and Kan (1996) and Duffie and Gârleanu
(2001) for details.) The BK model is used, for example, by Berndt, Douglas,
Duffie, Ferguson, and Schranz (2005) to describe the time-series behavior of
actual default arrival intensities. For this model, given the log-autoregressive
form of the default intensity in (A.5) in the appendix, there is no closed-form
solution available for the one-year EDF, 1 − p(t, t + 1) from (1). We there-
fore rely on numerical lattice-based calculations of p(t, t + 1) and employ the
two-stage Hull and White (1994) procedure for constructing trinomial trees.

Duffee (2002) observes that excess returns on corporate bonds are (i) small,
on average, and that they (ii) exhibit a substantial predictable variation. We
now examine whether we find similar evidence for actual default intensities.
Since we do not observe instantaneous default intensities directly, we will rely
on the one-year EDF observations as close proxies for this exploratory analysis
and compute the ratio of the sample average of one-year EDFs over the sample
standard deviation of the EDFs for each firm in our sample. Table 3 shows
cross-sectional summary statistics for these ratios, and Figure 2 plots a his-
togram of the ratios across all firms. We find evidence that the ratio

Etλt+h

V artλt+h

can take on values both above and below one. The latter occurs, using EDFs
as a proxy of λ, for roughly one-third of the firms in our sample. Compar-
ing the two one-factor non-negative pure-diffusion models CIR and BK, an

6



Table 3: In-sample statistics for ratios of a firm’s average one-year EDFs to
their standard deviation

Sector mean std. dev. 1st quartile median 3rd quartile firms

Healthcare 1.221 0.480 0.885 1.151 1.389 36
Oil and Gas 1.174 0.440 0.975 1.092 1.346 42
B & E 1.153 0.305 0.968 1.081 1.348 21
Cars 1.421 0.384 1.128 1.513 1.691 3
Others 1.280 0.816 0.583 1.287 1.977 4
All 1.197 0.441 0.929 1.111 1.387 106

attractive feature of the BK model is that

E(λt+h|λt)
√

V ar(λt+h|λt)
=

eθ(1−k)λk
t e

1/2s2

eθ(1−k)λk
t

√

e2σ
2

2κ
(1−k2) − e

σ
2

2κ
(1−k2)

=
1

√

e
σ
2

2κ
(1−k2) − 1

→ 1
√

e
σ
2

2κ − 1

as h → ∞

for all time steps h, whereas for the CIR model we have

E(λt+h|λt)
√

V ar(λt+h|λt)
=

θ(1 − k) + kλt
√

θ σ2

2κ
(1 − k)2 + λt

σ2

κ
k(1 − k)

→
√

2θκ

σ
as h → ∞ or as λt → 0

≥ 1 if the Feller condition is satisfied.

The BK model specification, therefore, offers the flexibility of the conditional
standard deviation of λ to exceed the conditional mean for σ2 > 2 log(2) κ,
whereas in the CIR model that is not possible in the long-run.

4 Estimation Strategy

For our analysis, we will ignore misspecification of the EDF model itself and
assume that 1 − p(t, t + 1) is indeed the current one-year EDF. From the
Moody’s KMV data, we then observe p(t, t + 1) at successive dates t, t + h,
t + 2h, . . ., where h is one month. From these observations, we will estimate
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Figure 2: Distribution of the ratio of a firm’s average EDF over their standard
deviation.

a time-series model of the underlying intensity process λ, for each firm, under
the four different model specifications in Table 2. In total, we analyzed 106
firms from seven industry groups.

The data for firm i is the one-year EDF level Y i
ji at month ji, for a subset

{tji
0
, . . . , tji

Ni
} of N+1 month-end times t0, t1, . . . , tN . Our maximum likelihood

estimator (MLE) Θ̂ of the parameter vector Θ treats the effects of missing
and of truncated EDFs. For each date tj, let Oj denote the subset of firms
{1, . . . , I} for which we observe an uncensored EDF rate at that time, and let
Cj and Mj denote the subset of firms for which the EDF data at time tj is
truncated and missing, respectively. Then we can define Y O

j = {Y i
j ; i ∈ Oj},

Y C
j = {Y i

j ; i ∈ Cj}, and Y M
j = {Y i

j ; i ∈ Mj} as the collection of uncensored,
truncated and missing EDF observations at time tj, respectively. Finally,
Yj = Y O

j ∪ Y C
j ∪ Y M

j collects all EDF data at time tj .
The complete data likelihood of Y = {Yj : j = 1, . . . , N} evaluated at

outcomes y = {yj : j = 1 : N}, using the usual abuse of notation for measures,
is defined by

L(Y ; Θ) dy =

N−1
∏

j=0

P (Yj+1 ∈ dyj+1; Yj = yj, Θ)

8



where P ( · ; Yn = yn, Θ) denotes the distribution of {Yn+1, Yn+2, . . .} associated
with initial condition yn for Yn, and associated with parameter vector Θ. A
maximum likelihood estimator (MLE) Θ̂ for Θ solves

sup
Θ

l(Y ; Θ), (3)

where l(Y ; Θ) = log(L(Y ; Θ)).
Let λi denote the default intensity process for firm i, and let

X i =

{

λi if λi is OU, CIR, or CIRJ,
log λi if λi is BK.

denote the vector of state variables for firm i. If Θ is the true parameter
vector, then Y i

t = G(X i
t ; Θ) for some deterministic function G( · ; Θ) dictated

by the modeled EDF

G(X i
t ; Θ) = 1 − EΘ

(

e−
R t+1
t λs(Xi

s) ds |X i
t

)

, (4)

where EΘ denotes expectation associated with the parameter vector Θ. Let
XΘ,i

j = G−1(Y i
j ; Θ) denote the vector of state variables for firm i at time tj

that would be implied by a non-censored EDF observation Y i
j , assuming the

true parameter vector is Θ, and set XΘ
j = (XΘ,1

j , . . . , XΘ,I
j ). Letting DG( · ; Θ)

denote the Jacobian of G( · ; Θ) with respect to its first argument, and using
standard change-of-measure arguments, we can rewrite the likelihood and log-
likelihood as

L(Y ; Θ) =

N−1
∏

j=0

P (XΘ

j+1; X
Θ

j , Θ)
1

| detDG(XΘ
j+1; Θ)|

l(Y ; Θ) =

N−1
∑

j=0

log
(

P (XΘ

j+1; X
Θ

j , Θ)
)

− log
(

| detDG(XΘ

j+1; Θ)|
)

(5)

In our case, | detDG(XΘ
j+1; Θ)| simplifies to

∏

i |DG(XΘ,i
j+1; Θ)|.

4.1 Firm-by-Firm Parameter Estimation

The MLE Θ̂ of the parameter vector Θ is first obtained considering each firm
separately. Our methodology for maximum-likelihood estimation of the pa-
rameters of the default intensity treats the effects of missing EDF data as
well as censoring of EDFs by truncation from above. For each firm i, let Qi,
Ci, and Mi denote the set of months for which the values Y i

j are observed
without censoring, with censoring from above, and are missing (at random),
respectively. In particular, Y i = {Y i

ji
0
, . . . , Y i

ji
Ni
} = {Y i

j ; j ∈ Oi ∪ Ci} is the

collection of all EDF observations for firm i.

9



Suppose, to pick an example of a censoring outcome from which the general
case can easily be deduced, that, for months k through k̄ > k+1 inclusive, the
EDFs are truncated at ζ = 20%. That means that the censored and observed
value Y i

j is 20%, implying that the actual EDF was equal to or larger than
20%. Let us also assume that the EDF data between months l + 1 and l̄,
inclusive, are missing, but that we have EDF observations without censoring
for all other months. That is, Oi = {0, . . . , k, k̄ + 1, . . . , l, l̄ + 1, . . . , N}, Ci =
{j : k + 1 ≤ j ≤ k̄}, and Mi = {j : l + 1 ≤ j ≤ l̄}. Then, the likelihood of
the EDF observations Y i evaluated at outcomes y = {yj : j ∈ Oi}, using the
usual abuse of notation for measures, is defined by

L(Y i ; Θ) dy =

k−1
∏

j=0

P (Y i
j+1 ∈ dyj+1; Y

i
j = yj, Θ)

×P (Y i
k+1 ≥ ζ , . . . , Y i

k̄ ≥ ζ ; Y i
k = yk, Y

i
k̄+1 = yk̄+1, Θ)

×P (Y i
k̄+1 ∈ dyk̄+1 ; Y i

k = yk, Θ)

×
l−1
∏

j=k̄+1

P (Y i
j+1 ∈ dyj+1; Y

i
j = yj, Θ)

×P (Y i
l̄+1 ∈ dyl̄+1; Y

i
l = yl, Θ)

×
N−1
∏

j=l̄+1

P (Y i
j+1 ∈ dyj+1; Y

i
j = yj, Θ),

Using standard change-of-measure arguments, we can rewrite the likelihood as

L(Y i ; Θ) dy =

k−1
∏

j=0

P (XΘ,i
j+1 ; XΘ,i

j , Θ)
1

| detDG(XΘ,i
j+1 ; Θ)|

×P (Y i
k+1 ≥ ζ , . . . , Y i

k̄ ≥ ζ ; Y i
k = yk, Y

i
k̄+1 = yk̄+1, Θ)

×P (XΘ,i

k̄+1
; XΘ,i

k , Θ)
1

| detDG(XΘ,i

k̄+1
; Θ)|

×
l−1
∏

j=k̄+1

P (XΘ,i
j+1 ; XΘ,i

j , Θ)
1

| detDG(XΘ,i
j+1; Θ)|

×P (XΘ,i

l̄+1
; XΘ,i

l , Θ)
1

| detDG(XΘ,i

l̄+1
; Θ)|

×
N−1
∏

j=l̄+1

P (XΘ,i
j+1 ; XΘ,i

j , Θ)
1

| detDG(XΘ,i
j+1; Θ)|

. (6)
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The second term on the right-hand side of (6) is equal to

q(Y i ; Θ) = P (XΘ,i
k+1 ≥ G−1(ζ ; Θ), . . . , XΘ,i

k̄
≥ G−1(ζ ; Θ) ;

XΘ,i
k = G−1(yk; Θ), XΘ,i

k̄+1
= G−1(yk̄+1; Θ), Θ).

In Appendix A we describe, for each of the model specifications in Table 2,
how to compute q(Y ; Θ) by Monte Carlo integration.

A MLE Θ̂
i for Θ of firm i solves

sup
Θ

L(Y i ; Θ). (7)

The firm-by-firm parameter estimates are summarized in Table 4.

4.2 Sector-by-Sector Parameter Estimation

A Monte-Carlo analysis revealed substantial small-sample bias in the MLE
estimators, especially for mean reversion. We therefore impose that all firms
within one industry have the same level of mean reversion κ and volatility σ,
while allowing for a firm-specific level parameter θ. The Brownian motions
driving the default intensities have a constant pairwise correlation across all
firms in the sector. For example, for the BK model, we generalize (2) by
assuming that X i

t of firm i satisfies the Ornstein-Uhlenbeck equation

dX i
t = κ

(

θi − X i
t

)

dt + σ
(√

ρ dBc
t +

√

1 − ρ dBi
t

)

, (8)

where Bc and Bi are independent standard Brownian motions, independent
of {Bj}j "=i, and the constant pairwise within-sector correlation coefficient ρ is
an additional parameter to be estimated.

We then employ the Expectation-Maximization (EM) algorithm to find a
maximum likelihood estimator Θ̂. The EM algorithm starts with an initial
guess Θ(0) and iterates the following two steps:

• E-step: Compute

Q(Θ|Θ(m)) = E[l(Y ; Θ)|Yo, Θ
(m)] (9)

• M-step: Find Θ(m+1) that maximizes l(Θ|Θ(m)).

It is well known that this iteration always increases the likelihood value (see,
for example, Dempster, Lair, and Rubin (1977)). We stop the iteration if the
change in the parameters falls below ε, for ε small.

11



Table 4: Summary statistics for fitted parameters.

Parameter OU CIR CIRJ BK

α0

mean 23.23 18.32 18.83
std dev 55.91 44.23 47.15
median 1.99 6.08 6.16
1st quartile 0.65 4.01 4.18
3rd quartile 15.17 14.01 14.45
α1 α1 − 1

2β2
1

mean 0.50 0.09 0.17 1.59
std dev 0.43 0.17 0.29 1.47
median 0.48 0.03 0.01 0.98
1st quartile 0.07 0.00 0.00 0.63
3rd quartile 0.75 0.12 0.22 1.89
α2

mean 0.53
std dev 0.41
median 0.38
1st quartile 0.27
3rd quartile 1.53
β0

mean 253.14
std dev 369.74
median 66.79
1st quartile 27.31
3rd quartile 354.00
β1

mean 4.86 4.64 1.35
std dev 3.63 3.62 0.40
median 3.48 3.46 1.31
1st quartile 2.83 2.86 1.12
3rd quartile 5.28 4.74 1.53
γJ

mean 4.22
std dev 35.75
median 0.03
1st quartile 0.01
3rd quartile 0.08
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In our analysis we will approximate the expectation in (9) by its MC esti-
mate. Using a standard change of variable argument, the expectation in (9)
can be written as

∫

l(Y (X); Θ)fX(XC, XM|XO, Θ(m)) d(xC, xM).

We use the Systematic-Scan Gibbs Sampler (see, for example, Liu (2003))
to impute censored and missing data points. Initially, we set all components
of Y C equal to 20% and initialize all missing data points in Y M via linear
interpolation. Define Y CM = (Y C, Y M) and align Ycm = (Ycm,1, . . . , Ycm,N),
and similarly for the associated X. At the (g + 1)-st iteration of the Gibbs
Sampler:

• Draw, for j = 2, . . . , N , X
CM,(g+1)
j from the conditional distribution

fX(X
CM,(g+1)
j |X

CM,(g+1)
1 , . . . , X

CM,(g+1)
j−1 , X

CM,(g+1)
j+1 , . . . , X

CM,(g+1)
N ; XO; Θ)

The proof of the following lemma is provided in Appendix B.

Lemma 1. Let S = {1, . . . , S} denote some subset of firms {1, . . . , I} and let
Sc be its complement. Let’s fix some time point tj between t0 and tN . Then,
the conditional distribution of XSc,j given Xj−1, XS,j, and Xj+1 is normal with
mean µ = wµ1 + (1− w)µ2 and variance-covariance matrix Σ = wA−1

22 , where
w = (1 + e−2κh)−1, A21 and A22 are the lower-left (I − S)× S and lower-right
(I − S) × (I − S) submatrix of Σ−1

ε , respectively, and

µ1 = θSc + e−κh(XSc,j−1 − θSc) − (A22)
−1A21εS,j,

µ2 = θSc + eκh(XSc,j+1 − θSc) + eκh(A22)
−1A21εS,j+1.

Sector-by-sector estimates for the BK model are shown in Table 5, with
asymptotic standard error estimates in parentheses. Note that the ML esti-
mates for the correlation parameter ρ are quite different for different industry
groups. It is higher among oil and gas companies, and lower for healthcare
firms. This is confirmed when computing the average pairwise correlation of
the firms’ innovations to log EDFs by sector, which are reported in Table 6.

Note that according to Figure 2 the healthcare sector has, at least on aver-
age, the firms with the highest credit-quality, whereas oil and gas companies
are more often of medium credit quality. Table 7 shows the average pairwise
correlation of innovations to log EDFs for firms in different median-EDF brack-
ets. For our sample period, pairwise correlation seem to be lower among firms
with very low default risk and also among firms with a very high probability
of default. They are higher among firms of median credit quality. As shown in
Appendix C, however, the pairwise correlation between λi and λj in the BK
model does not depend on θi, θj or the level of λ.
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Table 5: Sector EDF-implied default intensity parameters for the BK model.

mean(θ̂) κ̂ σ̂ ρ̂ no. firms

Oil and Gas 3.219 0.393 1.212 0.257 32
(0.051) (0.036) (0.021)

Healthcare 3.276 0.538 1.399 0.109 16
(0.064) (0.049) (0.017)

B & E 3.855 0.549 1.350 0.229 15
(0.090) (0.069) (0.028)

Table 6: Average pairwise correlation of the firms’ innovations to log EDFs by
sector.

Healthcare Oil and Gas B & E Cars
Healthcare 12.60% 9.68% 11.08% 7.66%
Oil and Gas 9.68% 25.38% 11.82% 10.64%
B & E 11.08% 11.82% 19.89% 16.31%
Cars 7.66% 10.64% 16.32% 25.66%

5 Non-parametric Specification Test

We now describe a nonparametric specification test for the model specifications
in Table 2. The test is based on the nonparametric specification test of Hong
and Li (2005). We extend their method to include jump-diffusions. Adapted
to our problem statement, the EDF process Yt = G(Xt; Θ) will first be trans-
formed to Zt = log(1 − Yt) = g(Xt; Θ), where g(x; Θ) = log(1 − G(x; Θ)). We
will then treat Zt is our observed continuous-time jump-diffusion process that
follows the SDE:

dZt = µ(Zt; Θ) dt + σ(Zt; θ) dWt + ∆Jt(Zt)

where, for the six model specifications described in Table 2,

µ(Z; Θ) =
∂g

∂X |X=XΘ
t

µ(X) +
1

2

∂g2

∂2X |X=XΘ
t

σ(X)2,

σ(Z; Θ) =
∂g

∂X |X=XΘ
t

σ(X)

∆Jt(Zt) =

∫ ∞

0

g(Xt− + x) − g(Xt−) µX(dx).
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Table 7: Average pairwise correlation of the firms’ innovations to log EDFs by
credit quality.

median edf (bps) 0-10 10-50 50-100 100-500 500-1000 > 1000
0-10 6.56 8.61 7.36 7.22 6.05 1.47
10-50 8.61 17.89 13.82 13.35 10.48 0.79
50-100 7.36 13.82 16.41 13.46 10.01 0.52
100-500 7.22 13.35 13.46 14.39 10.24 0.27
500-1000 6.05 10.48 10.01 10.24 8.46 0
> 1000 1.47 0.79 0.52 0.27 0 –

In order to apply the specification test we have to transform the sample
(Z0, . . . , ZN) using the dynamic probability integral transform

ξj(Θ) =

∫ Zj

−∞

P (Zj = z |Zj−1, Θ) dz

=

∫ Zj

−∞

P
(

XΘ
j = g−1(z ; Θ) |XΘ

j−1, Θ
)

|∂g(x;Θ)
∂x |x=XΘ

j
|

dz. (10)

(Z0(Θ), . . . , ZN(Θ)) will be available in closed-form, up to the parameter vector
Θ, for the affine jump diffusions. In particular, g(x; Θ) = A(1; Θ) + B(1; Θ)x

is linear in x, so the partial derivative ∂g(x;Θ)
∂x

does not depend on x, and hence

ξj(Θ) =
1

|B(1; Θ)|

∫ Zj

−∞

P
(

XΘ

j = g−1(z ; Θ) |XΘ

j−1, Θ
)

dz

=
1

|B(1; Θ)|
P

(

Xj ≤ g−1(Zj ; Θ) |XΘ

j−1, Θ
)

. (11)

For all other model specifications we will need to employ numerical tech-
niques to evaluate ∂G(x;Θ)

∂x |x=XΘ
t
, and also numerical quadrature methods to

compute the integral.
If the model is correctly specified, the series {ξj}

N
j=0 is i.i.d. U [0, 1]. The

test statistic suggested by Hong and Li (2005) is

Q̂(j) =
1

V
1/2
0

[

(N − j)hM̂(j) − hA0
h

]

, (12)
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where h = h(n) is a bandwidth such that h → 0 and nh → ∞ as n → ∞, and

M̂(j) =

∫ 1

0

∫ 1

0

(η̂j(z1, z2) − 1)2 dz1 dz2

η̂j(z1, z2) =
1

N − j

N
∑

τ=j+1

Kh(z1, ξ̂τ)Kh(z2, ξ̂τ−j)

Kh(x, y) =



















1
h

k(x−y
h )

R 1
−x/h

k(u) du
if x ∈ [0, h)

1
h
k

(

x−y
h

)

if x ∈ [h, 1 − h]

1
h

k(x−y
h )

R (1−x)/h
−1 k(u) du

if x ∈ (1 − h, 1]

k(u) =
15

16
(1 − u2)21{|u|≤1}.

The non-stochastic centering and scaling factors are

A0
h =

[

(
1

h
− 2)

∫ 1

−1

k2(u) du + 2

∫ 1

0

∫ b

−1

k2
b (u)k2(u) du db

]2

− 1,

V0 = 2

[

∫ 1

−1

(
∫ 1

−1

k(u + v)k(v) dv

)2

du

]2

,

kb(·) =
k(·)

∫ b

−1
k(v) dv

.

As suggested in Hong and Li (2005), we use h = n−1/6std({ξ̂}). Under the
correct model specification, Hong and Li (2005) show that

Q̂(j) →d N(0, 1), (13)

cov(Q̂(i), Q̂(j)) →p 0 for i += j (14)

Under model misspecification, on the other hand, we have

Q̂(j) →p ∞.

Hence, we compare the test statistic Q̂(j) with the upper-tailed N(0, 1) critical
value Cα at the level α and, if Q̂(j) > Cα, reject the null hypothesis of correct
model specification at level α.

Figure 3 plots the histogram of generalized residuals, across all firms, and
Figure 4 displays the Q(j) test statistics, j = 1, . . . , 20, for the OU, CIR and
BK model specifications. Finally, Table 8 shows the rejection rates based on
Q̂(1) statistics for 106 firms in our sample.
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Figure 3: Histogram of generalized residuals, across all firms.
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Figure 4: Q(j) test for default intensity model specifications.
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Table 8: Rejection rates based on Q̂(1) statistics.

Significance OU CIR BK
Level

1% 0.988 0.724 0.408

5% 0.988 0.803 0.539

10% 1.000 0.855 0.553
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A Discussion of Model Specifications

In this appendix, we study the model specifications in Table 2 of actual default
intensities with regard to (i) their functional form of G(X i

t ; Θ) in (4), (ii) the
transition densities P ( · ; X i

j , Θ), and (iii) simulating missing and censored
data from P ( · ; X i

k, X
i
k̄+1

, Θ).

A.1 OU Model

In the Ornstein-Uhlenbeck model specification, the state variable X equals λ

and follows the stochastic process

dXt = κ(θ − Xt) dt + σ dBt, (A.1)

For (A.1), G is available in closed form

G(x ; Θ) = 1 − eA(1 ;Θ)+B(1 ; Θ)x,

where k = e−κ∆ and

A(∆ ; Θ) = −θ

(

∆ +
1 − k

κ

)

+
1

2

σ2

κ2

(

∆ + 2
1 − k

κ
− 1 − k2

2κ

)

,

B(∆ ; Θ) = −1 − k

κ
.

The conditional transition probability P (Xt+∆ ; Xt, Θ) is normal with condi-
tional mean (1 − k)θ + kXt and conditional variance σ2

2κ
(1 − k2).

We observe that for any time t between times s and u, the conditional dis-
tribution of Xt given Xs and Xu is a normal distribution with mean M(t | s, u)
and variance V (t | s, u) given by

M(t | s, u) =
1 − e−2κ(u−t)

1 − e−2κ(u−s)
M(t | s) +

e−2κ(u−t) − e−2κ(u−s)

1 − e−2κ(u−s)
M(t | u),

V (t | s, u) =
V (t | s)V (u | t)

V (u | s)
,

where, for times t before u, we let

M(u | t) = θ + e−κ(u−t)(X(t) − θ)

V (u | t) =
σ2

2κ
(1 − e−2κ(u−t))

M(t | u) = eκ(u−t)(X(u) − θ(1 − e−κ(u−t)))

denote the conditional expectation and variance, respectively, of Xu given Xt,
and the conditional expectation of Xt given Xu. As a consequence, letting
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Zk = X(tk), we can easily simulate from the joint conditional distribution of
(Zk+1, . . . , Zk̄) given Zk and Zk̄+1 which is given by

P (Zk+1, . . . , Zk̄ |Zk, Zk̄+1) = P (Zk+1 |Zk, Zk̄+1)

k̄−(k+1)
∏

j=1

P (Zk+j+1 |Zk+j, Zk̄+1).

We are now in a position to estimate the quantity in (7) by generating some
“large” integer number J of independent sample paths {(Zj

k+1, . . . , Z
j

k̄
); 1 ≤

j ≤ J} from the joint conditional distribution of (Zk+1, . . . , Zk̄) given Zk and
Zk̄+1, and by computing the fraction of those paths for which Zj

i ≥ g−1(ζ) for
all i in {k + 1, . . . , k̄}.

A.2 CIR Model

In the Cox-Ingersoll-Ross model specification, the state variable X equals λ

and follows the stochastic process

dXt = κ(θ − Xt) dt + σ
√

Xt dBt, (A.2)

For (A.1), G is available in closed form

G(x ; Θ) = 1 − eA(1 ;Θ)+B(1 ; Θ)x,

where (see, for example, Duffie and Gârleanu (2001))

B(∆ ; Θ) =
1 − eb1s

c1 + d1eb1∆

A(∆ ; Θ) =
m(−c1 − d1)

b1c1d1
log

c1 + d1e
b1s

c1 + d1
+

m

c1
s,

where, with n = −κ, p = σ2, and m = κθ, we have

c1 =
−n +

√

n2 − 2pq

2q

d1 =
n +

√

n2 − 2pq

2q

b1 = −d1(n + 2qc1) − (nc1 + p)

c1 − d1
.

A.3 CIRJ Model

The default intensity follows an (CIRJ) process with jumps:

dXt = κ(θ − Xt) dt + σ
√

Xt dBt + ∆Jt, (A.3)
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where B is a standard Brownian motion and Jt is a pure jump process, whose
jump sizes are independent and exponentially distributed with mean µ and
and whose jump times are those of an independent Poisson process with mean
jump arrival rate l. The long-run mean is given by m̄ = θ + lµ/κ. The s-year
conditional survival probability is given by

Et

[

eq
R t+s
t

λu du
]

= 1 − eα(s)+β(s)λt ,

for q = −10−4 and where the coefficients α(s) and β(s) are given by

β(s) =
1 − eb1s

c1 + d1eb1s

α(s) =
m(−c1 − d1)

b1c1d1
log

c1 + d1e
b1s

c1 + d1
+

m

c1
s +

l(a2c2 − d2)

b2c2d2
log

c2 + d2e
b2s

c2 + d2
+

(

l

c2
− l

)

s,

where, with n = −κ, p = σ2, and m = κθ, we have

c1 =
−n +

√

n2 − 2pq

2q

d1 =
n +

√

n2 − 2pq

2q

b1 = −d1(n + 2qc1) − (nc1 + p)

c1 − d1

a2 =
d1

c1

b2 = b1

c2 = 1 − µ

c1

d2 =
d1 + µ

c1

.

A.4 BK Model

The default intensity follows a Black-Karasinski (BK) process:

d log λt = κ(θ − log λt) dt + σ dBt. (A.4)

After some preliminary diagnostic analysis of the EDF data set, we opted to
specify a model under which the logarithm X i

t = log λi
t of the default intensity

of firm i satisfies the Ornstein-Uhlenbeck equation

dX i
t = κ(θi − Xt) dt + σ

(√
ρ dBc +

√

1 − ρ dBi
t

)

, (A.5)
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where B =
(

Bc, B1, . . . , BI
)′

is a I + 1-dimensional standard Brownian mo-
tion, and θi, κ, σ, and ρ are constants to be estimated. In particular, we
have imposed a joint distribution of EDFs across firms through imposing joint
normality of the Brownian motions driving each firm’s EDFs, with a constant
cross-firm correlation structure. The behavior for λ = eX is sometimes called
a Black-Karasinski model.1

From (A.5), for any time t and time step h (which is 1/12 in our applica-
tion), the discretely sampled log-intensity process X = (X1, . . . , XI)′ satisfies

Xt+h = b0 + b1Xt + εt+h, (A.6)

where b1 = e−κh, b0 = (1−b1)θ, θ = (θ1, . . . , θI), and εt+h, εt+2h, . . . are iid nor-
mal with mean zero and variance-covariance matrix Σε = σ2(1−e−2κh)/(2κ)Γ,
where Γ is a I × I matrix with 1′s on the diagonal and ρ everywhere else. In
particular we have

p(t, t + ∆t) = g(λt; ∆t) (A.7)

This leaves us with a vector Θ = ({θi}, κ, σ, ρ) of unknown parameters to
estimate from the available monthly EDF observations of a given firm. In gen-
eral, given the log-autoregressive form of the default intensity in (A.5), there is
no closed-form solution available for the one-year EDF, 1−p(t, t+1) from (1).
We therefore rely on numerical lattice-based calculations of p(t, t + 1). Our
current parameter estimates are for the two-stage procedure for constructing
trinomial trees proposed by Hull and White (1994).

A.5 Simulating missing and censored data

We suppress Θ in what follows in order to simplify notation. We observe
that for any time t between times s and u, the conditional distribution of
X(t) given X(s) and X(u) is a normal distribution with mean M(t | s, u) and
variance V (t | s, u) given by

M(t | s, u) =
1 − e−2κ(u−t)

1 − e−2κ(u−s)
M(t | s) +

e−2κ(u−t) − e−2κ(u−s)

1 − e−2κ(u−s)
M(t | u),

V (t | s, u) =
V (t | s)V (u | t)

V (u | s)
,

where, for times t before u, we let

M(u | t) = θ + e−κ(u−t)(X(t) − θ)

V (u | t) =
σ2

2κ
(1 − e−2κ(u−t))

M(t | u) = eκ(u−t)(X(u) − θ(1 − e−κ(u−t)))

1See Black and Karasinski (1991).
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denote the conditional expectation and variance, respectively, of X(u) given
X(t), and the conditional expectation of X(t) given X(u). As a consequence,
letting Zk = X(tk), we can easily simulate from the joint conditional distribu-
tion of (Zk+1, . . . , Zk̄) given Zk and Zk̄+1 which is given by

P (Zk+1, . . . , Zk̄ |Zk, Zk̄+1) = P (Zk+1 |Zk, Zk̄+1)

k̄−(k+1)
∏

j=1

P (Zk+j+1 |Zk+j, Zk̄+1).

We are now in a position to estimate the quantity in (7) by generating some
“large” integer number J of independent sample paths {(Zj

k+1, . . . , Z
j

k̄
); 1 ≤

j ≤ J} from the joint conditional distribution of (Zk+1, . . . , Zk̄) given Zk and
Zk̄+1, and by computing the fraction of those paths for which Zj

i ≥ g−1(ζ) for
all i in {k + 1, . . . , k̄}.

B Proofs

We will prove the following extension to Lemma 1.

Lemma 2. Let’s fix some time point tj between t0 and tN , and let J1 =
{1, . . . , J1} denote the subset of firms {1, . . . , I} for which we observe the EDF
rate at time tj−1 and that did not exit our sample at time tj. Also, let J2 =
{1, . . . , J2} denote the set of firms in J1 that did not exit our sample at time
tj+1. Let S1 = {1, . . . , S1} (S2 = {1, . . . , S2}) denote the subset of firms in
J1 (J2) for which we have an EDF observation at time tj, and let Sc

1 (Sc
2)

be its complement. Then, the conditional distribution of XSc
1 ,j given XJ1,j−1,

XS1,j, and XJ2,j+1 is normal with mean µ = Σ(Σ−1
1 µ1 + Σ

−1
2 µ2) and variance-

covariance matrix Σ = (Σ−1
1 +Σ

−1
2 )−1, where Σ1 = (A22)

−1, Σ2 = e2κh(B22)
−1,

and

µ1 = θSc
1
+ e−κh(XSc

1,j−1 − θSc
1
) − (A22)

−1A21εS1,j,

µ2 = θSc
2
+ eκh(XSc

2,j+1 − θSc
2
) + eκh(B22)

−1B21εS2,j+1.

Here, A21 and A22 are the lower-left (J1 − S1) × S1 and lower-right (J1 −
S1) × (J1 − S1) submatrix of Σ

−1
ε,J1

, respectively. Similarly, B21 and B22 are
the lower-left (J2 − S2) × S2 and lower-right (J2 − S2) × (J2 − S2) submatrix
of Σ

−1
ε,J2

, respectively.

Proof. We have

f(XSc
1,j |XJ1,j−1, XS1,j, XJ2,j+1) α f(XSc

1,j |XJ1,j−1, XS1,j)

f(XJ2,j+1 |XS2,j, XSc
2 ,j). (B.1)
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For the first term on the right-hand side of (B.1) we have

XSc
1,j |XJ1,j−1, XS1,j ∼ θSc

1
+ e−κh(XSc

1,j−1 − θSc
1
) + εSc

1 ,j | εS1,j

∼ MN (µ1, Σ1) . (B.2)

Working towards the second term on the right-hand side of (B.1) we know

XJ2,j+1 |XS2,j, XSc
2,j ∼ θJ2 + e−κh(XJ2,j − θJ2) + εJ2,j+1

∼ θJ2 + e−κh(XJ2,j − θJ2) + MN (0, Σε,J2) .

Hence,

log
(

f(XJ2,j+1 |XS2,j, XSc
2,j)

)

α −1

2
(ε′S2,j+1, ε

′
Sc

2,j+1)Σ
−1
ε,J2

(ε′S2,j+1, ε
′
Sc

2,j+1)
′

In particular, the right-hand side of this equation is

−1

2
(ε′S2,j+1, (XSc

2,j+1 − (θSc
2
+ e−κh(XSc

2,j − θSc
2
)))′)Σ−1

ε,J2

(ε′S2,j+1, (XSc
2,j+1 − (θSc

2
+ e−κh(XSc

2,j − θSc
2
)))′)′,

which equals, up to a constant,

− 1

2

(

e−2κhX ′
Sc

2,jB22XSc
2 ,j − 2e−κhX ′

Sc
2 ,jB21εS2,j+1

)

− 1

2

(

−2e−κhX ′
Sc

2,jB22(XSc
2 ,j+1 − θSc

2
(1 − e−κh))

)

Consequently,

f(XJ2,j+1 |XS2,j, XSc
2,j)

α MNpdf
(

XSc
2 ,j; θSc

2
+ eκh(XSc

2,j+1 − θSc
2
) + eκhB−1

22 B21εS2,j+1, e
2κhB−1

22

)

= MNpdf
(

XSc
2 ,j; µ2, Σ2

)

(B.3)

From Equations (B.2) and (B.3), we conclude that

XSc
1,j |XJ1,j−1, XS1,j, XJ2,j+1 ∼ MN(µ, Σ).
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C Implied Correlation Structure for BK Model

For the BK model in (8) we have

ρi,j = CORRt(λ
i
t+h, λ

j
t+h)

=
COVt(λ

i
t+h, λ

j
t+h)

√

V art(λi
t+h)

√

V art(λ
j
t+h)

=
COVt(λ

i
t+h, λ

j
t+h)

√

V art(λi
t+h)

√

V art(λ
j
t+h)

=
Et

[

(λi
t+h − emi

t(h)+1/2vi
t(h))(λj

t+h − emj
t (h)+1/2vj

t (h))
]

√

e2mi
t(h)+vi

t(h)(evi
t(h) − 1)

√

e2mj
t (h)+vj

t (h)(evj
t (h) − 1)

=
Et

[

λi
t+hλ

j
t+h

]

+ emi
t(h)+1/2vi

t(h)emj
t (h)+1/2vj

t (h)

√

e2mi
t(h)+vi

t(h)(evi
t(h) − 1)

√

e2mj
t (h)+vj

t (h)(evj
t (h) − 1)

=
e−1/2(vi

t(h)+vj
t (h))Et

[

eui
t+heuj

t+h

]

− 1
√

evi
t(h) − 1

√

evj
t (h) − 1

=
e−1/2(vi

t(h)+vj
t (h))e1/2V ar(ui

t+h+uj
t+h) − 1

√

evi
t(h) − 1

√

evj
t (h) − 1

=
e−1/2(vi

t(h)+vj
t (h))e1/2V ar(ui

t+h+uj
t+h) − 1

√

evi
t(h) − 1

√

evj
t (h) − 1

=
e−1/2(vi

t(h)+vj
t (h))e1/2(vi

t(h)+vj
t (h)+2ρ

i,j
u

√
vi

t(h)
√

vj
t (h)) − 1

√

evi
t(h) − 1

√

evj
t (h) − 1

=
eρ

i,j
u

√
vi

t(h)
√

vj
t (h) − 1

√

evi
t(h) − 1

√

evj
t (h) − 1

,

where

mi
t(h) = θi + e−κih(log(λi

t) − θi)

vi
t(h) = σi21 − e−2κih

2κ
.

In particular, the pairwise correlation between λi and λj does not depend on
θi, θj or the level of λi

t or λ
j
t .
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