
Chapter Four

USING THE DERIVATIVE
In Chapter 2, we introduced the derivative and

some of its interpretations. In Chapter 3, we

saw how to differentiate all of the standard

functions, including powers, exponentials,

logarithms, and trigonometric functions. Now

we use first and second derivatives to analyze

the behavior of families of functions and to

solve optimization problems.
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4.1 USING FIRST AND SECOND DERIVATIVES

What Derivatives Tell Us About a Function and its Graph

As we saw in Chapter 2, the connection between derivatives of a function and the function itself is

given by the following:

• If f ′ > 0 on an interval, then f is increasing on that interval.

• If f ′ < 0 on an interval, then f is decreasing on that interval.

• If f ′′ > 0 on an interval, then the graph of f is concave up on that interval.

• If f ′′ < 0 on an interval, then the graph of f is concave down on that interval.
We can do more with these principles now than we could in Chapter 2 because we now have formu-

las for the derivatives of the elementary functions.

When we graph a function on a computer or calculator, we often see only part of the picture,

and we may miss some significant features. Information given by the first and second derivatives

can help identify regions with interesting behavior.

Example1 Use a computer or calculator to sketch a useful graph of the function f(x) = x3 − 9x2 − 48x + 52.

Solution Since f is a cubic polynomial, we expect a graph that is roughly S-shaped. Graphing this function
with −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, gives the two nearly vertical lines in Figure 4.1. We know that
there is more going on than this, but how do we know where to look?

−10 −6 −2 2 6 10

−10

10

x

y

Figure 4.1: Unhelpful graph of
f(x) = x3 − 9x2 − 48x + 52

We use the derivative to determine where the function is increasing and where it is decreasing.

The derivative of f is
f ′(x) = 3x2 − 18x − 48.

To find where f ′ > 0 or f ′ < 0, we first find where f ′ = 0, that is, where 3x2 − 18x − 48 = 0.
Factoring, we get 3(x − 8)(x + 2) = 0, so x = −2 or x = 8. Since f ′ = 0 only at x = −2 and
x = 8, and since f ′ is continuous, f ′ cannot change sign on any of the three intervals x < −2, or
−2 < x < 8, or 8 < x. How can we tell the sign of f ′ on each of these intervals? The easiest way is

to pick a point and substitute into f ′. For example, since f ′(−3) = 33 > 0, we know f ′ is positive

for x < −2, so f is increasing for x < −2. Similarly, since f ′(0) = −48 and f ′(10) = 72, we
know that f decreases between x = −2 and x = 8 and increases for x > 8. Summarizing:

f ′ = 0

x = −2

f ′ = 0

x = 8

f ′ > 0

f increasingր

f ′ < 0

f decreasingց

f ′ > 0

f increasingր
x

We find that f(−2) = 104 and f(8) = −396. Hence on the interval −2 < x < 8 the function
decreases from a high of 104 to a low of −396. (Now we see why not much showed up in our first
calculator graph.) One more point on the graph is easy to get: the y intercept, f(0) = 52. With
just these three points we can get a much more helpful graph. By setting the plotting window to
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Local minimum
(8,−396)

✛
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Figure 4.2: Useful graph of f(x) = x3 − 9x2 − 48x + 52

−10 ≤ x ≤ 20 and −400 ≤ y ≤ 400, we get Figure 4.2, which gives much more insight into the
behavior of f(x) than the graph in Figure 4.1.

In Figure 4.2, we see that part of the graph is concave up and part is concave down. We can use

the second derivative to analyze concavity. We have

f ′′(x) = 6x − 18.

So, f ′′(x) < 0 when x < 3 and f ′′(x) > 0 when x > 3, and so the graph of f is concave down for
x < 3 and concave up for x > 3. At x = 3, we have f ′′(x) = 0. Summarizing:

f ′′ < 0

f concave down
⋂

f ′′ > 0

f concave up
⋃

f ′′ = 0

x = 3

Local Maxima and Minima

We are often interested in points such as those marked local maximum and local minimum in Fig-

ure 4.2. We have the following definition:

Suppose p is a point in the domain of f :

• f has a local minimum at p if f(p) is less than or equal to the values of f for points near
p.

• f has a local maximum at p if f(p) is greater than or equal to the values of f for points
near p.

We use the adjective “local” because we are describing only what happens near p.

How Do We Detect a Local Maximum or Minimum?

In the preceding example, the points x = −2 and x = 8, where f ′(x) = 0, played a key role in
leading us to local maxima and minima. We give a name to such points:

For any function f , a point p in the domain of f where f ′(p) = 0 or f ′(p) is undefined is
called a critical point of the function. In addition, the point (p, f(p)) on the graph of f is
also called a critical point. A critical value of f is the value, f(p), at a critical point, p.

Notice that “critical point of f” can refer either to points in the domain of f or to points on the graph
of f . You will know which meaning is intended from the context.
Geometrically, at a critical point where f ′(p) = 0, the line tangent to the graph of f at p is

horizontal. At a critical point where f ′(p) is undefined, there is no horizontal tangent to the graph—
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there’s either a vertical tangent or no tangent at all. (For example, x = 0 is a critical point for the
absolute value function f(x) = |x|.) However, most of the functions we work with are differentiable
everywhere, and therefore most of our critical points are of the f ′(p) = 0 variety.
The critical points divide the domain of f into intervals on which the sign of the derivative

remains the same, either positive or negative. Therefore, if f is defined on the interval between two
successive critical points, its graph cannot change direction on that interval; it is either increasing

or decreasing. The following result, which is proved on page 186, tells us that all local maxima and

minima which are not at endpoint occur at critical points.

Theorem 4.1: Local Extrema and Critical Points

Suppose f is defined on an interval and has a local maximum or minimum at the point x = a,
which is not an endpoint of the interval. If f is differentiable at x = a, then f ′(a) = 0. Thus,
a is a critical point.

Warning! Not every critical point is a local maximum or local minimum. Consider f(x) = x3,

which has a critical point at x = 0. (See Figure 4.3.) The derivative , f ′(x) = 3x2, is positive on

both sides of x = 0, so f increases on both sides of x = 0, and there is neither a local maximum
nor a local minimum at x = 0.

x

f(x) = x3

Critical point

■

Figure 4.3: Critical point which is not a local maximum or minimum

Testing For Local Maxima and Minima

If f ′ has different signs on either side of a critical point p, with f ′(p) = 0, then the graph changes
direction at p and looks like one of those in Figure 4.4. So we have the following criterion:

The First-Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f .
• If f ′ changes from negative to positive at p, then f has a local minimum at p.

• If f ′ changes from positive to negative at p, then f has a local maximum at p.

p

Local min

f ′(p) = 0f decreasing
f ′ < 0

f increasing
f ′ > 0

p

Local max

f ′(p) = 0
f increasing

f ′ > 0
f decreasing
f ′ < 0

Figure 4.4: Changes in direction at a critical point, p: Local maxima and minima

Example2 Use a graph of the function f(x) =
1

x(x − 1)
to observe its local maxima and minima. Confirm

your observation analytically.
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Solution The graph in Figure 4.5 suggests that this function has no local minima but that there is a local

maximum at about x = 1
2 . Confirming this analytically means using the formula for the derivative

to show that what we expect is true. Since f(x) = (x2 − x)−1, we have

f ′(x) = −1(x2 − x)−2(2x − 1) = − 2x − 1

(x2 − x)2
.

So f ′(x) = 0 where 2x − 1 = 0. Thus, the only critical point in the domain of f is x = 1
2 .

Furthermore, f ′(x) > 0 where 0 < x < 1/2, and f ′(x) < 0 where 1/2 < x < 1. Thus, f
increases for 0 < x < 1/2 and decreases for 1/2 < x < 1. According to the first derivative test, the
critical point x = 1/2 is a local maximum.
For −∞ < x < 0 or 1 < x < ∞, there are no critical points and no local maxima or minima.

Although 1/(x(x − 1)) → 0 both as x → ∞ and as x → −∞, we don’t say 0 is a local minimum
because 1/ (x(x − 1)) never actually equals 0.
Notice that although f ′ > 0 everywhere that it is defined for x < 1

2 , the function f is not
increasing throughout this interval. The problem is that f and f ′ are not defined at x = 0, so we
cannot conclude that f is increasing when x < 1/2.

1
x

( 1
2
,−4)

f(x) = 1
x(x−1)

Figure 4.5: Find local maxima and minima

x

f(x) = sin x + 2ex

Figure 4.6: Explain the absence of local
maxima and minima for x ≥ 0

Example3 The graph of f(x) = sinx + 2ex is in Figure 4.6. Using the derivative, explain why there are no

local maxima or minima for x ≥ 0.

Solution Local maxima and minima can occur only at critical points. Now f ′(x) = cos x + 2ex, which is
defined for all x. We know cos x is always between −1 and 1, and 2ex ≥ 2 for x ≥ 0, so f ′(x)
cannot be 0 for any x ≥ 0. Therefore there are no local maxima or minima there.

The Second­Derivative Test for Local Maxima and Minima

Knowing the concavity of a function can also be useful in testing if a critical point is a local maxi-

mum or a local minimum. Suppose p is a critical point of f , with f ′(p) = 0, so that the graph of f
has a horizontal tangent line at p. If the graph is concave up at p, then f has a local minimum at p.
Likewise, if the graph is concave down, f has a local maximum. (See Figure 4.7.) This suggests:

Local min

Concave up Local max

Concave down

Figure 4.7: Local maxima and minima and concavity
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The Second-Derivative Test for Local Maxima and Minima

• If f ′(p) = 0 and f ′′(p) > 0 then f has a local minimum at p.

• If f ′(p) = 0 and f ′′(p) < 0 then f has a local maximum at p.

• If f ′(p) = 0 and f ′′(p) = 0 then the test tells us nothing.

Example4 Classify as local maxima or local minima the critical points of f(x) = x3 − 9x2 − 48x + 52.

Solution As we saw in Example 1 on page 166,

f ′(x) = 3x2 − 18x − 48

and the critical points of f are x = −2 and x = 8. We have

f ′′(x) = 6x − 18.

Thus f ′′(8) = 30 > 0, so f has a local minimum at x = 8. Since f ′′(−2) = −30 < 0, f has a local
maximum at x = −2.

Warning! The second-derivative test does not tell us anything if both f ′(p) = 0 and f ′′(p) = 0.
For example, if f(x) = x3 and g(x) = x4, both f ′(0) = g′(0) = 0 and f ′′(0) = g′′(0) = 0. The
point x = 0 is a minimum for g but is neither a maximum nor a minimum for f . However, the
first-derivative test is still useful. For example, g′ changes sign from negative to positive at x = 0,
so we know g has a local minimum there.

Concavity and Inflection Points

We have studied points where the slope changes sign, which led us to critical points. Now we look

at points where the concavity changes.

A point at which the graph of a function changes concavity is called an inflection point of f .

The words “inflection point of f” can refer either to a point in the domain of f or to a point on the
graph of f . The context of the problem will tell you which is meant.

How Do We Locate an Inflection Point?

If f ′′ changes sign at a point, then the concavity of f changes there and we have an inflection point.
Thus, points where f ′′ is zero or undefined are possible inflection points.

Example5 Find the critical and inflection points for g(x) = xe−x and sketch the graph of g for x ≥ 0.

Solution Taking derivatives and simplifying, we have

g′(x) = (1 − x)e−x and g′′(x) = (x − 2)e−x.

So x = 1 is a critical point, and g′ > 0 for x < 1 and g′ < 0 for x > 1. Hence g increases to a local
maximum at x = 1 and then decreases. Also, g(x) → 0 as x → ∞. There is an inflection point at
x = 2 since g′′ < 0 for x < 2 and g′′ > 0 for x > 2. The graph is sketched in Figure 4.8.
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1 2
x

g increasing
Concave down

Critical point
Local max

g decreasing
Concave down

Inflection point

g decreasing
Concave up

Figure 4.8: Graph of g(x) = xe−x

Warning! Not every point x where f ′′(x) = 0 (or f ′′ is undefined) is an inflection point (just

as not every point where f ′ = 0 is a local maximum or minimum). For instance f(x) = x4 has

f ′′(x) = 12x2 so f ′′(0) = 0, but f ′′ > 0 when x > 0 and when x < 0, so there is no change in
concavity at x = 0. See Figure 4.9.

f ′′ = 0 but
no inflection
point here

☛ x

Figure 4.9: Graph of f(x) = x4

Inflection Points and Local Maxima and Minima of the Derivative

Inflection points can also be interpreted in terms of first derivatives. Applying the First Derivative

Test for local maxima and minima to f ′, we obtain the following result:

Suppose a function f has a continuous derivative. If f ′′ changes sign at p, then f has an
inflection point at p, and f ′ has a local minimum or a local maximum at p.

Figure 4.10 shows two inflection points. Notice that the curve crosses the tangent line at these

points and that the slope of the curve is a maximum or a minimum there.

p

Concave up

f ′′ > 0

Point of
inflection

f ′′(p) = 0
Concave down

f ′′ < 0

■ ✒

p

Concave up

f ′′ > 0

Point of
inflection

f ′′(p) = 0

Figure 4.10: Change in concavity at p: Points of inflection

Example6 Graph f(x) = x + sinx, and determine where f is increasing most rapidly, and least rapidly.
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Solution The graph of f(x) = x+sinx is in Figure 4.11 and the graph of f ′(x) = 1+cos x is in Figure 4.12.
Where is f increasing most rapidly? At the points x = . . . , −2π, 0, 2π, 4π, 6π, . . . , because

these points are local maxima for f ′, and f ′ has the same value at each of them. Likewise f is
increasing least rapidly at the points x = . . . ,−3π,−π, π, 3π, 5π, . . . , since these points are local
minima for f ′. Notice that the points where f is increasing most rapidly and the points where it is
increasing least rapidly are inflection points of f .

−2π −π π 2π 3π
x

f

❄

Point of inflection
slope minimum

✛ Point of inflection
slope maximum

Figure 4.11: Graph of f(x) = x + sin x

−3π −2π −π 0 π 2π 3π

2

x

f ′

Figure 4.12: Graph of f ′(x) = 1 + cos x

Example7 Water is being poured into the vase in Figure 4.13 at a constant rate, measured in volume per unit

time. Graph y = f(t), the depth of the water against time, t. Explain the concavity and indicate the
inflection points.

Solution At first the water level, y, rises slowly because the base of the vase is wide, and it takes a lot of
water to make the depth increase. However, as the vase narrows, the rate at which the water is

rising increases. Thus, y is increasing at an increasing rate and the graph is concave up. The rate of
increase in the water level is at a maximum when the water reaches the middle of the vase, where

the diameter is smallest; this is an inflection point. After that, the rate at which y increases decreases
again, so the graph is concave down. (See Figure 4.14.)

Figure 4.13: A vase

Inflection point,
corresponding to
narrowest point on vase

y (depth of water)

t (time)
Concave up

Concave down

✛

Figure 4.14: Graph of depth of water in the vase, y,
against time, t

Exercises and Problems for Section 4.1

Exercises

1. Graph a function which has exactly one critical point, at

x = 2, and exactly one inflection point, at x = 4.

2. Graph a function with exactly two critical points, one of

which is a local minimum and the other is neither a local

maximum nor a local minimum.

3. (a) Use a graph to estimate the x-values of any critical

points and inflection points of f(x) = e−x2

.

(b) Use derivatives to find the x-values of any critical
points and inflection points exactly.

4. Find all critical points of f(x) = 10.2x2e−0.4x.

5. Find the inflection points of f(x) = x4 +x3 − 3x2 +2.
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Classify the critical points of the functions in Exercises 6–7 as

local maxima or local minima.

6. g(x) = xe−x 7. h(x) = x + 1/x

Using a calculator or computer, graph the functions in Ex-

ercises 8–15. Describe briefly in words the interesting fea-

tures of the graph including the location of the critical points

and where the function is increasing/decreasing. Then use the

derivative and algebra to explain the shape of the graph.

8. f(x) = x3 − 6x + 1 9. f(x) = x3 + 6x + 1

10. f(x) = 3x5 − 5x3 11. f(x) = x + 2 sin x

12. f(x) = ex − 10x 13. f(x) = ex + sin x

14. f(x) = xe−x2

15. f(x) = x ln x, x > 0

16. Use the graphs you drew in Exercises 8–15 to describe

in words the concavity of each graph, including approx-

imate x-coordinates for all points of inflection. Then use
f ′′ and algebra to explain what you see.

17. Indicate all critical points on the graph of f in Figure 4.15
and determine which correspond to local maxima of f ,
which to local minima, and which to neither.

x

f(x)

Figure 4.15

18. Indicate on the graph of the derivative function f ′ in Fig-

ure 4.16 the x-values that are critical points of the func-
tion f itself. At which critical points does f have local
maxima, local minima, or neither?

x

f ′(x)

Figure 4.16

19. Indicate on the graph of the derivative f ′ in Figure 4.17

the x-values that are inflection points of the function f .

x

f ′(x)

Figure 4.17

20. Indicate on the graph of the second derivative f ′′ in Fig-

ure 4.18 the x-values that are inflection points of the
function f .

x

f ′′(x)

Figure 4.18

Problems

21. Find and classify the critical points of f(x) = x3(1−x)4

as local maxima and minima.

22. If m, n ≥ 2 are integers, find and classify the critical
points of f(x) = xm(1 − x)n.

23. Give examples of graphs of functions with no, one, and

infinitely many critical points.

24. Suppose f has a continuous derivative whose values are
given in the following table.

(a) Estimate the x-coordinates of critical points of f for
0 ≤ x ≤ 10.

(b) For each critical point, indicate if it is a local maxi-

mum of f , local minimum, or neither.

x 0 1 2 3 4 5 6 7 8 9 10

f ′(x) 5 2 1 −2 −5 −3 −1 2 3 1 −1

25. (a) The following table gives values of the differentiable

function y = f(x). Estimate the x-values of critical
points of f(x) on the interval 0 < x < 10. Classify
each critical point as a local maximum, local mini-

mum, or neither.

(b) Now assume that the table gives values of the contin-

uous function y = f ′(x) (instead of f(x)). Estimate
and classify critical points of the function f(x).

x 0 1 2 3 4 5 6 7 8 9 10

y 1 2 1 −2 −5 −3 −1 2 3 1 −1

26. (a) Find and simplify the second derivative of

P =
1

1 + 10e−t
.

(b) Sketch P and dP 2/dt2 on separate axes. Label
any asymptotes. On both graphs, label t0, the t-
coordinate of the inflection point on the graph of P .

27. Find values of a and b so that the function f(x) =
x2 + ax + b has a local minimum at the point (6,−5).

28. Find the value of a so that the function f(x) = xeax has

a critical point at x = 3.

29. Find constants a and b in the function f(x) = axebx

such that f( 1
3
) = 1 and the function has a local maxi-

mum at x = 1
3
.



174 Chapter Four USING THE DERIVATIVE

30. You might think the graph of f(x) = x2 + cos x should
look like a parabola with some waves on it. Sketch the

actual graph of f(x) using a calculator or computer. Ex-
plain what you see using f ′′(x).

31. The rabbit population on a small Pacific island is approx-

imated by

P (t) =
2000

1 + e(5.3−0.4t)

with tmeasured in years since 1774, when Captain James
Cook left 10 rabbits on the island.

(a) Using a calculator, graph P . Does the population
level off?

(b) Estimate when the rabbit population grew most

rapidly. How large was the population at that time?

(c) What natural causes could lead to the shape of the

graph of P ?

32. (a) Water is flowing at a constant rate (i.e., constant vol-

ume per unit time) into a cylindrical container stand-

ing vertically. Sketch a graph showing the depth of

water against time.

(b) Water is flowing at a constant rate into a cone-shaped

container standing on its point. Sketch a graph show-

ing the depth of the water against time.

33. If water is flowing at a constant rate (i.e., constant vol-

ume per unit time) into the vase in Figure 4.19, sketch a

graph of the depth of the water against time. Mark on the

graph the time at which the water reaches the corner of

the vase.

Figure 4.19

34. If water is flowing at a constant rate (i.e., constant volume

per unit time) into the Grecian urn in Figure 4.20, sketch

a graph of the depth of the water against time. Mark on

the graph the time at which the water reaches the widest

point of the urn.

Figure 4.20

35. Graph f given that:

• f ′(x) = 0 at x = 2, f ′(x) < 0 for x < 2,
f ′(x) > 0 for x > 2,

• f ′′(x) = 0 at x = 4, f ′′(x) > 0 for x < 4,
f ′′(x) < 0 for x > 4.

36. Assume f is differentiable everywhere and has just one
critical point, at x = 3. In parts (a)–(d), you are given ad-
ditional conditions. In each case decide whether x = 3 is
a local maximum, a local minimum, or neither. Explain

your reasoning. Sketch possible graphs for all four cases.

(a) f ′(1) = 3 and f ′(5) = −1
(b) lim

x→∞

f(x) = ∞ and lim
x→−∞

f(x) = ∞
(c) f(1) = 1, f(2) = 2, f(4) = 4, f(5) = 5
(d) f ′(2) = −1, f(3) = 1, lim

x→∞

f(x) = 3

37. Graph two continuous functions f and g, each of which
has exactly five critical points, the points A–E in Fig-
ure 4.21, and which satisfy the following conditions:

(a) lim
x→−∞

f(x) = ∞ and lim
x→∞

f(x) = ∞
(b) lim

x→−∞

g(x) = −∞ and lim
x→∞

g(x) = 0

A

B

C

D

E

x

Figure 4.21

Problems 38–39 show graphs of the three functions f , f ′, f ′′.

Identify which is which.

38.

A

B

C

x

39.
A

A

B

B

C

x
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Problems 40–41 show graphs of f , f ′, f ′′. Each of these

three functions is either odd or even. Decide which functions

are odd and which are even. Use this information to identify

which graph corresponds to f , which to f ′, and which to f ′′.

40. I II III

x

41.

I

II

III

x

For Problems 42–45, sketch a possible graph of y = f(x),
using the given information about the derivatives y′ = f ′(x)
and y′′ = f ′′(x). Assume that the function is defined and
continuous for all real x.

42.

✲✛

✛ ✲ x

x

y′ = 0y′ = 0

y′′ < 0y′′ > 0y′′ < 0

y′ < 0y′ > 0y′ > 0

y′′ = 0y′′ = 0

x2 x3x1

43.

✲✛

✛ ✲ x

x

y′′ < 0y′′ > 0y′′ < 0y′′ > 0

y′ < 0

y′′ = 0y′′ = 0y′′ = 0

x2 x3x1

44.

✲✛

✛ ✲ x

x

y′ = 0y′ undefined

y′′ > 0y′′ > 0

y′ > 0y′ < 0y′ > 0

y′′ undefined

x2x1

45.

✲✛

✛ ✲ x

x

y′ = 2

y′′ > 0y′′ = 0

y′ > 0y′ = 2

y′′ = 0

x1

46. Assume that the polynomial f has exactly two local max-
ima and one local minimum, and that these are the only

critical points of f .

(a) Sketch a possible graph of f .
(b) What is the largest number of zeros f could have?
(c) What is the least number of zeros f could have?
(d) What is the least number of inflection points f could
have?

(e) What is the smallest degree f could have?
(f) Find a possible formula for f(x).

47. Let f be a function with f(x) > 0 for all x. Set g = 1/f .

(a) If f is increasing in an interval around x0, what

about g?
(b) If f has a local maximum at x1, what about g?
(c) If f is concave down at x2, what about g?

48. What happens to concavity when functions are added?

(a) If f(x) and g(x) are concave up for all x, is f(x) +
g(x) concave up for all x?

(b) If f(x) is concave up for all x and g(x) is concave
down for all x, what can you say about the concavity
of f(x) + g(x)? For example, what happens if f(x)
and g(x) are both polynomials of degree 2?

(c) If f(x) is concave up for all x and g(x) is concave
down for all x, is it possible for f(x) + g(x) to
change concavity infinitely often?

4.2 FAMILIES OF CURVES

We saw in Chapter 1 that knowledge of one function can provide knowledge of the graphs of many

others. The shape of the graph of y = x2 also tells us, indirectly, about the graphs of y = x2 +
2, y = (x + 2)2, y = 2x2, and countless other functions. We say that all functions of the form
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y = a(x + b)2 + c form a family of functions; their graphs are like that of y = x2, except for shifts

and stretches determined by the values of a, b, and c. The constants a, b, c are called parameters.
Different values of the parameters give different members of the family.

One reason for studying families of functions is their use in mathematical modeling. Confronted

with the problem of modeling some phenomenon, a crucial first step involves recognizing families

of functions which might fit the available data.

Motion Under Gravity: y = −4.9t2 + v0t + y0

The position of an object moving vertically under the influence of gravity can be described by a

function in the two-parameter family

y = −4.9t2 + v0t + y0

where t is time in seconds and y is the distance in meters above the ground. Why do we need the
parameters v0 and y0 to describe all such motions? Notice that at time t = 0 we have y = y0.

Thus the parameter y0 gives the height above ground of the object at time t = 0. Since dy/dt =
−9.8t + v0, the parameter v0 gives the velocity of the object at time t = 0.

Curves of the Form y = A sin(Bx)

This family is used to model a wave. We saw in Section 1.5 that |A| is the amplitude of the wave
and that 2π/|B| is its period. Figures 4.22 and 4.23 illustrate these facts.

−2π

2π

−3

1

2

3

✲A = 1

✲A = 2

✲A = 3

x

y

Figure 4.22: The family y = A sin x
(with B = 1)

−2π

2π

❘

B = 2

❄

B = 1

✠

B = 3

−1

1

x

y

Figure 4.23: The family y = sin(Bx)
(with A = 1)

Curves of the Form y = e−(x−a)2/b

This family is related to the normal density function, used in probability and statistics.1 We assume

that b > 0.
First we let b = 1; see Figure 4.24. The role of the parameter a is to shift the graph of y = e−x2

to the right or left. Notice that the value of y is always positive. Since y → 0 as x → ±∞, the x-axis
is a horizontal asymptote. Thus y = e−(x−a)2 is the family of horizontal shifts of the bell-shaped

curve.

−2 2

1 ✠

y = e−x2

y = e−(x+2)2 ✛ y = e−(x−2)2

x

y

Figure 4.24: The family y = e−(x−a)2

1Probabilists divide our function by a constant,
√

πb, to get the normal density.
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We now consider the role of the parameter b by studying the family with a = 0:

y = e−x2/b.

To investigate the critical points and points of inflection, we calculate

dy

dx
= −2x

b
e−x2/b

and, using the product rule, we get

d2y

dx2
= −2

b
e−x2/b − 2x

b

(

−2x

b
e−x2/b

)

=
2

b

(

2x2

b
− 1

)

e−x2/b.

Critical points occur where dy/dx = 0, that is, where

dy

dx
= −2x

b
e−x2/b = 0.

Since e−x2/b is never zero, the only critical point is x = 0. At that point, y = 1 and d2y/dx2 < 0.
Hence, by the second derivative test, there is a local maximum at x = 0.
Inflection points occur where the second derivative changes sign; thus, we start by finding

values of x for which d2y/dx2 = 0. Since e−x2/b is never zero, d2y/dx2 = 0 when

2x2

b
− 1 = 0.

Solving for x gives

x = ±
√

b

2
.

Looking at the expression for d2y/dx2, we see that d2y/dx2 is negative for x = 0, and positive as
x → ±∞. Therefore the concavity changes at x = −

√

b/2 and at x =
√

b/2, so we have inflection
points there.

Returning to the two-parameter family y = e−(x−a)2/b, we conclude that there is a maximum

at x = a, obtained by horizontally shifting the maximum at x = 0 of y = e−x2/b by a units. There
are inflection points at x = a ±

√

b/2 obtained by shifting the inflection points x = ±
√

b/2 of

y = e−x2/b by a units. (See Figure 4.25.) At these points y = e−1/2 ≈ 0.6.
With this information we can see the effect of the parameters. The parameter a determines the

location of the center of the bell and the parameter b determines how narrow or wide the bell is. (See
Figure 4.26.) If b is small, then the inflection points are close to a and the bell is sharply peaked
near a; if b is large, the inflection points are farther away from a and the bell is spread out.

a
a −

√

b
2

a +
√

b
2

1

x

y

Inflection
point

Maximum

Inflection
point

✲ ✛

Figure 4.25: Graph of y = e−(x−a)2/b:

bell-shaped curve with peak at x = a

a

1

x

y
b large

b small

✠

✠

Figure 4.26: Graph of y = e−(x−a)2/b for

fixed a and various b
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Curves of the Form y = a(1 − e−bx)

This is a two-parameter family. We consider a, b > 0. The graph of one member, with a = 2
and b = 1, is in Figure 4.27. Such a graph represents a quantity which is increasing but leveling
off. For example, a body dropped in a thick fluid speeds up initially, but its velocity levels off as

it approaches a terminal velocity. Similarly, if a pollutant pouring into a lake builds up toward a

saturation level, its concentration may be described in this way. The graph might also represent the

temperature of an object in an oven.

1 2 3

1

2

x

y

y = 2(1 − e−x)

Figure 4.27: One member of the family
y = a(1 − e−bx), with a = 2
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a = 3
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y

Figure 4.28: Fixing b = 1 gives
y = a(1 − e−x), graphed for

various a

2

y

x

b large

b small

✲
■

Figure 4.29: Fixing a = 2 gives
y = 2(1 − e−bx), graphed for various b

We examine the effect on the graph of varying a. Fix b at some positive number, say b = 1.
Substitute different values for a and look at the graphs in Figure 4.28. We see that as x gets larger, y
approaches a from below. The reason is e−bx → 0 as x → ∞. Physically, the value of a represents
the terminal velocity of a falling body or the saturation level of the pollutant in the lake.

Now examine the effect of varying b on the graph. Fix a at some positive number, say a = 2.
Substitute different values for b and look at the graphs in Figure 4.29. The parameter b determines
how sharply the curve rises and how quickly it gets close to the line y = a.
Let’s confirm this last observation analytically. For y = a(1−e−bx), we have dy/dx = abe−bx,

so the slope of the tangent to the curve at x = 0 is ab. For larger b, the curve rises more rapidly at
x = 0. How long does it take the curve to climb halfway up from y = 0 to y = a? When y = a/2,
we have

a(1 − e−bx) =
a

2
, which leads to x =

ln 2

b
.

If b is large then (ln 2)/b is small, so in a short distance the curve is already half way up to a. If b is
small, then (ln 2)/b is large and we have to go a long way out to get up to a/2. See Figure 4.30.

ln 2
b

a
2

a

x

y

b large

y = abx

ln 2
b

a
2

a

x

y
y = abx

b small

Figure 4.30: Tangent at x = 0 to y = a(1 − e−bx), with fixed a, and large and small b
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Exercises and Problems for Section 4.2

Exercises

Find formulas for the functions described in Exercises 1–15.

1. A line with slope 2 and x-intercept 5.

2. A parabola opening downward with its vertex at (2, 5).

3. A parabola with x-intercepts ±1 and y-intercept 3.

4. The top half of a circle centered at the origin and with

radius 5.

5. The bottom half of a circle centered at the origin and with

radius
√

2.

6. The top half of a circle with center (−1, 2) and radius 3.

7. A function of the form y = a(1 − e−bx) with a, b > 0
and a horizontal asymptote of y = 5.

8. A rational function of the form y = ax/(x + b) with a
vertical asymptote at x = 2 and a horizontal asymptote
of y = −5.

9. A function of the form y = A sin(Bx) + C with a max-
imum at (5, 2), a minimum at (15, 1.5), and no critical
points between these two points.

10. A function of the form y = be−(x−a)2/2 with its maxi-

mum at the point (0, 3).

11. A curve of the form y = e−(x−a)2/b for b > 0 with a lo-
cal maximum at x = 2 and points of inflection at x = 1
and x = 3.

12. A function of the form y = axb ln x, where a and b
are nonzero constants, which has a local maximum at the

point (e2, 6e−1).

13. A cubic polynomial having x-intercepts at 1, 5, 7.

14. A cubic polynomial with a local maximum at x = 1, a
local minimum at x = 3, a y-intercept of 5, and an x3

term whose coefficient is 1.

15. A quartic polynomial whose graph is symmetric about

the y-axis and has local maxima at (−1, 4) and (1, 4)
and a y-intercept of 3.

Problems

16. Let p(x) = x3 − ax, where a is constant.

(a) If a < 0, show that p(x) is always increasing.
(b) If a > 0, show that p(x) has a local maximum and
a local minimum.

(c) Sketch and label typical graphs for the cases when

a < 0 and when a > 0.

17. Let p(x) = x3 − ax, where a is constant and a > 0.

(a) Find the local maxima and minima of p.
(b) What effect does increasing the value of a have on
the positions of the maxima and minima?

(c) On the same axes, sketch and label the graphs of p
for three positive values of a.

18. What effect does increasing the value of a have on the
graph of f(x) = x2 +2ax? Consider roots, maxima and
minima, and both positive and negative values of a.

19. (a) Graph f(x) = x + a sin x for a = 0.5 and a = 3.
(b) For what values of a is f(x) increasing for all x?

20. (a) Graph f(x) = x2 + a sin x for a = 1 and a = 20.
(b) For what values of a is f(x) concave up for all x?

21. The number, N , of people who have heard a rumor
spread by mass media at time, t, is given by

N(t) = a(1 − e−kt).

There are 200,000 people in the population who hear the

rumor eventually. If 10% of them heard it the first day,

find a and k, assuming t is measured in days.

22. The temperature, T , in ◦ C, of a yam put into a 200◦C

oven is given as a function of time, t, in minutes, by

T = a(1 − e−kt) + b.

(a) If the yam starts at 20◦C, find a and b.
(b) If the temperature of the yam is initially increasing

at 2◦C per minute, find k.

23. Consider the family of functions y = f(x) = x − k
√

x,
with k a positive constant and x ≥ 0. Show that the
graph of f(x) has a local minimum at a point whose x-
coordinate is 1/4 of the way between its x-intercepts.

24. Sketch graphs of y = xe−bx for b = 1, 2, 3, 4. Describe
the graphical significance of b.

25. Find the coordinates of the critical point of y = xe−bx

and use it to confirm your answer to Problem 24.

26. (a) Find all critical points of f(x) = x4 + ax2 + b.
(b) Under what conditions on a and b does this func-
tion have exactly one critical point? What is the one

critical point, and is it a local maximum, a local min-

imum, or neither?

(c) Under what conditions on a and b does this function
have exactly three critical points? What are they?

Which are local maxima and which are local min-

ima?

(d) Is it ever possible for this function to have two criti-

cal points? No critical points? More than three criti-

cal points? Give an explanation in each case.



180 Chapter Four USING THE DERIVATIVE

27. If a > 0, b > 0, show that f(x) = a(1− e−bx) is every-
where increasing and everywhere concave down.

28. A family of functions is given by

r(x) =
1

a + (x − b)2
.

(a) For what values of a and b does the graph of r have
a vertical asymptote? Where are the vertical asymp-

totes in this case?

(b) Find values of a and b so that the function r has a
local maximum at the point (3, 5).

29. For any constant a, let f(x) = ax − x ln x for x > 0.

(a) What is the x-intercept of the graph of f(x)?
(b) Graph f(x) for a = −1 and a = 1.
(c) For what values of a does f(x) have a critical point
for x > 0? Find the coordinates of the critical point
and decide if it is a local maximum, a local mini-

mum, or neither.

30. Let f(x) = x2 + cos(kx), for k > 0.

(a) Using a calculator or computer, graph f for k =
0.5, 1, 3, 5. Find the smallest number k at which you
see points of inflection in the graph of f .

(b) Explain why the graph of f has no points of inflec-
tion if k ≤

√
2, and infinitely many points of inflec-

tion if k >
√

2.
(c) Explain why f has only a finite number of critical
points, no matter what the value of k.

31. Let f(x) = ex − kx, for k > 0.

(a) Using a calculator or computer, sketch the graph of

f for k = 1/4, 1/2, 1, 2, 4. Describe what happens
as k changes.

(b) Show that f has a local minimum at x = ln k.
(c) Find the value of k for which the local minimum is
the largest.

32. Let y = Ae−Bx2

for positive A, B. Analyze the effect
of varying A and B on the shape of the curve. Illustrate
your answer with sketches.

33. Consider the surge function y = axe−bx for a, b > 0.

(a) Find the local maxima, local minima, and points of

inflection.

(b) How does varying a and b affect the shape of the
graph?

(c) On one set of axes, graph this function for several

values of a and b.

34. Sketch several members of the family y = e−ax sin bx
for b = 1, and describe the graphical significance of the
parameter a.

35. Sketch several members of the family e−ax sin bx for
a = 1, and describe the graphical significance of the pa-
rameter b.

36. Consider the family

y =
A

x + B
.

(a) If B = 0, what is the effect of varying A on the
graph?

(b) If A = 1, what is the effect of varying B?
(c) On one set of axes, graph the function for several

values of A and B.

37. For positive a, b, the potential energy, U , of a particle is

U = b

(

a2

x2
− a

x

)

for x > 0.

(a) Find the intercepts and asymptotes.

(b) Compute the local maxima and minima.

(c) Sketch the graph.

38. The force, F , on a particle with potential energy U is
given by

F = −dU

dx
.

Using the expression for U in Problem 37, graph F and
U on the same axes, labeling intercepts and local maxima
and minima.

39. For positiveA, B, the force between two atoms is a func-
tion of the distance, r, between them:

f(r) = − A

r2
+

B

r3
r > 0.

(a) What are the zeros and asymptotes of f?
(b) Find the coordinates of the critical points and inflec-

tion points of f .
(c) Sketch a graph of f .
(d) Illustrating your answers with a sketch, describe the

effect on the graph of f of:

(i) Increasing B, holding A fixed

(ii) Increasing A, holding B fixed

40. Consider the family of functions y = a cosh(x/a) for
a > 0. Sketch graphs for a = 1, 2, 3. Describe in words
the effect of increasing a.

41. Let y = Aex + Be−x for any constants A, B.

(a) Sketch the function for

(i) A = 1, B = 1 (ii) A = 1, B = −1
(iii) A = 2, B = 1 (iv) A = 2, B = −1
(v) A = −2, B = −1 (vi) A = −2, B = 1

(b) Describe in words the general shape of the graph if

A and B have the same sign. What effect does the
sign of A have on the graph?

(c) Describe in words the general shape of the graph if

A and B have different signs. What effect does the
sign of A have on the graph?

(d) For what values of A and B does the function have
a local maximum? A local minimum? Justify your

answer using derivatives.
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42. The x-axis runs along the water surface in a straight, hor-
izontal canal. At time t, the displacement, y, of the sur-
face of the water at position x is given by

y = sin(x − t).

(a) Graph and label y as a function of x for t = 0, 0.5,
1, 1.5, 2.

(b) What does the function y = sin(x − t) represent

(i) For fixed t? (ii) For fixed x?

(c) Assume t is constant. What does dy/dx represent?
(d) Assume x is constant. What does dy/dt represent?

43. An organism has sizeW at time t. For positive constants
A, b, and c, the Gompertz growth function gives

W = Ae−eb−ct

, t ≥ 0.

(a) Find the intercepts and asymptotes.

(b) Find the critical points and inflection points.

(c) GraphW for various values of A, b, and c.
(d) A certain organism grows fastest when it is about 1/3

of its final size. Would the Gompertz growth func-

tion be useful in modeling its growth? Explain.

4.3 OPTIMIZATION

It is often important to find the largest or smallest value of some quantity. For example, automobile

engineers want to construct a car that uses the least amount of fuel, scientists want to calculate

which wavelength carries the maximum radiation at a given temperature, and urban planners want

to design traffic patterns to minimize delays. Such problems belong to the field of mathematics

called optimization. The next three sections show how the derivative provides an efficient way of

solving many optimization problems.

Global Maxima and Minima

The single greatest (or least) value of a function f over a specified domain is called the global
maximum (or minimum) of f . Recall that the local maxima and minima tell us where a function
is locally largest or smallest. Now we are interested in where the function is absolutely largest or

smallest in a given domain. We define

• f has a global minimum at p if f(p) is less than or equal to all values of f .

• f has a global maximum at p if f(p) is greater than or equal to all values of f .

Global maxima and minima are sometimes called extrema or optimal values.

How Do We Find Global Maxima and Minima?

If f is a continuous function defined on a closed interval a ≤ x ≤ b (that is, an interval containing
its endpoints), then Theorem 4.2 on page 186 guarantees that global maxima and minima exist.

Figure 4.31 illustrates that the global maximum or minimum of f occurs either at a critical point or
at an endpoint of the interval, x = a or x = b. These points are the candidates for global extrema.

a b
x

Local min

✻

Local max

✾
❄

Local min,
global min

✻

Global max,
local max

✛

Figure 4.31: Global maximum and minimum on a closed interval a ≤ x ≤ b

To find the global maximum andminimum of a continuous function on a closed interval:

Compare values of the function at all the candidate points: the critical points in the interval

and the endpoints.
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a b
x

Local and global minimum

✻

No global
maximum

Figure 4.32: Global minimum on
a < x < b

x

Local
min

✻

Local max

✻

Local min,
global min

❄

No global
maximum

Figure 4.33: Global minimum when the
domain is all real numbers

If the function is defined on an open interval a < x < b (that is, an interval not including
its endpoints) or on all real numbers, there may or may not be a global maximum or minimum.

For example, there is no global maximum in Figure 4.32 because the function has no actual largest

value. The global minimum in Figure 4.32 coincides with the local minimum. There is a global

minimum but no global maximum in Figure 4.33.

To find the global maximum and minimum of a continuous function on an open interval

or on all real numbers: Find the value of the function at all the critical points and sketch

a graph. Look at the function values when x approaches the endpoints of the interval, or
approaches ±∞, as appropriate.

Example1 Find the global maxima and minima of f(x) = x3 − 9x2 − 48x + 52 on the following intervals:

(a) −5 ≤ x ≤ 12 (b) −5 ≤ x ≤ 14 (c) −5 ≤ x < ∞.

Solution (a) We have previously obtained the critical points x = −2 and x = 8 using

f ′(x) = 3x2 − 18x − 48 = 3(x + 2)(x − 8).

We evaluate f at the critical points and the endpoints of the interval:

f(−5) = (−5)3 − 9(−5)2 − 48(−5) + 52 = −58

f(−2) = 104

f(8) = −396

f(12) = −92.

Comparing these function values, we see that the global maximum on [−5, 12] is 104 and occurs
at x = −2, and the global minimum on [−5, 12] is −396 and occurs at x = 8.

(b) For the interval [−5, 14], we compare

f(−5) = −58, f(−2) = 104, f(8) = −396, f(14) = 360.

The global maximum is now 360 and occurs at x = 14, and the global minimum is still −396
and occurs at x = 8. Since the function is increasing for x > 8, changing the right-hand end
of the interval from x = 12 to x = 14 alters the global maximum but not the global minimum.
See Figure 4.34.
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(c) Figure 4.34 shows that for −5 ≤ x < ∞ there is no global maximum, because we can make
f(x) as large as we please by choosing x large enough. The global minimum remains −396 at
x = 8.

(−5,−58)

(−2, 104)

(8,−396)

(12,−92)

(14, 360)

x

y

Figure 4.34: Graph of f(x) = x3 − 9x2 − 48x + 52

Example2 When an arrow is shot into the air, its range, R, is defined as the horizontal distance from the archer
to the point where the arrow hits the ground. If the ground is horizontal and we neglect air resistance,

it can be shown that

R =
v0

2 sin(2θ)

g
,

where v0 is the initial velocity of the arrow, g is the (constant) acceleration due to gravity, and θ is
the angle above horizontal, so 0 ≤ θ ≤ π/2. (See Figure 4.35.) What initial angle maximizes R?

Ground

Archer

❘

✒

θ

v0

✲✛ R

Figure 4.35: Arrow’s path

Solution We can find the maximum of this function without using calculus. The maximum value of R occurs
when sin(2θ) = 1, so θ = arcsin(1)/2 = π/4, giving R = v2

0/g.
Let’s see how we can do the same problem with calculus. We want to find the global maximum

of R for 0 ≤ θ ≤ π/2. First we look for critical points:

dR

dθ
= 2

v2
0 cos(2θ)

g
.

Setting dR/dθ equal to 0, we get

0 = cos(2θ), or 2θ = ±π

2
,±3π

2
,±5π

2
, . . .

so π/4 is the only critical point in the interval 0 ≤ θ ≤ π/2. The range at θ = π/4 is R = v0
2/g.

Now we must check the value of R at the endpoints θ = 0 and θ = π/2. Since R = 0 at each
endpoint, the critical point θ = π/4 gives both a local and a global maximum on 0 ≤ θ ≤ π/2.
Therefore, the arrow goes farthest if shot at an angle of π/4, or 45◦.

A Graphical Example: Minimizing Gas Consumption

Next we look at an example in which a function is given graphically and the optimum values are

read from a graph. You already know how to estimate the optimum values of f(x) from a graph of
f(x)—read off the highest and lowest values. In this example, we see how to estimate the optimum
value of the quantity f(x)/x from a graph of f(x) against x.
The question we investigate is how to set driving speeds to maximize fuel efficiency.2 We

2Adapted from Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).
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Figure 4.36: Gas consumption versus velocity

assume that gas consumption, g (in gallons/hour), as a function of velocity, v (in mph) is as shown in
Figure 4.36. We want to minimize the gas consumption per mile, not the gas consumption per hour.

Let G = g/v represent the average gas consumption per mile. (The units of G are gallons/mile.)

Example3 Using Figure 4.36, estimate the velocity which minimizes G.

Solution Wewant to find the minimum value ofG = g/v when g and v are related by the graph in Figure 4.36.
We could use Figure 4.36 to sketch a graph of G against v and estimate a critical point. But there is
an easier way.

Figure 4.37 shows that g/v is the slope of the line from the origin to the point P . Where on the
curve should P be to make the slope a minimum? From the possible positions of the line shown in
Figure 4.37, we see that the slope of the line is both a local and global minimum when the line is

tangent to the curve. From Figure 4.38, we can see that the velocity at this point is about 50 mph.

Thus to minimize gas consumption per mile, we should drive about 50 mph.

1

1.5

2

g (gal/hour)

v (mph)

P

✲✛ v

✻

❄

g

Slope=
g

v
(gal/mi) ✲

Figure 4.37: Graphical representation of gas
consumption per mile, G = g/v
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■

Figure 4.38: Velocity for maximum fuel efficiency

Finding Upper and Lower Bounds

A problem which is closely related to finding maxima and minima is finding the bounds of a func-

tion. In Example 1, the value of f(x) on the interval [−5, 12] ranges from −396 to 104. Thus

−396 ≤ f(x) ≤ 104,

and we say that −396 is a lower bound for f and 104 is an upper bound for f on [−5, 12]. (See
Appendix A for more on bounds.) Of course, we could also say that

−400 ≤ f(x) ≤ 150,

so that f is also bounded below by −400 and above by 150 on [−5, 12]. However, we consider
the −396 and 104 to be the best possible bounds because they describe more accurately how the
function f(x) behaves on [−5, 12].



4.3 OPTIMIZATION 185

Example4 An object on a spring oscillates about its equilibrium position at y = 0. Its distance from equilibrium
is given as a function of time, t, by

y = e−t cos t.

Find the greatest distance the object goes above and below the equilibrium for t ≥ 0.

Solution We are looking for the bounds of the function. What does the graph of the function look like? We

can think of it as a cosine curve with a decreasing amplitude of e−t; in other words, it is a cosine

curve squashed between the graphs of y = e−t and y = −e−t, forming a wave with lower and

lower crests and shallower and shallower troughs. (See Figure 4.39.)

π
2

π 3π
2

−1

1

t

y
y = 1

y = −1y = −e−t

y = e−t

y = e−t cos t

✮

Figure 4.39: f(t) = e−t cos t for t ≥ 0

From the graph we can see that for t ≥ 0, the graph lies between the horizontal lines y = −1
and y = 1. This means that −1 and 1 are bounds:

−1 ≤ e−t cos t ≤ 1.

The line y = 1 is the best possible upper bound because the graph does come up that high (at
t = 0). However, we can find a better lower bound if we find the global minimum value of f for
t ≥ 0; this minimum occurs in the first trough between t = π/2 and t = 3π/2 because later troughs
are squashed closer to the t-axis. At the minimum, dy/dt = 0. The product rule gives

dy

dt
= (−e−t) cos t + e−t(− sin t) = −e−t(cos t + sin t) = 0.

Since e−t is never 0, we must have

cos t + sin t = 0, so
sin t

cos t
= −1.

Hence

tan t = −1, giving t =
3π

4
.

Thus, the global minimum we see on the graph occurs at t = 3π/4. The value of y at that minimum
is

y = e−3π/4 cos

(

3π

4

)

≈ −0.067.

Rounding down so that the inequalities still hold for all t ≥ 0 gives

−0.07 < e−t cos t ≤ 1.

Notice how much smaller in magnitude the lower bound is than the upper. This is a reflection of

how quickly the factor e−t causes the oscillation to die out.

Existence and Location of Extrema
On page 181 we gave a method for finding global maxima and minima of a continuous function

on a closed interval: Compare values of the function at all the critical points in the interval and at

the endpoints. This method relies on the fact that global maxima and minima exist, and on knowing

that they occur at critical points or endpoints. The existence of global extrema is guaranteed by the

following theorem; their location is specified by Theorem 4.1 on page 168.
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Theorem 4.2: The Extreme Value Theorem

If f is continuous on the closed interval a ≤ x ≤ b, then f has a global maximum and a
global minimum on that interval.

For a proof of Theorem 4.2, see www.wiley.com/college/hugheshallett.

We now prove Theorem 4.1, which says that inside an interval, local maxima and minima can

only occur at critical points. Suppose that f has a local maximum at x = a. Assuming that f ′(a) is
defined, the definition of the derivative gives

f ′(a) = lim
h→0

f(a + h) − f(a)

h
.

Since this is a two-sided limit, we have

f ′(a) = lim
h→0−

f(a + h) − f(a)

h
= lim

h→0+

f(a + h) − f(a)

h
.

By the definition of local maximum, f(a + h) ≤ f(a) for all sufficiently small h. Thus f(a + h)−
f(a) ≤ 0 for sufficiently small h. The denominator, h, is positive when we take the limit from the
right and negative when we take the limit from the left. Thus

lim
h→0−

f(a + h) − f(a)

h
≥ 0 and lim

h→0+

f(a + h) − f(a)

h
≤ 0.

Since both these limits are equal to f ′(a), we have f ′(a) ≥ 0 and f ′(a) ≤ 0, so we must have
f ′(a) = 0. The proof for a local minimum at x = a is similar.

Exercises and Problems for Section 4.3

Exercises

For Exercises 1–2, indicate all critical points on the given

graphs. Determine which correspond to local minima, local

maxima, global minima, global maxima, or none of these.

(Note that the graphs are on closed intervals.)

1.

1 2 3 4 5

4

8

x

y 2.

2 4 6 8 10

2

4

x

y

3. (a) Find the critical points of p(1 − p)4.
(b) Classify the critical points as local maxima, local

minima, or neither.

(c) What are the maximum and minimum values of

p(1 − p)4 on 0 ≤ x ≤ 1?

In Exercises 4–6, find the value(s) of x for which:

(a) f(x) has a local maximum or local minimum. Indicate
which ones are maxima and which are minima.

(b) f(x) has a global maximum or global minimum.

4. f(x) = x10 − 10x, and 0 ≤ x ≤ 2

5. f(x) = x − ln x, and 0.1 ≤ x ≤ 2

6. f(x) = sin2 x − cos x, and 0 ≤ x ≤ π

In Exercises 7–12, find the exact global maximum and mini-

mum values of the function. The domain is all real numbers

unless otherwise specified.

7. g(x) = 4x − x2 − 5

8. f(x) = x + 1/x for x > 0

9. g(t) = te−t for t > 0

10. f(x) = x − ln x for x > 0

11. f(t) =
t

1 + t2

12. f(t) = (sin2 t + 2) cos t
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Find the best possible bounds for the functions in Exer-

cises 13–18.

13. x3 − 4x2 + 4x, for 0 ≤ x ≤ 4

14. e−x2

, for |x| ≤ 0.3

15. x3e−x for x ≥ 0

16. x + sin x, for 0 ≤ x ≤ 2π

17. ln(1 + x), for x ≥ 0

18. ln(1 + x2), for −1 ≤ x ≤ 2

Problems

19. A grapefruit is tossed straight up with an initial veloc-

ity of 50 ft/sec. The grapefruit is 5 feet above the ground

when it is released. Its height at time t is given by

y = −16t2 + 50t + 5.

How high does it go before returning to the ground?

20. When you cough, your windpipe contracts. The speed,

v, with which air comes out depends on the radius, r, of
your windpipe. If R is the normal (rest) radius of your
windpipe, then for r ≤ R, the speed is given by:

v = a(R − r)r2
where a is a positive constant.

What value of r maximizes the speed?

21. For some positive constant C, a patient’s temperature
change, T , due to a dose,D, of a drug is given by

T =
(

C

2
− D

3

)

D2.

(a) What dosage maximizes the temperature change?

(b) The sensitivity of the body to the drug is defined as

dT/dD. What dosage maximizes sensitivity?

22. A warehouse selling cement has to decide how often and

in what quantities to reorder. It is cheaper, on average, to

place large orders, because this reduces the ordering cost

per unit. On the other hand, larger orders mean higher

storage costs. The warehouse always reorders cement in

the same quantity, q. The total weekly cost, C, of order-
ing and storage is given by

C =
a

q
+ bq, where a, b are positive constants.

(a) Which of the terms, a/q and bq, represents the or-
dering cost and which represents the storage cost?

(b) What value of q gives the minimum total cost?

23. A chemical reaction converts substance A to substance
Y ; the presence of Y catalyzes the reaction. At the start
of the reaction, the quantity of A present is a grams. At
time t seconds later, the quantity of Y present is y grams.
The rate of the reaction, in grams/sec, is given by

Rate = ky(a − y), k is a positive constant.

(a) For what values of y is the rate nonnegative? Graph
the rate against y.

(b) For what values of y is the rate a maximum?

24. For positive constants A and B , the force between two
atoms in a molecule is given by

f(r) = − A

r2
+

B

r3
,

where r > 0 is the distance between the atoms. What
value of r minimizes the force between the atoms?

25. When an electric current passes through two resistors

with resistance r1 and r2, connected in parallel, the com-

bined resistance, R, can be calculated from the equation

1

R
=

1

r1
+

1

r2
,

where R, r1, and r2 are positive. Assume that r2 is con-

stant.

(a) Show that R is an increasing function of r1.

(b) Where on the interval a ≤ r1 ≤ b does R take its
maximum value?

26. As an epidemic spreads through a population, the num-

ber of infected people, I , is expressed as a function of the
number of susceptible people, S, by

I = k ln
(

S

S0

)

− S + S0 + I0, for k, S0, I0 > 0.

(a) Find the maximum number of infected people.

(b) The constant k is a characteristic of the particular
disease; the constants S0 and I0 are the values of S
and I when the disease starts. Which of the follow-
ing affects the maximum possible value of I? Ex-
plain.

• The particular disease, but not how is starts.
• How the disease starts, but not the particular
disease.

• Both the particular disease and how it starts.

27. The distance, s, traveled by a cyclist, who starts at 1 pm,
is given in Figure 4.40. Time, t, is in hours since noon.

(a) Explain why the quantity, s/t, is represented by the
slope of a line from the origin to the point (t, s) on
the graph.

(b) Estimate the time at which the quantity s/t is a max-
imum.

(c) What is the relationship between the quantity s/t
and the instantaneous speed of the cyclist at the time

you found in part (b)?
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1 2 3 4 5

20

40

t (hours)

s (km)

Figure 4.40

28. A line goes through the origin and a point on the curve

y = x2e−3x, for x ≥ 0. Find the maximum slope of
such a line. At what x-value does it occur?

29. Two points on the curve y =
x3

1 + x4
have opposite x-

values, x and−x. Find the points making the slope of the
line joining them greatest.

30. When birds lay eggs, they do so in clutches of several

at a time. When the eggs hatch, each clutch gives rise to

a brood of baby birds. We want to determine the clutch

size which maximizes the number of birds surviving to

adulthood per brood. If the clutch is small, there are few

baby birds in the brood; if the clutch is large, there are

so many baby birds to feed that most die of starvation.

The number of surviving birds per brood as a function of

clutch size is shown by the benefit curve in Figure 4.41.3

(a) Estimate the clutch size which maximizes the num-

ber of survivors per brood.

(b) Suppose also that there is a biological cost to having

a larger clutch: the female survival rate is reduced by

large clutches. This cost is represented by the dotted

line in Figure 4.41. If we take cost into account by

assuming that the optimal clutch size in fact maxi-

mizes the vertical distance between the curves, what

is the new optimal clutch size?

5 10 15

clutch
size

benefit
or cost Cost: adult mortality

Benefit: number
of surviving young

❄

✛

Figure 4.41

31. Let f(v) be the amount of energy consumed by a fly-
ing bird, measured in joules per second (a joule is a unit

of energy), as a function of its speed v (in meters/sec).
Let a(v) be the amount of energy consumed by the same
bird, measured in joules per meter.

(a) Suggest a reason (in terms of the way birds fly) for

the shape of the graph of f(v) in Figure 4.42.

(b) What is the relationship between f(v) and a(v)?
(c) Where is a(v) a minimum?
(d) Should the bird try to minimize f(v) or a(v) when
it is flying? Why?

1 2

3

6 f(v)

v, speed (m/sec)

energy (joules/sec)

Figure 4.42

32. The forward motion of an aircraft in level flight is re-

duced by two kinds of forces, known as induced drag

and parasite drag. Induced drag is a consequence of the

downward deflection of air as the wings produce lift. Par-

asite drag results from friction between the air and the

entire surface of the aircraft. Induced drag is inversely

proportional to the square of speed and parasite drag is

directly proportional to the square of speed. The sum of

induced drag and parasite drag is called total drag. The

graph in Figure 4.43 shows a certain aircraft’s induced

drag and parasite drag functions.

(a) Sketch the total drag as a function of airspeed.

(b) Estimate two different airspeeds which each result

in a total drag of 1000 pounds. Does the total drag
function have an inverse? What about the induced

and parasite drag functions?

(c) Fuel consumption (in gallons per hour) is roughly

proportional to total drag. Suppose you are low on

fuel and the control tower has instructed you to en-

ter a circular holding pattern of indefinite duration

to await the passage of a storm at your landing field.

At what airspeed should you fly the holding pattern?

Why?

100 200 300 400 500 600

1

2

3

✛ Parasite
Drag

✛ Induced
Drag

speed
(miles/hour)

drag (thousands of lbs)

Figure 4.43

3Data from C. M. Perrins and D. Lack reported by J. R. Krebs and N. B. Davies in An Introduction to Behavioural

Ecology (Oxford: Blackwell, 1987).
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33. Let f(v) be the fuel consumption, in gallons per hour, of
a certain aircraft as a function of its airspeed, v, in miles
per hour. A graph of f(v) is given in Figure 4.44.

(a) Let g(v) be the fuel consumption of the same air-
craft, but measured in gallons per mile instead of

gallons per hour. What is the relationship between

f(v) and g(v)?
(b) For what value of v is f(v) minimized?
(c) For what value of v is g(v) minimized?
(d) Should a pilot try to minimize f(v) or g(v)?

100 200 300 400 500 600

25

50

75

100

f(v)

v
(miles/hour)

fuel consumption
(gallons/hour)

Figure 4.44

34. The function y = t(x) is positive and continuous with a
global maximum at the point (3, 3). Graph t(x) if t′(x)
and t′′(x) have the same sign for x < 3, but opposite
signs for x > 3.

35. Figure 4.45 gives the derivative of g(x) on −2 ≤ x ≤ 2.

(a) Write a few sentences describing the behavior of

g(x) on this interval.
(b) Does the graph of g(x) have any inflection points?
If so, give the approximate x-coordinates of their lo-
cations. Explain your reasoning.

(c) What are the global maxima and minima of g on
[−2, 2]?

(d) If g(−2) = 5, what do you know about g(0) and
g(2)? Explain.

−2 −1 1 2
x

g′(x)

Figure 4.45

36. Figure 4.46 shows the second derivative of h(x) for
−2 ≤ x ≤ 1. If h′(−1) = 0 and h(−1) = 2,

(a) Explain why h′(x) is never negative on this interval.
(b) Explain why h(x) has a global maximum at x = 1.
(c) Sketch a possible graph of h(x) for −2 ≤ x ≤ 1.

−2

−1 1

1

x

h′′(x)

Figure 4.46

Decide if the statements in Problems 37–39 are true or false.

Give an explanation for your answer.

37. A critical point of f must be a local maximum or mini-
mum of f .

38. Since the function f(x) = 1/x is continuous for x > 0
and the interval (0, 1) is bounded, f has a maximum on
the interval (0, 1).

39. The Extreme Value Theorem says that only continu-

ous functions have global maxima and minima on every

closed, bounded interval.

40. Show that f ′′(x) is continuous and f(x) has exactly two
critical points, then f ′(x) has a local maximum or local
minimum between the two critical points.

41. In this problem we prove a special case of the Mean

Value Theorem where f(a) = f(b) = 0. This special
case is called Rolle’s Theorem: If f is continuous on
[a, b] and differentiable on (a, b), and if f(a) = f(b) =
0, then there is a number c, with a < c < b, such that

f ′(c) = 0.

By the Extreme Value Theorem, f has a global maximum
and a global minimum on [a, b].

(a) Prove Rolle’s theorem in the case that both the

global maximum and the global minimum are at

endpoints of [a, b]. [Hint: f(x) must be a very sim-
ple function in this case.]

(b) Prove Rolle’s theorem in the case that either the

global maximum or the global minimum is not at

an endpoint. [Hint: Think about local maxima and

minima.]

42. Use Rolle’s Theorem to prove the Mean Value Theorem.

Suppose that f(x) is continuous on [a, b] and differen-
tiable on (a, b). Let g(x) be the difference between f(x)
and the y-value on the secant line joining (a, f(a)) to
(b, f(b)), so

g(x) = f(x) − f(a) − f(b) − f(a)

b − a
(x − a).

(a) Show g(x) on a sketch of f(x).
(b) Use Rolle’s Theorem (Problem 41) to show that

there must be a point c in (a, b) such that g′(c) = 0.
(c) Show that if c is the point in part (b), then

f ′(c) =
f(b) − f(a)

b − a
.
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4.4 APPLICATIONS TO MARGINALITY

Management decisions within a particular business usually aim at maximizing profit for the com-

pany. In this section we will see how the derivative can be used to maximize profit. Profit depends

on both production cost and revenue (or income) from sales. We begin by looking at the cost and

revenue functions.

The cost function, C(q), gives the total cost of producing a quantity q of some good.

What sort of function do we expect C to be? The more goods that are made, the higher the total
cost, so C is an increasing function. In fact, cost functions usually have the general shape shown
in Figure 4.47. The intercept on the C-axis represents the fixed costs, which are incurred even if
nothing is produced. (This includes, for instance, the machinery needed to begin production.) The

cost function increases quickly at first and then more slowly because producing larger quantities of

a good is usually more efficient than producing smaller quantities—this is called economy of scale.

At still higher production levels, the cost function starts to increase faster again as resources become

scarce, and sharp increases may occur when new factories have to be built. Thus, the graph of C(q)
may start out concave down and become concave up later on.

q (quantity)

C (cost)

Figure 4.47: Cost as a function of quantity

The revenue function,R(q), gives the total revenue received by a firm from selling a quantity
q of some good.

Revenue is income obtained from sales. If the price per item is p, and the quantity sold is q,
then

Revenue = Price× Quantity, so R = pq.

If the price per item does not depend on the quantity sold, then the graph of R(q) is a straight line
through the origin with slope equal to the price p. See Figure 4.48. In practice, for large values of q,
the market may become glutted, causing the price to drop, giving R(q) the shape in Figure 4.49.

R (revenue)

q (quantity)

Figure 4.48: Revenue: Constant price

q (quantity)

R (revenue)

Figure 4.49: Revenue: Decreasing price
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The profit is usually written as π. (Economists use π to distinguish it from the price, p; this π
has nothing to do with the area of a circle, and merely stands for the Greek equivalent of the letter

“p.”) The profit resulting from producing and selling q items is defined by

Profit = Revenue− Cost, so π(q) = R(q) − C(q).

Example1 If cost, C, and revenue, R, are given by the graph in Figure 4.50, for what production quantities, q,
does the firm make a profit? Approximately what production level maximizes profit?

130 q0 215
q

$

C
R

Figure 4.50: Costs and revenues for Example 1

Solution The firm makes a profit whenever revenues are greater than costs, that is, when R > C. The graph
of R is above the graph of C approximately when 130 < q < 215. Production between q = 130
units and q = 215 units generates a profit. The vertical distance between the cost and revenue curves
is largest at q0, so q0 units gives maximum profit.

Marginal Analysis

Many economic decisions are based on an analysis of the costs and revenues “at the margin.” Let’s

look at this idea through an example.

Suppose we are running an airline and we are trying to decide whether to offer an additional

flight. How should we decide? We’ll assume that the decision is to be made purely on financial

grounds: if the flight will make money for the company, it should be added. Obviously we need to

consider the costs and revenues involved. Since the choice is between adding this flight and leaving

things the way they are, the crucial question is whether the additional costs incurred are greater or

smaller than the additional revenues generated by the flight. These additional costs and revenues are

called the marginal costs and marginal revenues.

Suppose C(q) is the function giving the total cost of running q flights. If the airline had orig-
inally planned to run 100 flights, its costs would be C(100). With the additional flight, its costs
would be C(101). Therefore,

Marginal cost = C(101) − C(100).

Now

C(101) − C(100) =
C(101) − C(100)

101 − 100
,

and this quantity is the average rate of change of cost between 100 and 101 flights. In Figure 4.51 the

average rate of change is the slope of the line joining the C(100) and C(101) points on the graph. If
the graph of the cost function is not curving fast near the point, the slope of this line is close to the

slope of the tangent line there. Therefore, the average rate of change is close to the instantaneous

rate of change. Since these rates of change are not very different, many economists choose to define

marginal cost,MC, as the instantaneous rate of change of cost with respect to quantity:
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100 101

C(q)

Slope= C(101) − C(100)

Slope= C ′(100)

The slopes of the
two lines are close











Figure 4.51: Marginal cost: Slope of one of these lines

Marginal cost = MC = C ′(q).

Similarly if the revenue generated by q flights is R(q), the additional revenue generated by
increasing the number of flights from 100 to 101 is

Marginal revenue = R(101) − R(100).

Now R(101) − R(100) is the average rate of change of revenue between 100 and 101 flights. As
before, the average rate of change is usually almost equal to the instantaneous rate of change, so

economists often define:

Marginal revenue = MR = R′(q).

We often refer to total cost and total revenue to distinguish them from marginal cost and

marginal revenue. If the words cost and revenue are used alone, they are understood to mean to-

tal cost and total revenue.

Example2 If C(q) and R(q) for the airline are given in Figure 4.52, should the company add the 101st flight?

Solution The marginal revenue is the slope of the revenue curve, and the marginal cost is the slope of the cost

curve at the point 100. From Figure 4.52, you can see that the slope at the point A is smaller than
the slope at B, soMC < MR. This means that the airline will make more in extra revenue than it
will spend in extra costs if it runs another flight, so it should go ahead and run the 101st flight.

R(q)

C(q)

q = 100

A

B

Slope= MC

Slope= MR

✛

✛

Figure 4.52: Cost and revenue for Example 2

Since MC and MR are derivative functions, they can be estimated from the graphs of total
cost and total revenue.
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Example3 IfR andC are given by the graphs in Figure 4.53, sketch graphs ofMR = R′(q) andMC = C ′(q).

$

q

R
$

q

C

100

Figure 4.53: Total revenue and total cost for Example 3

Solution The revenue graph is a line through the origin, with equation

R = pq

where p is the price, which is a constant. The slope is p and

MR = R′(q) = p.

The total cost is increasing, so the marginal cost is always positive (above the q-axis). For small q
values, the total cost curve is concave down, so the marginal cost is decreasing. For larger q, say
q > 100, the total cost curve is concave up and the marginal cost is increasing. Thus the marginal
cost has a minimum at about q = 100. (See Figure 4.54.)

$/unit

q (quantity)

MR = R′

100

$/unit

q (quantity)

MC = C ′

Figure 4.54: Marginal revenue and costs for Example 3

Maximizing Profit

Now let’s look at how to maximize total profit, given functions for total revenue and total cost.

Example4 Find the maximum profit if the total revenue and total cost are given, for 0 ≤ q ≤ 200, by the curves
R and C in Figure 4.55.

q (quantity)
40 80 120 160 200

60

80

q (quantity)

$ (thousands)

C
R

✻
✻

✻

❄

Figure 4.55: Maximum profit at q = 140



194 Chapter Four USING THE DERIVATIVE

Solution The profit is represented by the vertical difference between the curves and is marked by the vertical

arrows on the graph. When revenue is below cost, the company is taking a loss; when revenue is

above cost, the company is making a profit. We can see that the profit is largest at about q = 140,
so this is the production level we’re looking for. To be sure that the local maximum is a global

maximum, we need to check the endpoints. At q = 0 and q = 200, the profit is negative, so the
global maximum is indeed at q = 140.
To find the actual maximum profit, we estimate the vertical distance between the curves at

q = 140. This gives a maximum profit of $80,000 − $60,000 = $20,000.
Suppose we wanted to find the minimum profit. In this example, we must look at the endpoints,

when q = 0 or q = 200. We see the minimum profit is negative (a loss), and it occurs at q = 0.

Maximum Profit Occurs WhereMR = MC

In Example 4, observe that at q = 140 the slopes of the two curves in Figure 4.55 are equal. To the
left of q = 140, the revenue curve has a larger slope than the cost curve, and the profit increases as
q increases. The company will make more money by producing more units, so production should
increase toward q = 140. To the right of q = 140, the slope of the revenue curve is less than
the slope of the cost curve, and the profit is decreasing. The company will make more money by

producing fewer units so production should decrease toward q = 140. At the point where the slopes
are equal, the profit has a local maximum; otherwise the profit could be increased by moving toward

that point. Since the slopes are equal at q = 140, we haveMR = MC there.
Now let’s look at the general situation. To maximize or minimize profit over an interval, we

optimize the profit, π, where
π(q) = R(q) − C(q).

We know that global maxima and minima can only occur at critical points or at endpoints of an

interval. To find critical points of π, look for zeros of the derivative:

π′(q) = R′(q) − C ′(q) = 0.

So

R′(q) = C ′(q),

that is, the slopes of the revenue and cost curves are equal. This is the same observation that we

made in the previous example. In economic language,

The maximum (or minimum) profit can occur where

Marginal cost = Marginal revenue.

Of course, maximal or minimal profit does not have to occur whereMR = MC; there are also
the endpoints to consider.

Example5 Find the quantity q which maximizes profit if the total revenue,R(q), and total cost, C(q), are given
in dollars by

R(q) = 5q − 0.003q2

C(q) = 300 + 1.1q,

where 0 ≤ q ≤ 800 units. What production level gives the minimum profit?
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Solution We look for production levels that give marginal revenue = marginal cost:

MR = R′(q) = 5 − 0.006q

MC = C ′(q) = 1.1.

So 5 − 0.006q = 1.1, giving
q = 3.9/0.006 = 650 units.

Does this value of q represent a local maximum or minimum of π? We can tell by looking
at production levels of 649 units and 651 units. When q = 649 we have MR = $1.106, which
is greater than the (constant) marginal cost of $1.1. This means that producing one more unit will

bring in more revenue than its cost, so profit will increase. When q = 651,MR = $1.094, which
is less than MC, so it is not profitable to produce the 651st unit. We conclude that q = 650 is a
local maximum for the profit function π. The profit earned by producing and selling this quantity is
π(650) = R(650) − C(650) = $967.50.
To check for global maxima we need to look at the endpoints. If q = 0, the only cost is $300

(the fixed costs) and there is no revenue, so π(0) = −$300. At the upper limit of q = 800, we
have π(800) = $900. Therefore, the maximum profit is at the production level of 650 units, where
MR = MC. The minimum profit (a loss) occurs when q = 0 and there is no production at all.

Exercises and Problems for Section 4.4

Exercises

1. Total cost and revenue are approximated by the functions

C = 5000 + 2.4q and R = 4q, both in dollars. Iden-
tify the fixed cost, marginal cost per item, and the price

at which this commodity is sold.

2. (a) Fixed costs are $3 million; variable costs are $0.4
million per item. Write a formula for total cost as a

function of quantity, q.
(b) The item in part (a) is sold for $0.5 million each.
Write a formula for revenue as a function of q.

(c) Write a formula for the profit function for this item.

3. The revenue from selling q items is R(q) = 500q − q2,

and the total cost is C(q) = 150 + 10q. Write a function
that gives the total profit earned, and find the quantity

which maximizes the profit.

4. Revenue is given by R(q) = 450q and cost is given by
C(q) = 10,000 + 3q2. At what quantity is profit maxi-

mized? What is the total profit at this production level?

5. Figure 4.56 shows cost and revenue. For what production

levels is the profit function positive? Negative? Estimate

the production at which profit is maximized.

5 10 15

100

200

300

400
C(q)

R(q)

q (thousands)

$ (thousands)

Figure 4.56

6. If C ′(500) = 75 and R′(500) = 100, should the quan-
tity produced be increased or decreased from q = 500 in
order to increase profits?

7. When production is 2000, marginal revenue is $4 per unit

and marginal cost is $3.25 per unit. Do you expect maxi-
mum profit to occur at a production level above or below

2000? Explain.

8. Figure 4.57 gives cost and revenue. What are fixed costs?

What quantity maximizes profit, and what is the maxi-

mum profit earned?

q (quantity)
100

1.1

2.5

3.7

q (quantity)

$ (millions)

C
R

✻
✻

✻

❄

Figure 4.57

9. Table 4.1 shows cost, C(q), and revenue, R(q),

(a) At approximately what production level, q, is profit
maximized? Explain your reasoning.

(b) What is the price of the product?

(c) What are the fixed costs?

Table 4.1

q 0 500 1000 1500 2000 2500 3000

R(q) 0 1500 3000 4500 6000 7500 9000

C(q) 3000 3800 4200 4500 4800 5500 7400
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10. Table 4.2 shows marginal cost, MC, and marginal rev-
enue,MR.

(a) Use the marginal cost and marginal revenue at a pro-

duction of q = 5000 to determine whether produc-
tion should be increased or decreased from 5000.

(b) Estimate the production level that maximizes profit.

Table 4.2

q 5000 6000 7000 8000 9000 10000

MR 60 58 56 55 54 53

MC 48 52 54 55 58 63

Problems

11. Using the cost and revenue graphs in Figure 4.58, sketch

the following functions. Label the points q1 and q2.

(a) Total profit (b) Marginal cost

(c) Marginal revenue

q1 q2

q

$

C(q)

R(q)

Figure 4.58

12. A manufacturer’s cost of producing a product is given in

Figure 4.58. The manufacturer can sell the product for a

price p each (regardless of the quantity sold), so that the
total revenue from selling a quantity q is R(q) = pq.

(a) The difference π(q) = R(q) − C(q) is the total
profit. For which quantity q0 is the profit a maxi-

mum? Mark your answer on a sketch of the graph.

(b) What is the relationship between p and C ′(q0)? Ex-
plain your result both graphically and analytically.

What does this mean in terms of economics? (Note

that p is the slope of the line R(q) = pq. Note also
that π(q) has a maximum at q = q0, so π′(q0) = 0.)

(c) GraphC ′(q) and p (as a horizontal line) on the same
axes. Mark q0 on the q-axis.

13. The marginal revenue and marginal cost for a certain item

are graphed in Figure 4.59. Do the following quantities

maximize profit for the company? Explain your answer.

(a) q = a (b) q = b

ba

MR

MC

q

$/unit

Figure 4.59

14. Let C(q) be the total cost of producing a quantity q of a
certain product. See Figure 4.60.

(a) What is the meaning of C(0)?
(b) Describe in words how the marginal cost changes as

the quantity produced increases.

(c) Explain the concavity of the graph (in terms of eco-

nomics).

(d) Explain the economic significance (in terms of

marginal cost) of the point at which the concavity

changes.

(e) Do you expect the graph ofC(q) to look like this for
all types of products?

$

q

C(q)

Figure 4.60

15. The total cost C(q) of producing q goods is given by:

C(q) = 0.01q3 − 0.6q2 + 13q.

(a) What is the fixed cost?

(b) What is the maximum profit if each item is sold for

$7? (Assume you sell everything you produce.)
(c) Suppose exactly 34 goods are produced. They all sell

when the price is $7 each, but for each $1 increase
in price, 2 fewer goods are sold. Should the price be

raised, and if so by how much?

16. (a) A cruise line offers a trip for $1000 per passenger.
If at least 100 passengers sign up, the price is re-
duced for all the passengers by $5 for every addi-
tional passenger (beyond 100) who goes on the trip.
The boat can accommodate 250 passengers. What
number of passengers maximizes the cruise line’s

total revenue? What price does each passenger pay

then?

(b) The cost to the cruise line for q passengers is
40,000+200q. What is the maximum profit that the
cruise line can make on one trip? How many passen-

gers must sign up for the maximum to be reached

and what price will each pay?
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17. A company manufactures only one product. The quan-

tity, q, of this product produced per month depends on
the amount of capital, K, invested (i.e., the number of
machines the company owns, the size of its building, and

so on) and the amount of labor, L, available each month.
We assume that q can be expressed as a Cobb-Douglas
production function:

q = cKαLβ

where c, α, β are positive constants, with 0 < α < 1
and 0 < β < 1. In this problem we will see how the
Russian government could use a Cobb-Douglas function

to estimate how many people a newly privatized industry

might employ. A company in such an industry has only a

small amount of capital available to it and needs to use all

of it, soK is fixed. Suppose L is measured in man-hours
per month, and that each man-hour costs the company w
rubles (a ruble is the unit of Russian currency). Suppose

the company has no other costs besides labor, and that

each unit of the good can be sold for a fixed price of p
rubles. How many man-hours of labor per month should

the company use in order to maximize its profit?

18. An agricultural worker in Uganda is planting clover to

increase the number of bees making their home in the re-

gion. There are 100 bees in the region naturally, and for

every acre put under clover, 20 more bees are found in

the region.

(a) Draw a graph of the total number,N(x), of bees as a
function of x, the number of acres devoted to clover.

(b) Explain, both geometrically and algebraically, the

shape of the graph of:

(i) The marginal rate of increase of the number of

bees with acres of clover, N ′(x).

(ii) The average number of bees per acre of clover,

N(x)/x.

19. If you invest x dollars in a certain project, your return is
R(x). You want to choose x to maximize your return per
dollar invested,4 which is

r(x) =
R(x)

x
.

(a) The graph ofR(x) is in Figure 4.61, withR(0) = 0.
Illustrate on the graph that the maximum value of

r(x) is reached at a point at which the line from the
origin to the point is tangent to the graph of R(x).

(b) Also, the maximum of r(x) occurs at a point at
which the slope of the graph of r(x) is zero. On the
same axes as part (a), sketch r(x). Illustrate that the
maximum of r(x) occurs where its slope is 0.

(c) Show, by taking the derivative of the formula for

r(x), that the conditions in part (a) and (b) are equiv-
alent: the x-value at which the line from the origin is
tangent to the graph of R is the same as the x-value
at which the graph of r has zero slope.

R(x)

x

$

Figure 4.61

Problems 20–22 involve the average cost of manufacturing a

quantity q of a good, which is defined to be

a(q) =
C(q)

q
.

20. Figure 4.62 shows the cost of production, C(q), as a
function of quantity produced, q.

(a) For some q0, sketch a line whose slope is the

marginal cost,MC, at that point.
(b) For the same q0, explain why the average cost a(q0)
can be represented by the slope of the line from that

point on the curve to the origin.

(c) Use the method of Example 3 on page 184 to ex-

plain why at the value of q which minimizes a(q),
the average and marginal costs are equal.

$

q

C(q)

Figure 4.62

21. The average cost per item to produce q items is given by

a(q) = 0.01q2 − 0.6q + 13, for q > 0.

(a) What is the total cost, C(q), of producing q goods?
(b) What is the minimum marginal cost? What is the

practical interpretation of this result?

(c) At what production level is the average cost a mini-

mum? What is the lowest average cost?

(d) Compute the marginal cost at q = 30. How does
this relate to your answer to part (c)? Explain this

relationship both analytically and in words.

4From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).
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22. A reasonably realistic model of a firm’s costs is given by

the short-run Cobb-Douglas cost curve

C(q) = Kq1/a + F,

where a is a positive constant, F is the fixed cost, andK
measures the technology available to the firm.

(a) Show that C is concave down if a > 1.
(b) Assuming that a < 1 and that average cost is mini-
mized when average cost equals marginal cost, find

what value of q minimizes the average cost.

23. The production function f(x) gives the number of units
of an item that a manufacturing company can produce

from x units of raw material. The company buys the raw
material at price w dollars per unit and sells all it pro-
duces at a price of p dollars per unit. The quantity of raw
material that maximizes profit is denoted by x∗.

(a) Do you expect the derivative f ′(x) to be positive or
negative? Justify your answer.

(b) Explain why the formula π(x) = pf(x)−wx gives
the profit π(x) that the company earns as a function
of the quantity x of raw materials that it uses.

(c) Evaluate f ′(x∗).
(d) Assuming it is nonzero, is f ′′(x∗) positive or nega-
tive?

(e) If the supplier of the rawmaterials is likely to change

the price w, then it is appropriate to treat x∗ as

a function of w. Find a formula for the derivative
dx∗/dw and decide whether it is positive or nega-
tive.

(f) If the price w goes up, should the manufacturing
company buy more or less of the raw material?

4.5 OPTIMIZATION AND MODELING

Finding global maxima and minima is made much easier by having a formula for the function to be

maximized or minimized. The process of translating a problem into a function whose formula we

know is called mathematical modeling. By working through the examples that follow, you will get

the flavor of some kinds of modeling.

Example1 What are the dimensions of an aluminum can that holds 40 in3 of juice and that uses the least

material (i.e., aluminum)? Assume that the can is cylindrical, and is capped on both ends.

Solution It is often a good idea to think about a problem in general terms before trying to solve it. Since we’re

trying to use as little material as possible, why not make the can very small, say, the size of a peanut?

We can’t, since the can must hold 40 in3. If we make the can short, to try to use less material in

the sides, we’ll have to make it fat as well, so that it can hold 40 in3. Saving aluminum in the sides

might actually use more aluminum in the top and bottom in a short, fat can. See Figure 4.63(a).

✲

✲

✻❄h

✻

❄

h
(a)

(b)

r

r

Large r, small h Small r, large h

Figure 4.63: Various cylindrical-shaped cans

Table 4.3 Material,M , used in
can for various choices of

radius, r, and height, h

r (in) h (in) M (in2)

0.2 318.31 400.25

1.0 12.73 86.27

2.0 3.18 65.09

3.0 1.41 83.13

4.0 0.80 120.64

10.0 0.13 636.49

If we try to save material by making the top and bottom small, the can has to be tall to ac-

commodate the 40 in3 of juice. So any savings we get by using a small top and bottom might be

outweighed by the height of the sides. See Figure 4.63(b). This is, in fact, true, as Table 4.3 shows.

The table gives the amount of material used in the can for some choices of the radius, r, and
the height, h. You can see that r and h change in opposite directions, and that more material is used
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at the extremes (very large or very small r and h) than in the middle. From the table it appears that
the optimal radius for the can lies somewhere in 1.0 ≤ r ≤ 3.0. If we consider the material used,
M , as a function of the radius, r, a graph of this function looks like Figure 4.64. The graph shows
that the global minimum we want is at a critical point.

1 2 3 4
0

50

100

r (in)

M (in2)

Figure 4.64: Total material used in can,M ,
as a function of radius, r

Both the table and the graph were obtained from a mathematical model, which in this case is a

formula for the material used in making the can. Finding such a formula depends on knowing the

geometry of a cylinder, in particular its area and volume. We have

M = Material used in the can = Material in ends+Material in the side

where

Material in ends = 2 · Area of a circle with radius r = 2 · πr2,

Material in the side = Surface area of cylinder with height h and radius r = 2πrh.

However, h is not independent of r: if r grows, h shrinks, and vice-versa. To find the relationship,
we use the fact that the volume of the cylinder, πr2h, is equal to the constant 40 in3:

Volume of can = πr2h = 40, giving h =
40

πr2
.

This means

Material in the side = 2πrh = 2πr
40

πr2
=

80

r
.

Thus we obtain the formula for the total material,M , used in a can of radius r:

M = 2πr2 +
80

r
.

The domain of this function is all r > 0.
Now we use calculus to find the minimum ofM . We look for critical points:

dM

dr
= 4πr − 80

r2
= 0 at a critical point, so 4πr =

80

r2
.

Therefore,

πr3 = 20, so r =

(

20

π

)1/3

≈ 1.85 inches,

which agrees with our graph. We also have

h =
40

πr2
≈ 40

π(1.85)2
≈ 3.7 inches.

Thus, the material used,M = 2π(1.85)2 + 80/1.85 = 64.7 in2.
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Practical Tips for Modeling Optimization Problems

1. Make sure that you know what quantity or function is to be optimized.

2. If possible, make several sketches showing how the elements that vary are related. Label

your sketches clearly by assigning variables to quantities which change.

3. Try to obtain a formula for the function to be optimized in terms of the variables that

you identified in the previous step. If necessary, eliminate from this formula all but one

variable. Identify the domain over which this variable varies.

4. Find the critical points and evaluate the function at these points and the endpoints (if

relevant) to find the global maxima and minima.

The next example, another problem in geometry, illustrates this approach.

Example2 Alaina wants to get to the bus stop as quickly as possible. The bus stop is across a grassy park, 2000

feet west and 600 feet north of her starting position. Alaina can walk west along the edge of the park

on the sidewalk at a speed of 6 ft/sec. She can also travel through the grass in the park, but only at a

rate of 4 ft/sec. What path will get her to the bus stop the fastest?

Solution (a) (b) (c)

Park Park Park

Bus stop Bus stop Bus stop

✻

❄

600 ft

✲✛ 2000 ft ✲✛ 2000 ft ✲✛ 2000 ft

✲✛
1000 ft

✲✛
1000 ft

■

✛

✻

✛

❑

Figure 4.65: Three possible paths to the bus stop

We might first think that she should take a path that is the shortest distance. Unfortunately, the

path that follows the shortest distance to the bus stop is entirely in the park, where her speed is

slow. (See Figure 4.65(a).) That distance is
√

20002 + 6002 ≈ 2100 feet, which takes her about 525
seconds to traverse. She could instead walk quickly the entire 2000 feet along the sidewalk, which

leaves her just the 600-foot northward journey through the park. (See Figure 4.65(b).) This method

would take 2000/6 + 600/4 ≈ 483 seconds total walking time.
But can she do even better? Perhaps another combination of sidewalk and park gives a shorter

travel time. For example, what is the travel time if she walks 1000 feet west along the sidewalk and

the rest of the way through the park? (See Figure 4.65(c).) The answer is about 458 seconds.

We make a model for this problem. We label the distance that Alaina walks west along the

sidewalk x and the distance she walks through the park y, as in Figure 4.66. Then the total time, t,
is

t = tsidewalk + tpark.

Since

Time = Distance/Speed,

and she can walk 6 ft/sec on the sidewalk and 4 ft/sec in the park, we have that

t =
x

6
+

y

4
.

Now, by the Pythagorean Theorem, y =
√

(2000 − x)2 + 6002. Therefore

t =
x

6
+

√

(2000 − x)2 + 6002

4
.
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We can find the critical points of this function analytically. (See Exercise 10 on page 203.) Alterna-

tively, we can graph the function on a calculator and estimate the critical point, which is x ≈ 1463
feet. This gives a minimum total time of about 445 seconds.

✲✛(2000 − x) ✲✛ x

✻

❄

600

Bus stop

y =
√

(2000 − x)2 + 6002

■

✛

Figure 4.66: Modeling time to bus stop

Example3 One hallway which is 4 feet wide meets another hallway which is 8 feet wide in a right angle. (See

Figure 4.67.) What is the length of the longest ladder which can be carried horizontally around the

corner?

Solution We imagine the ladder being carried on its side and ignore its width. To allow the longest ladder

possible we carry the ladder around the corner so that it just touches both walls (at A and C) and
just touches the corner at B. Let’s draw some lines that do this. (See Figure 4.67.) The length of the
line ABC decreases as the corner is turned, then increases again. The minimum such length would
be the length of the longest ladder that could make it around the corner. A smaller ladder would still

work (it would not touch A, B, and C simultaneously), but a larger one would not fit.

A

B

C

A
B

C

A B

C

Figure 4.67: Various ladders that touch both walls and corner

A

C

B
θ

✻

❄

8′

✲✛4′

l

Figure 4.68: Ladder and hallway

We want the smallest length of the line ABC. We express the length, l, as a function of θ, the
angle between the line and the wall of the narrow hall. (See Figure 4.68.) We have

l = AB + BC.

Now AB = 4/ sin θ and BC = 8/ cos θ, so

l =
4

sin θ
+

8

cos θ
.

Here the domain of θ is 0 < θ < π/2.
Next we differentiate:

dl

dθ
= − 4

(sin θ)2
(cos θ) − 8

(cos θ)2
(− sin θ).

To minimize l, we solve dl/dθ = 0:

−4
cos θ

(sin θ)2
+ 8

sin θ

(cos θ)2
= 0,
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so

2(sin θ)3 = (cos θ)3, or
(sin θ)3

(cos θ)3
=

1

2
.

This means

tan θ =
3
√

0.5 ≈ 0.79, so θ ≈ 0.67 radians.
Thus θ ≈ 0.67 is a critical point, and an investigation of what happens for θ near 0 and θ near

π/2 shows that l has a global minimum at θ = 0.67. The minimum value of l is therefore

l =
4

sin(0.67)
+

8

cos(0.67)
≈ 16.65 feet,

so the ladder can be at most 16.65 feet long and still make it around the corner.

Exercises and Problems for Section 4.5

Exercises

1. The bending momentM of a beam, supported at one end,
at a distance x from the support is given by

M = 1
2
wLx − 1

2
wx2,

where L is the length of the beam, and w is the uniform
load per unit length. Find the point on the beam where

the moment is greatest.

2. The potential energy, U , of a particle moving along the
x-axis is given by

U = b

(

a2

x2
− a

x

)

,

where a and b are positive constants and x > 0. What
value of x minimizes the potential energy?

3. An electric current, I , in amps, is given by

I = cos(wt) +
√

3 sin(wt),

where w 6= 0 is a constant. What are the maximum and
minimum values of I?

4. A smokestack deposits soot on the ground with a concen-

tration inversely proportional to the square of the distance

from the stack. With two smokestacks 20 miles apart, the

concentration of the combined deposits on the line join-

ing them, at a distance x from one stack, is given by

S =
k1

x2
+

k2

(20 − x)2

where k1 and k2 are positive constants which depend on

the quantity of smoke each stack is emitting. If k1 = 7k2,

find the point on the line joining the stacks where the con-

centration of the deposit is a minimum.

5. In a chemical reaction, substance A combines with sub-
stanceB to form substance Y . At the start of the reaction,
the quantity of A present is a grams, and the quantity of
B present is b grams. Assume a < b. At time t seconds

after the start of the reaction, the quantity of Y present
is y grams. For certain types of reactions, the rate of the
reaction, in grams/sec, is given by

Rate = k(a − y)(b − y), k is a positive constant.

(a) For what values of y is the rate nonnegative? Graph
the rate against y.

(b) Use your graph to find the value of y at which the
rate of the reaction is fastest.

6. A wave of wavelength λ traveling in deep water has
speed, v, given by

v = k

√

λ

c
+

c

λ
,

where c and k are positive constants. As λ varies, does
such a wave have a maximum or minimum velocity? If

so, what is it? Explain.

7. The efficiency of a screw, E, is given by

E =
(θ − µθ2)

µ + θ
, θ > 0,

where θ is the angle of pitch of the thread and µ is the co-
efficient of friction of the material, a (positive) constant.

What value of θ maximizes E?

8. A woman pulls a sled which, together with its load, has

a mass ofm kg. If her arm makes an angle of θ with her
body (assumed vertical) and the coefficient of friction (a

positive constant) is µ, the least force, F , she must exert
to move the sled is given by

F =
mgµ

sin θ + µ cos θ
.

If µ = 0.15, find the maximum and minimum values of
F for 0 ≤ θ ≤ π/2. Give answers as multiples ofmg.
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9. A circular ring of wire of radius r0 lies in a plane per-

pendicular to the x-axis and is centered at the origin. The
ring has a positive electric charge spread uniformly over

it. The electric field in the x-direction, E, at the point x
on the axis is given by

E =
kx

(x2 + r2
0)

3/2
for k > 0.

At what point on the x-axis is the field greatest? Least?

10. Find analytically the exact critical point of the function

which represents the time, t, to walk to the bus stop in
Example 2. Recall that t is given by

t =
x

6
+

√

(2000 − x)2 + 6002

4
.

Problems

11. Figure 4.69 shows the curves y =
√

x, x = 9, y = 0,
and a rectangle with its sides parallel to the axes and its

left end at x = a. Find the dimensions of the rectangle
having the maximum possible area.

a 9
x

y =
√

x
y

Figure 4.69

12. The hypotenuse of a right triangle has one end at the ori-

gin and one end on the curve y = x2e−3x, with x ≥ 0.
One of the other two sides is on the x-axis, the other side
is parallel to the y-axis. Find the maximum area of such
a triangle. At what x-value does it occur?

13. A rectangle has one side on the x-axis and two vertices
on the curve

y =
1

1 + x2
.

Find the vertices of the rectangle with maximum area.

14. A rectangle has one side on the x-axis, one side on the
y-axis, one vertex at the origin and one on the curve
y = e−2x for x ≥ 0. Find the

(a) Maximum area (b) Minimum perimeter

15. A hemisphere of radius 1 sits on a horizontal plane. A

cylinder stands with its axis vertical, the center of its

base at the center of the sphere, and its top circular rim

touching the hemisphere. Find the radius and height of

the cylinder of maximum volume.

16. A closed box has a fixed surface areaA and a square base
with side x.

(a) Find a formula for its volume, V , as a function of x.
(b) Sketch a graph of V against x.
(c) Find the maximum value of V .

17. If you have 100 feet of fencing and want to enclose a

rectangular area up against a long, straight wall, what is

the largest area you can enclose?

18. A rectangular beam is cut from a cylindrical log of radius

30 cm. The strength of a beam of width w and height h
is proportional to wh2. (See Figure 4.70.) Find the width

and height of the beam of maximum strength.

w

h
30

Figure 4.70

19. A landscape architect plans to enclose a 3000 square foot

rectangular region in a botanical garden. She will use

shrubs costing $25 per foot along three sides and fenc-

ing costing $10 per foot along the fourth side. Find the

minimum total cost.

20. A rectangular swimming pool is to be built with an area

of 1800 square feet. The owner wants 5-foot wide decks

along either side and 10-foot wide decks at the two ends.

Find the dimensions of the smallest piece of property on

which the pool can be built satisfying these conditions.

21. A square-bottomed box with no top has a fixed volume,

V . What dimensions minimize the surface area?

22. A light is suspended at a height h above the floor. (See
Figure 4.71.) The illumination at the point P is inversely
proportional to the square of the distance from the point

P to the light and directly proportional to the cosine of
the angle θ. How far from the floor should the light be to
maximize the illumination at the point P ?

Light

O

r

P

θ

Floor

10 m

✻

❄

h

Figure 4.71
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23. Which point on the parabola y = x2 is nearest to (1, 0)?
Find the coordinates to two decimals. [Hint: Minimize

the square of the distance—this avoids square roots.]

24. Find the coordinates of the point on the parabola y = x2

which is closest to the point (3,0).

25. The cross-section of a tunnel is a rectangle of height h
surmounted by a semicircular roof section of radius r
(See Figure 4.72 on page 204). If the cross-sectional area

isA, determine the dimensions of the cross section which
minimize the perimeter.

✻

❄

h

r
✒

Figure 4.72

26. Of all rectangles with given area,A, which has the short-
est diagonals?

27. You run a small furniture business. You sign a deal with

a customer to deliver up to 400 chairs, the exact number

to be determined by the customer later. The price will be

$90 per chair up to 300 chairs, and above 300, the price
will be reduced by $0.25 per chair (on the whole order)
for every additional chair over 300 ordered. What are the

largest and smallest revenues your company can make

under this deal?

28. The cost of fuel to propel a boat through the water (in

dollars per hour) is proportional to the cube of the speed.

A certain ferry boat uses $100 worth of fuel per hour
when cruising at 10 miles per hour. Apart from fuel, the

cost of running this ferry (labor, maintenance, and so on)

is $675 per hour. At what speed should it travel so as to
minimize the cost per mile traveled?

29. (a) For which positive number x is x1/x largest? Justify

your answer.

[Hint: You may want to write x1/x = eln(x1/x).]

(b) For which positive integer n is n1/n largest? Justify

your answer.

(c) Use your answer to parts (a) and (b) to decide which

is larger: 31/3 or π1/π.

30. The arithmetic mean of two numbers a and b is defined
as (a+b)/2; the geometric mean of two positive numbers
a and b is defined as

√
ab.

(a) For two positive numbers, which of the two means

is larger? Justify your answer.

[Hint: Define f(x) = (a+x)/2−√
ax for fixed a.]

(b) For three positive numbers a, b, c, the arithmetic and
geometric mean are (a+b+c)/3 and

3
√

abc, respec-
tively. Which of the two means of three numbers is

larger? [Hint: Redefine f(x) for fixed a and b.]

31. A bird such as a starling feeds worms to its young. To

collect worms, the bird flies to a site where worms are to

be found, picks up several in its beak, and flies back to

its nest. The loading curve in Figure 4.73 shows how the

number of worms (the load) a starling collects depends

on the time it has been searching for them.5 The curve is

concave down because the bird can pick up worms more

efficiently when its beak is empty; when its beak is partly

full, the bird becomes much less efficient. The traveling

time (from nest to site and back) is represented by the

distance PO in Figure 4.73. The bird wants to maximize
the rate at which it brings worms to the nest, where

Rate worms arrive =
Load

Traveling time + Searching time

(a) Draw a line in Figure 4.73 whose slope is this rate.

(b) Using the graph, estimate the load which maximizes

this rate.

(c) If the traveling time is increased, does the optimal

load increase or decrease? Why?

O

P

4

8

time

load
(number of worms)

Number of worms

Searching timeTraveling time

Figure 4.73

32. On the same side of a straight river are two towns, and the

townspeople want to build a pumping station, S. See Fig-
ure 4.74. The pumping station is to be at the river’s edge

with pipes extending straight to the two towns. Where

should the pumping station be located to minimize the

total length of pipe?

Town 1

Town 2

1 mile

4 miles

S

✲✛ 4 miles✲✛x

Figure 4.74

5Alex Kacelnick (1984). Reported by J. R. Krebs and N. B. Davis, An Introduction to Behavioural Ecology (Oxford:

Blackwell, 1987).
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33. A pigeon is released from a boat (pointB in Figure 4.75)
floating on a lake. Because of falling air over the cool wa-

ter, the energy required to fly one meter over the lake is

twice the corresponding energy e required for flying over
the bank (e = 3 joule/meter). To minimize the energy re-
quired to fly from B to the loft, L, the pigeon heads to a
point P on the bank and then flies along the bank to L.
The distance AL is 2000 m, and AB is 500 m.

(a) Express the energy required to fly from B to L via
P as a function of the angle θ (the angle BPA).

(b) What is the optimal angle θ?
(c) Does your answer change if AL, AB, and e have
different numerical values?

A

|−
LP

B

θ

Lake

Figure 4.75

34. To get the best view of the Statue of Liberty in Fig-

ure 4.76, you should be at the position where θ is a max-
imum. If the statue stands 92 meters high, including the

pedestal, which is 46 meters high, how far from the base

should you be? [Hint: Find a formula for θ in terms of
your distance from the base. Use this function to maxi-

mize θ, noting that 0 ≤ θ ≤ π/2.]

θ

Figure 4.76

35. A light ray starts at the origin and is reflected off a mirror

along the line y = 1 to the point (2, 0). See Figure 4.77.
Fermat’s Principle6 says that light’s path minimizes the

time of travel. The speed of light is a constant.

(a) Using Fermat’s principle, find the optimal position

of P .
(b) Using your answer to part (a), derive the Law of Re-

flection, that θ1 = θ2.

(2, 0) = Q
End

(0, 0)
Start

1

θ1 θ2

P = (x, 1)
Mirror

x

y

Figure 4.77

36. When a ray of light travels from one medium to another

(for example, from air to water), it changes direction.

This phenomenon is known as refraction. In Figure 4.78,

light is traveling from A to B. The amount of refraction
depends on the velocities, v1 and v2, of light in the two

media and on Fermat’s Principle which states that the

light’s time of travel, T , from A to B, is a minimum.

(a) Find an expression for T in terms of x and the con-
stants a, b, v1, v2, and c.

(b) Show that if R is chosen so that the time of travel is
minimized, then

sin θ1

sin θ2
=

v1

v2
.

This result is known as Snell’s Law and the ratio

v1/v2 is called the index of refraction of the second

medium with respect to the first medium.

A

B
✲✛ c

✲✛ c − x

a

b

θ2

θ1

Medium 1
Velocity 1

Medium 2
Velocity 2

A′

R

B′x

Figure 4.78

37. Show that when the value of x in Figure 4.78 is chosen
according to Snell’s Law, the time taken by the light ray

is a minimum.

In many applications, we want to maximize or minimize some

quantity subject to a condition. Such constrained optimization

problems are solved using Lagrange multipliers in multivari-

able calculus; Problems 38–40 show an alternate method.7

6See, for example, D. Halliday, R. Resnik, K. Kane, Physics Vol 2, 4th edn, p. 909 (New York: Wiley, 1992).
7Kelly Black ”Putting Constraints in Optimization for First-Year Calculus Students”, p. 310-312 Siam Review Vol. 39

No. 2, June 1997.
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38. Minimize x2 + y2 while satisfying x + y = 4 using the
following steps.

(a) Graph x+y = 4. On the same axes, graph x2+y2 =
1, x2 + y2 = 4, x2 + y2 = 9.

(b) Explain why the minimum value of x2 + y2 on

x + y = 4 occurs at the point at which a graph of
x2 +y2 = Constant is tangent to the line x+y = 4.

(c) Using your answer to part (b) and implicit differenti-

ation to find the slope of the circle, find the minimum

value of x2 + y2 such that x + y = 4.

39. The quantity Q of an item which can be produced from
quantities x and y of two raw materials is given by
Q = 10xy at a cost of C = x + 2y thousand dollars.
If there is a budget of $10 thousand for raw materials,

find the maximum production using the following steps.

(a) Graph x+2y = 10 in the first quadrant. On the same
axes, graph Q = 10xy = 100, Q = 10xy = 200,
and Q = 10xy = 300.

(b) Explain why the maximum production occurs at a

point at which a production curve is tangent to the

cost line C = 10.
(c) Using your answer to part (b) and implicit differen-

tiation to find the slope of the curve, find the maxi-

mum production under this budget.

40. With quantities x and y of two raw materials available,
Q = x1/2y1/2 thousand items can be produced at a

cost of C = 2x + y thousand dollars. Using the follow-
ing steps, find the minimum cost to produce 1 thousand

items.

(a) Graph x1/2y1/2 = 1. On the same axes, graph
2x + y = 2, 2x + y = 3, and 2x + y = 4.

(b) Explain why the minimum cost occurs at a point at

which a cost line is tangent to the production curve

Q = 1.
(c) Using your answer to part (b) and implicit differenti-

ation to find the slope of the curve, find the minimum

cost to meet this production level.

4.6 RATES AND RELATED RATES

Derivatives represent rates of change. In this section, we see how to calculate rates in a variety of

situations.

Example1 A spherical snowball is melting. Its radius decreases at a constant rate of 2 cm per minute from an

initial value of 70 cm. How fast is the volume decreasing half an hour later?

Solution The radius, r, starts at 70 cm and decreases at 2 cm/min. At time t minutes since the start,

r = 70 − 2t cm.

The volume of the snowball is given by

V =
4

3
πr3 =

4

3
π(70 − 2t)3 cm3.

The rate at which the volume is changing at time t is

dV

dt
=

4

3
π · 3(70 − 2t)2(−2) = −8(70 − 2t)2 cm3/min.

The volume is measured in cm3, and time is in minutes, so after half an hour t = 30, and

dV

dt

∣

∣

∣

∣

t=30

= −8π(70 − 2 · 30)2 = −800π cm3/min.

Thus, the rate at which the volume is increasing is −800π ≈ −2500 cm3/min; the rate at which the

volume is decreasing is about 2500 cm3/min.

Example2 A skydiver of mass m jumps from a plane at time t = 0. Under certain assumptions, the distance,
s(t), he has fallen in time t is given by

s(t) =
m2g

k2

(

kt

m
+ e−kt/m − 1

)

for some positive constant k.

(a) Find s′(0) and s′′(0) and interpret in terms of the skydiver.
(b) Relate the units of s′(t) and s′′(t) to the units of t and s(t).
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Solution (a) Differentiating using the chain rule gives

s′(t) =
m2g

k2

(

k

m
+ e−kt/m

(

− k

m

))

=
mg

k

(

1 − e−kt/m
)

s′′(t) =
mg

k
(−ekt/m)

(

− k

m

)

= ge−kt/m.

Since e−k·0/m = 1, evaluating at t = 0 gives

s′(0) =
mg

k
(1 − 1) = 0 and s′′(0) = g.

The first derivative of distance is velocity, so the fact that s′(0) = 0 tells us that the sky-
diver starts with zero velocity. The second derivative of distance is acceleration, so the fact that

s′′(0) = g tells us that the skydiver’s initial acceleration is g, the acceleration due to gravity.
(b) The units of velocity, s′(t), and acceleration, s′′(t), are given by

Units of s′(t) are
Units of s(t)

Units of t
=
Units of distance

Units of time
; for example, meters/sec.

Units of s′′(t) are
Units of s′(t)

Units of t
=
Units of distance

(Units of time)2
; for example, meters/sec2.

Related Rates

In Example 1, the radius of the snowball decreased at a constant rate. A more realistic scenario is

for the radius to decrease at different rates at different times. Then, we may not be able to write

a formula for V as a function of t. However, we may still be able to calculate dV/dt, as in the
following example.

Example3 A spherical snowball melts in such a way that the instant at which its radius is 20 cm, its radius is

decreasing at 3 cm/min. At what rate is the volume of the ball of snow changing at that instant?

Solution Since the snowball is spherical, we again have that

V =
4

3
πr3.

We can no longer write a formula for r in terms of t, but we know that

dr

dt
= −3 when r = 20.

We want to know dV/dt when r = 20. Think of r as an (unknown) function of t and differentiate
the expression for V with respect to t using the chain rule:

dV

dt
=

4

3
π · 3r2 dr

dt
= 4πr2 dr

dt
.

At the instant at which r = 20 and dr/dt = −3, we have

dV

dt
= 4π · 202 · (−3) = −4800π cm3/min.

Notice that we have sidestepped the problem of not knowing r as a function of t by calculating the
derivatives only at the moment we are interested in.
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Example4 Figure 4.79 shows the fuel consumption, g, in miles per gallon, of a car traveling at v mph. At one
moment, the car was going 70 mph and its deceleration was 8000 miles/hour2. How fast was the

fuel consumption changing at that moment? Include units.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

v (mph)

g (mpg)

Figure 4.79: Fuel consumption versus velocity

Solution Acceleration is rate of change of velocity, dv/dt, and we are told that the deceleration is 8000
miles/hour2, so we know dv/dt = −8000 when v = 70. We want dg/dt. The chain rule gives

dg

dt
=

dg

dv
· dv

dt
.

The value of dg/dv is the slope of the curve in Figure 4.79 at v = 70. Since the points (30, 40) and
(100, 20) lie approximately on the tangent to the curve at v = 70, we can estimate the derivative

dg

dv
≈ 20 − 40

100 − 30
= −2

7
.

Thus,
dg

dv
≈
(

−2

7

)

· (−8000) ≈ 2300 mpg/hr.

Since we approximated dg/dv, we can only get a rough estimate for dg/dt.

A famous problem involves the rate at which a ladder slips down a wall as the foot of the ladder

moves.

Example5 (a) A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a speed of

0.1 meter/sec when the foot is 1 meter from the wall. At that moment, how fast is the top of the
ladder falling? What if the foot had been 2 meters from the wall?

(b) If the foot of the ladder moves out at a constant speed, how does the speed at which the top falls

change as the foot gets farther out?

Solution (a) Let the foot be x meters from the base of the wall and let the top be y meters from the base. See
Figure 4.80. Then, since the ladder is 3 meters long, by Pythagoras’ Theorem,

x2 + y2 = 32 = 9.

Thinking of both x and y as functions of t, we differentiate this implicit relation, giving

2x
dx

dt
+ 2y

dy

dt
= 0.

We are interested in the moment at which dx/dt = 0.1 and x = 1. We want to know dy/dt, so
we solve, giving

dy

dt
= −x

y

dx

dt
.



4.6 RATES AND RELATED RATES 209

✲✛ x

✻

❄

y

Ladder
3 meters

Ground

Wall

Figure 4.80: Side view of ladder standing against wall

When the foot of the ladder is 1 meter from the wall, x = 1 and y =
√

9 − 12 =
√

8, so

dy

dt
= − 1√

8
0.1 = −0.035 meter/sec.

Thus, the top falls at 0.0035 meter/sec.
When the foot is 2 meters from the wall, x = 2 and y =

√
9 − 22 =

√
5, so

dy

dt
= − 2√

5
0.1 = −0.089 meter/sec.

Thus, the top falls at 0.089meter/sec. Notice that the top falls faster when the base of the ladder
is farther from the wall.

(b) As the foot of the ladder moves out, x increases and y decreases. Looking at the expression

dy

dt
= −x

y

dx

dt
,

we see that if dx/dt is constant, the magnitude of dy/dt increases as the foot gets farther out.

Example6 An airplane, flying at 450 km/hr at a constant altitude of 5 km, is approaching a camera mounted

on the ground. Let θ be the angle of elevation above the ground at which the camera is pointed. See
Figure 4.81. When θ = π/3, how fast does the camera have to rotate in order to keep the plane in
view?

Solution Suppose the plane is vertically above the point B. Let x be the distance between B and C. The fact
that the plane is moving toward C at 450 km/hr means that x is decreasing and dx/dt = −450
km/hr. From Figure 4.81, we see that tan θ = 5/x.
Differentiating tan θ = 5/x with respect to t and using the chain rule gives

1

cos2 θ

dθ

dt
= −5x−2 dx

dt
.

✛

C
Camera Ground

x B

5 km

Plane

θ

Figure 4.81: Plane approaching a camera at C (side view)
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We want to calculate dθ/dt when θ = π/3. At that moment, cos θ = 1/2 and tan θ =
√

3, so
x = 5/

√
3. Substituting gives

1

(1/2)2
dθ

dt
= −5

(

5√
3

)

−2

· (−450)

dθ

dt
= 67.500 radians/hour.

This answer tells us that the camera must turn at roughly 1 radian per minute if it is to remain

pointed at the plane.

Exercises and Problems for Section 4.6

Exercises

1. According to the US Census, the world population P , in
billions, is approximately

P = 6.342e0.011t,

where t is in years since January 1, 2004. At what rate
was the world’s population increasing on that date? Give

your answer in millions of people per year.

2. With time, t, in minutes, the temperature, H , in degrees
Celsius, of a bottle of water put in the refrigerator at

t = 0 is given by

H = 4 + 16e−0.02t.

How fast is the water cooling initially? After 10minutes?
Give units.

3. The power, P , dissipated when a 9-volt battery is put
across a resistance of R ohms is given by

P =
81

R
.

What is the rate of change of power with respect to resis-

tance?

4. With length, l, in meters, the period T , in seconds, of a
pendulum is given by

T = 2π

√

l

9.8
.

(a) How fast does the period increase as l increases?
(b) Does this rate of change increase or decrease as l
increases?

5. At time t, in hours, a lake is covered with ice of thickness
y cm, where y = 0.2t1.5.

(a) How fast is the ice forming when t = 1? When
t = 2? Give units.

(b) If ice forms for 0 ≤ t ≤ 3, at what time in this
interval is the ice thickest? At what time is the ice

forming fastest?

6. A dose, D, of a drug causes a temperature change, T , in
a patient. For C a positive constant, T is given by

T =
(

C

2
− D

3

)

D3.

(a) What is the rate of change of temperature change

with respect to dose?

(b) For what doses does the temperature change increase

as the dose increases?

7. For positive constants k and g, the velocity, v, of a parti-
cle of massm at time t is given by

v =
mg

k

(

1 − e−kt/m
)

.

At what rate is the velocity is changing at time 0? At

t = 1? What do your answers tell you about the motion?

8. The average cost per item, C, in dollars, of manufactur-
ing a quantity q of cell phones is given by

C =
a

q
+ b where a, b are positive constants.

(a) Find the rate of change ofC as q increases. What are
its units?

(b) If production increases at a rate of 100 cell phones

per week, how fast is the average cost changing? Is

the average cost increasing or decreasing?

9. For positive constants A and B, the force, F , between
two atoms in a molecule at a distance r apart is given by

F = − A

r2
+

B

r3
.

(a) How fast does force change as r increases? What
type of units does it have?

(b) If at some time t the distance is changing at a rate k,
at what rate is the force changing with time? What

type of units does this rate of change have?
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10. An item costs $500 at time t = 0 and costs $P in year t.
When inflation is r% per year, the price is given by

P = 500ert/100.

(a) If r is a constant, at what rate is the price rising (in
dollars per year)

(i) Initially? (ii) After 2 years?

(b) Now suppose that r is increasing by 0.3 per year
when r = 4 and t = 2. At what rate (dollars per
year) is the price increasing at that time?

11. A voltage V across a resistance R generates a current
I = V/R. If a constant voltage of 9 volts is put across

a resistance that is increasing at a rate of 0.2 ohms per

second when the resistance is 5 ohms, at what rate is the

current changing?

12. The gravitational force, F , on a rocket at a distance, r,
from the center of the earth is given by

F =
k

r2
,

where k = 1013 newton · km2. When the rocket is 104

km from the center of the earth, it is moving away at 0.2
km/sec. How fast is the gravitational force changing at

that moment? Give units. (A newton is a unit of force.)

Problems

13. Point P moves around the unit circle.8 (See Figure 4.82.)
The angle θ, in radians, changes with time as shown in
Figure 4.83.

(a) Estimate the coordinates of P when t = 2.
(b) When t = 2, approximately how fast is the point P
moving in the x-direction? In the y-direction?

P

θ x

y

Figure 4.82

2 4 6 8 10

1

3

5

7

t

θ

Figure 4.83

14. Figure 4.84 shows the number of gallons, G, of gasoline
used on a trip ofM miles.

(a) The function f is linear on each of the intervals
0 < M < 70 and 70 < M < 100. What is the slope
of these lines? What are the units of these slopes?

(b) What is gas consumption (in miles per gallon) dur-

ing the first 70 miles of this trip? During the next 30

miles?

(c) Figure 4.85 shows distance traveled, M (in miles),

as a function of time t, in hours since the start of
the trip. Describe this trip in words. Give a possible

explanation for what happens one hour into the trip.

What do your answers to part (b) tell you about the

trip?

(d) If we let G = k(t) = f(h(t)), estimate k(0.5) and
interpret your answer in terms of the trip.

(e) Find k′(0.5) and k′(1.5). Give units and interpret
your answers.

70 100

G = f(M)

2.8

4.6

M (miles)

G (gallons)

Figure 4.84

1 2

70

100
M = h(t)

t (hours)

M (miles)

Figure 4.85

15. Coroners estimate time of death using the rule of thumb

that a body cools about 2◦F during the first hour after

death and about 1◦F for each additional hour. Assuming

an air temperature of 68◦F and a living body temperature

of 98.6◦F , the temperature T (t) in ◦F of a body at a time

t hours since death is given by

T (t) = 68 + 30.6e−kt.

(a) For what value of k will the body cool by 2◦F in the
first hour?

(b) Using the value of k found in part (a), after how
many hours will the temperature of the body be de-

creasing at a rate of 1◦F per hour?

(c) Using the value of k found in part (a), show that, 24
hours after death, the coroner’s rule of thumb gives

approximately the same temperature as the formula.

8Based on an idea from Caspar Curjel.
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16. A certain quantity of gas occupies a volume of 20 cm3 at

a pressure of 1 atmosphere. The gas expands without the
addition of heat, so, for some constant k, its pressure, P ,
and volume, V , satisfy the relation

PV 1.4 = k.

(a) Find the rate of change of pressure with volume.

Give units.

(b) The volume is increasing at 2 cm3/min when the
volume is 30 cm3. At that moment, is the pressure

increasing or decreasing? How fast? Give units.

17. (a) A hemispherical bowl of radius 10 cm contains wa-

ter to a depth of h cm. Find the radius of the surface
of the water as a function of h.

(b) The water level drops at a rate of 0.1 cm per hour. At

what rate is the radius of the water decreasing when

the depth is 5 cm?

18. A cone-shaped coffee filter of radius 6 cm and depth 10

cm contains water, which drips out through a hole at the

bottom at a constant rate of 1.5 cm3 per second.

(a) If the filter starts out full, how long does it take to

empty?

(b) Find the volume of water in the filter when the depth

of the water is h cm.
(c) How fast is the water level falling when the depth is

8 cm?

19. A spherical snowball is melting. Its radius is decreasing

at 0.2 cm per hour when the radius is 15 cm. How fast is

its volume decreasing at that time?

20. A ruptured oil tanker causes a circular oil slick on the

surface of the ocean. When its radius is 150 meters, the

radius of the slick is expanding by 0.1 meter/minute and

its thickness is 0.02 meter. At that moment:

(a) How fast is the area of the slick expanding?

(b) The circular slick has the same thickness every-

where, and the volume of oil spilled remains fixed.

How fast is the thickness of the slick decreasing?

21. A potter forms a piece of clay into a cylinder. As he rolls

it, the length, L, of the cylinder increases and the radius,
r, decreases. If the length of the cylinder is increasing at
0.1 cm per second, find the rate at which the radius is
changing when the radius is 1 cm and the length is 5 cm.

22. The London Eye is a large ferris wheel that has diameter

135 meters and revolves continuously. Passengers enter
the cabins at the bottom of the wheel and complete one

revolution in 20 minutes. One minute into the ride a pas-
senger is rising at 0.1 meters per second. How fast is the
horizontal motion of the passenger at that moment?

23. A gas station stands at the intersection of a north-south

road and an east-west road. A police car is traveling to-

ward the gas station from the east, chasing a stolen truck

which is traveling north away from the gas station. The

speed of the police car is 100 mph at the moment it is 3

miles from the gas station. At the same time, the truck is

4 miles from the gas station going 80 mph. At this mo-

ment:

(a) Is the distance between the car and truck increas-

ing or decreasing? How fast? (Distance is measured

along a straight line joining the car and the truck.)

(b) How does your answer change if the truck is going

70 mph instead of 80 mph?

24. A train is traveling at 0.8 km/min along a long straight
track, moving in the direction shown in Figure 4.86. A

movie camera, 0.5 km away from the track, is focused
on the train.

(a) Express z, the distance between the camera and the
train, as a function of x.

(b) How fast is the distance from the camera to the train

changing when the train is 1 km from the camera?
Give units.

(c) How fast is the camera rotating (in radians/min) at

the moment when the train is 1 km from the cam-
era?

0 x km Train

z km

Camera

0.5

✲

Figure 4.86

25. A lighthouse is 2 km from the long, straight coastline
shown in Figure 4.87. Find the rate of change of the dis-

tance of the spot of light from the pointO with respect to
the angle θ.

Lighthouse

Spot of light

θ

O Shoreline

✠
Beam of light✻

❄

2 km

Figure 4.87

26. A train is heading due west from St. Louis. At noon, a

plane flying horizontally due north at a fixed altitude of

4 miles passes directly over the train. When the train has

traveled another mile, it is going 80 mph, and the plane

has traveled another 5 miles and is going 500 mph. At

that moment, how fast is the distance between the train

and the plane increasing?

27. The radius of a spherical balloon is increasing by 2
cm/sec. At what rate is air being blown into the balloon

at the moment when the radius is 10 cm? Give units in
your answer.
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28. A spherical cell is growing at a constant rate of

400 µm3/day (1 µm= 10−6 m). At what rate is its ra-

dius increasing when the radius is 10 µm?

29. A raindrop is a perfect sphere with radius r cm and sur-
face area S cm2. Condensation accumulates on the rain-

drop at a rate equal to kS, where k = 2 cm/sec. Show
that the radius of the raindrop increases at a constant rate

and find that rate.

30. Sand falls from a hopper at a rate of 0.1 cubic meters

per hour and forms a conical pile beneath. If the side of

the cone makes an angle of π/6 radians with the vertical,
find the rate at which the height of the cone increases. At

what rate does the radius of the base increase? Give both

answers in terms of h, the height of the pile in meters.

31. A circular region is irrigated by a 20 meter long pipe,

fixed at one end and rotating horizontally, spraying wa-

ter. One rotation takes 5 minutes. A road passes 30 meters

from the edge of the circular area. See Figure 4.88.

(a) How fast is the end of the pipe, P , moving?
(b) How fast is the distance PQ changing when θ is

π/2? When θ is 0?

20
m 0

P

Q

θ

✻

❄

30 m

Road

Figure 4.88

32. A water tank is in the shape of an inverted cone with

depth 10 meters and top radius 8 meters. Water is flow-
ing into the tank at 0.1 cubic meters/min but leaking out

at a rate of 0.001h2 cubic meters/min, where h is the
depth of the water in the tank in meters. Can the tank

ever overflow?

33. For the amusement of the guests, some hotels have eleva-

tors on the outside of the building. One such hotel is 300
feet high. You are standing by a window 100 feet above
the ground and 150 feet away from the hotel, and the el-
evator descends at a constant speed of 30 ft/sec, starting
at time t = 0, where t is time in seconds. Let θ be the
angle between the line of your horizon and your line of

sight to the elevator. (See Figure 4.89.)

(a) Find a formula for h(t), the elevator’s height above
the ground as it descends from the top of the hotel.

(b) Using your answer to part (a), express θ as a func-
tion of time t and find the rate of change of θ with
respect to t.

(c) The rate of change of θ is a measure of how fast the
elevator appears to you to be moving. At what height

is the elevator when it appears to be moving fastest?

✻

❄

✛ ✲

❨

❥

❄

✻

❄

✻

300 ft

100 ft

150 ft

h(t)
θ

Elevator

Figure 4.89

34. In a romantic relationship between Angela and Brian,

who are unsuited for each other, a(t) represents the af-
fection Angela has for Brian at time t days after they
meet, while b(t) represents the affection Brian has for
Angela at time t. If a(t) > 0 then Angela likes Brian; if
a(t) < 0 then Angela dislikes Brian; if a(t) = 0 then
Angela neither likes nor dislikes Brian. Their affection

for each other is given by the relation a2(t) + b2(t) = c,
where c is a constant.

(a) Show that a(t) · a′(t) = −b(t) · b′(t).
(b) At any time during their relationship, the rate per

day at which Brian’s affection for Angela changes is

b′(t) = −a(t). Explain what this means if Angela

(i) Likes Brian, (ii) Dislikes Brian.

(c) Use parts (a) and (b) to show that a′(t) = b(t). Ex-
plain what this means if Brian

(i) Likes Angela, (ii) Dislikes Angela.

(d) If a(0) = 1 and b(0) = 1 who first dislikes the
other?

35. In a 19th century sea-battle, the number of ships on each

side remaining t hours after the start are given by x(t)
and y(t). If the ships are equally equipped, the relation
between them is x2(t) − y2(t) = c, where c is a posi-
tive constant. The battle ends when one side has no ships

remaining.

(a) If, at the start of the battle, 50 ships on one side op-

pose 40 ships on the other, what is the value of c?
(b) If y(3) = 16, what is x(3)?What does this represent
in terms of the battle?

(c) There is a time T when y(T ) = 0. What does this T
represent in terms of the battle?

(d) At the end of the battle, how many ships remain on

the victorious side?

(e) At any time during the battle, the rate per hour at

which y loses ships is directly proportional to the
number of x ships, with constant of proportionality
k. Write an equation that represents this. Is k posi-
tive or negative?

(f) Show that the rate per hour at which x loses ships is
directly proportional to the number of y ships, with
constant of proportionality k.

(g) Three hours after the start of the battle, x is losing
ships at the rate of 32 ships per hour. What is k? At
what rate is y losing ships at this time?
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4.7 L’HOPITALS RULE, GROWTH, AND DOMINANCE

Suppose we want to calculate the exact value of the limit

lim
x→0

e2x − 1

x
.

Substituting x = 0 gives us 0/0, which is undefined:

e2(0) − 1

0
=

1 − 1

0
=

0

0
.

Substituting values of x near 0 gives us an approximate value for the limit.
However, the limit can be calculated exactly using local linearity. Suppose we let f(x) be the

numerator, so f(x) = e2x − 1, and g(x) be the denominator, so g(x) = x. Then f(0) = 0 and
f ′(x) = 2e2x, so f ′(0) = 2. When we zoom in on the graph of f(x) = e2x − 1 near the origin, we
see its tangent line y = 2x shown in Figure 4.90. We are interested in the ratio f(x)/g(x), which is
approximately the ratio of the y-values in Figure 4.90. So, for x near 0,

f(x)

g(x)
=

e2x − 1

x
≈ 2x

x
=

2

1
=

f ′(0)

g′(0)
.

As x → 0, this approximation gets better, and we have

lim
x→0

e2x − 1

x
= 2.

✻
❄
x

✻

❄

2x

x

y = 2x: Approximates graph of f

y = x: Graph of g

Figure 4.90: Ratio (e2x − 1)/x is approximated
by ratio of slopes as we zoom in near the origin

a

x

Approximate graph of g

Approximate graph of f

✻

❄

f ′(a)(x − a)
✻
❄
g′(a)(x − a)

Figure 4.91: Ratio f(x)/g(x) is approximated by
ratio of slopes, f ′(a)/g′(a), as we zoom in at a

L’Hopital’s Rule

If f(a) = g(a) = 0, we can use the same method to investigate limits of the form

lim
x→a

f(x)

g(x)
.

As in the previous case, we zoom in on the graphs of f(x) and g(x). Figure 4.91 shows that both
graphs cross the x-axis at x = a. This suggests that the limit of f(x)/g(x) as x → a is the ratio of
slopes, giving the following result:

L’Hopital’s rule: If f and g are differentiable, f(a) = g(a) = 0, and g′(a) 6= 0, then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

To justify this result, let us assume g′(a) 6= 0 and consider the quantity f ′(a)/g′(a). Using the
definition of the derivative and the fact that f(a) = g(a) = 0, we have
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f ′(a)

g′(a)
=

lim
h→0

f(a + h) − f(a)

h

lim
h→0

g(a + h) − g(a)

h

=
lim
h→0

f(a + h)

h

lim
h→0

g(a + h)

h

= lim
h→0

f(a + h)

g(a + h)
= lim

x→a

f(x)

g(x)
.

Note that if f ′(a) 6= 0 and g′(a) = 0, the limit of f(x)/g(x) does not exist.

Example1 Use l’Hopital’s rule to confirm that lim
x→0

sinx

x
= 1.

Solution Let f(x) = sinx and g(x) = x. Then f(0) = g(0) = 0 and f ′(x) = cos x and g′(x) = 1. Thus,

lim
x→0

sinx

x
=

cos 0

1
= 1.

If we also have f ′(a) = g′(a) = 0, then we can use the following result:

More general form of l’Hopital’s rule: If f and g are differentiable and f(a) = g(a) = 0,
then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists.

Example2 Calculate lim
t→0

et − 1 − t

t2
.

Solution Let f(t) = et − 1− t and g(t) = t2. Then f(0) = e0 − 1− 0 = 0 and g(0) = 0, and f ′(t) = et − 1
and g′(t) = 2t. So

lim
t→0

et − 1 − t

t2
= lim

t→0

et − 1

2t
.

Since f ′(0) = g′(0) = 0, the ratio f ′(0)/g′(0) is not defined. So we use l’Hopital’s rule again:

lim
t→0

et − 1 − t

t2
= lim

t→0

et − 1

2t
= lim

t→0

et

2
=

1

2
.

We can also use L’Hopital’s rule in the following cases.

L’Hopital’s rule applies to limits involving infinity, provided f and g are differentiable:
• When limx→a f(x) = ±∞ and limx→a g(x) = ±∞,
or

• When a = ∞ (or a = −∞) and lim
x→∞

f(x) = lim
x→∞

g(x) = 0 or lim
x→∞

f(x) = ±∞ and
lim

x→∞

g(x) = ±∞.
It can be shown that under these circumstances:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

(where a may be ±∞), provided the limit on the right-hand side exists.
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Notice that we cannot evaluate f ′(x)/g′(x) directly when a = ±∞. The next example shows
how this version of l’Hopital’s rule is used.

Example3 Calculate lim
x→∞

5x + e−x

7x
.

Solution Let f(x) = 5x + e−x and g(x) = 7x. Then lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, and f ′(x) = 5 − e−x

and g′(x) = 7, so

lim
x→∞

5x + e−x

7x
= lim

x→∞

(5 − e−x)

7
=

5

7
.

We can also use l’Hopital’s rule to calculate some limits of the form lim
x→∞

f(x)g(x), providing

we rewrite them appropriately.

Example4 Calculate lim
x→∞

xe−x.

Solution Since lim
x→∞

x = ∞ and lim
x→∞

e−x = 0, we see that

xe−x → 0 · ∞ as x → ∞.

Since 0 · ∞ is undefined, we rewrite the function xe−x as

xe−x =
x

ex
.

Now we use l’Hopital’s rule, since

xe−x =
x

ex
→ ∞

∞ as x → ∞.

Taking f(x) = x and g(x) = ex gives f ′(x) = 1 and g′(x) = ex, so

lim
x→∞

xe−x = lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0.

A Famous Limit

In the following example, l’Hopital’s rule is applied to calculate a limit that can be used to define e.

Example5 Evaluate lim
x→∞

(

1 +
1

x

)x

.

Solution Since

(

1 +
1

x

)x

→ 1∞ as x → ∞, and 1∞ is undefined, we write

y =

(

1 +
1

x

)x

and find the limit of ln y:

ln y = ln

(

1 +
1

x

)x

= x ln

(

1 +
1

x

)

.

As in the previous example, we rewrite the product as fraction, giving

ln y =
ln(1 + 1/x)

1/x
.
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Since limx→∞ ln(1 + 1/x) = 0 and limx→∞(1/x) = 0, we can use l’Hopital’s rule with f(x) =
ln(1 + 1/x) and g(x) = 1/x. We have

f ′(x) =
1

1 + 1/x

(

− 1

x2

)

and g′(x) = − 1

x2
,

so

lim
x→∞

ln y = lim
x→∞

ln(1 + 1/x)

1/x
= lim

x→∞

1

1 + 1/x

(

− 1

x2

)/(

− 1

x2

)

= lim
x→∞

1

1 + 1/x
= 1.

Since limx→∞ ln y = 1, we have
lim

x→∞

y = e1 = e.

Dominance: Powers, Polynomials, Exponentials, and Logarithms

In Chapter 1, we saw that some functions were much larger than others as x → ∞. We say that g
dominates f as x → ∞ if lim

x→∞

f(x)

g(x)
= 0. L’Hopital’s rule gives us an easy way of checking this.

Example6 Check that x1/2 dominates lnx as x → ∞.

Solution We apply l’Hopital’s rule to (ln x)/x1/2:

lim
x→∞

lnx

x1/2
= lim

x→∞

1/x
1
2x−1/2

.

To evaluate this limit, we simplify and get

lim
x→∞

1/x
1
2x−1/2

= lim
x→∞

2x1/2

x
= lim

x→∞

2

x1/2
= 0.

Therefore we have

lim
x→∞

lnx

x1/2
= 0,

which tells us that x1/2 dominates lnx as x → ∞.

Example7 Check any exponential function of the form ekx (with k > 0) dominates any power function of the
form Axp (with A and p positive) as x → ∞.

Solution We apply l’Hopital’s rule repeatedly to Axp/ekx:

lim
x→∞

Axp

ekx
= lim

x→∞

Apxp−1

kekx
= lim

x→∞

Ap(p − 1)xp−2

k2ekx
= · · ·

Keep applying l’Hopital’s rule until the power of x is no longer positive. Then the limit of the
numerator must be a finite number, while the limit of the denominator must be ∞. Therefore we
have

lim
x→∞

Axp

ekx
= 0,

so ekx dominates Axp.
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Exercises and Problems for Section 4.7

Exercises

For Exercises 1–4, find the sign of lim
x→a

f(x)

g(x)
from the figure.

1.

a

f(x)

g(x)

x

2.

a

f(x)

g(x)

x

3.

a

f(x)

g(x)

x

Assume f ′′(a) 6= 0, g′′(a) 6= 0

4. f(x)

g(x)

a

Assume f ′′′(a) 6= 0, g′′′(a) 6= 0

Based on your knowledge of the behavior of the numera-

tor and denominator, predict the value of the limits in Exer-

cises 5–8. Then find each limit using l’Hopital’s rule.

5. lim
x→0

x2

sin x
6. lim

x→0

sin2 x

x

7. lim
x→0

sin x

x1/3
8. lim

x→0

x

(sin x)1/3

In Exercises 9–12, which function dominates as x → ∞?

9. x5 and 0.1x7 10. 0.01x3 and 50x2

11. ln(x + 3) and x0.2 12. x10 and e0.1x

13. Evaluate lim
x→0+

x ln x. [Hint: Write x ln x =
ln x

1/x
.]

Problems

14. Find the horizontal asymptote of f(x) =
2x3 + 5x2

3x3 − 1
.

15. The functions f and g and their tangent lines at (4, 0) are

shown in Figure 4.92. Find lim
x→4

f(x)

g(x)
.

4

f(x)

g(x)

y = −0.7(x − 4)

y = 1.4(x − 4)

x

y

Figure 4.92

16. (a) What is the slope of f(x) = sin(3x) at x = 0?
(b) What is the slope of g(x) = 5x at x = 0?
(c) Use the results of parts (a) and (b) to calculate

lim
x→0

sin(3x)

5x
.

In Problems 17–25 determine whether the limit exists, and

where possible evaluate it.

17. lim
x→1

ln x

x2 − 1
18. lim

t→π

sin2 t

t − π

19. lim
x→0

sinh(2x)

x
20. lim

x→0

1 − cosh(3x)

x

21. lim
x→0+

xa ln x, where a is a positive constant.

22. lim
x→1−

cos−1 x

x − 1
23. lim

t→0+

3 sin t − sin 3t

3 tan t − tan 3t

24. lim
x→0

(

1

x
− 1

sin x

)

25. lim
x→∞

(

1 + sin
(

3

x

))x

Explain why l’Hopital’s rule cannot be used to calculate the

limits in Problems 26–28. Then evaluate the limit if it exists.

26. lim
x→1

sin(2x)

x
27. lim

x→0

cos x

x
28. lim

x→∞

e−x

sin x

29. If a, b, x, and y are all positive and a + b = 1, evaluate

(a) lim
p→0

ln(axp + byp)

p
(b) lim

p→0
(axp + byp)1/p

30. (a) Explain why l’Hopital’s rule cannot be used to eval-

uate lim
x→∞

π − 2 tan−1 x

e−x
.

(b) Use a graph to estimate the value of this limit if it

exists.
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In Problems 31–33, evaluate the limit using the fact that

lim
n→∞

(

1 +
1

n

)n

= e.

31. lim
x→0+

(1 + x)1/x
32. lim

n→∞

(

1 +
2

n

)n

33. lim
x→0+

(1 + kx)t/x
; k > 0

34. Show that lim
n→∞

(

1 − 1

n

)n

= e−1
.

35. Use the result of Problem 34 to evaluate

lim
n→∞

(

1 − λ

n

)n

.

Evaluate the limits in Problems 36–38 where

f(t) =

(

3t + 5t

2

)1/t

for t 6= 0.

36. lim
t→−∞

f(t) 37. lim
t→+∞

f(t) 38. lim
t→0

f(t)

39. (a) Graph the functions
1

1 − x
and

ln((x − a)/(x − 1))

a − 1
for a = 1.1, a = 1.01, and a = 1.001. Describe
what you see.

(b) Evaluate lim
a→1

ln((x − a)/(x − 1))

a − 1
.

(c) Explain the connection between parts (a) and (b).

40. (a) Graph the functions
1

x
and

ln((x + a)/(x − a))

2a
for a = 0.1, a = 0.01, and a = 0.001. Describe
what you see.

(b) Evaluate lim
a→0

ln((x + a)/(x − a))

2a
.

(c) Explain the connection between parts (a) and (b).

41. (a) For x > 0 and r 6= 0, let hr(x) = (xr − 1)/r.
Compute h0(x), which is defined by h0(x) =
limr→0(x

r − 1)/r.
(b) On the same set of axes, graph hr(x) for r =

−5,−2, 0, 1, and 2.

4.8 PARAMETRIC EQUATIONS

Representing Motion in the Plane

To represent the motion of a particle in the xy-plane we use two equations, one for the x-coordinate
of the particle, x = f(t), and another for the y-coordinate, y = g(t). Thus at time t the particle
is at the point (f(t), g(t)). The equation for x describes the right-left motion; the equation for y
describes the up-down motion. The two equations for x and y are called parametric equations with
parameter t.

Example1 Describe the motion of the particle whose coordinates at time t are x = cos t and y = sin t.

Solution Since (cos t)2 + (sin t)2 = 1, we have x2 + y2 = 1. That is, at any time t the particle is at a point
(x, y) on the unit circle x2 + y2 = 1. We plot points at different times to see how the particle moves
on the circle. (See Figure 4.93 and Table 4.4.) The particle moves at a uniform speed, completing

one full trip counterclockwise around the circle every 2π units of time. Notice how the x-coordinate
goes repeatedly back and forth from −1 to 1 while the y-coordinate goes repeatedly up and down
from −1 to 1. The two motions combine to trace out a circle.

t = 0 t = 2π

t = π/2

t = π

t = 3π/2

y

x

Figure 4.93: The circle parameterized by
x = cos t, y = sin t

Table 4.4 Points on the circle with x = cos t,
y = sin t

t x y

0 1 0

π/2 0 1

π −1 0

3π/2 0 −1

2π 1 0
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Example2 Figure 4.94 shows the graphs of two functions, f(t) and g(t). Describe the motion of the particle
whose coordinates at time t are x = f(t) and y = g(t).

1 2 3 4

1 f(t)

t

x

1 2 3 4

1 g(t)

t

y

Figure 4.94: Graphs of x = f(t) and y = g(t) used to trace out the path (f(t), g(t)) in Figure 4.95

Solution Between times t = 0 and t = 1, the x-coordinate goes from 0 to 1, while the y-coordinate stays
fixed at 0. So the particle moves along the x-axis from (0, 0) to (1, 0). Then, between times t = 1
and t = 2, the x-coordinate stays fixed at x = 1, while the y-coordinate goes from 0 to 1. Thus,
the particle moves along the vertical line from (1, 0) to (1, 1). Similarly, between times t = 2 and
t = 3, it moves horizontally back to (0, 1), and between times t = 3 and t = 4 it moves down the
y-axis to (0, 0). Thus, it traces out the square in Figure 4.95.

1

1

x

y

t = 0
t = 4 t = 1

t = 2t = 3

Figure 4.95: The square parameterized by (f(t), g(t))

Different Motions Along the Same Path

Example3 Describe the motion of the particle whose x and y coordinates at time t are given by the equations

x = cos(3t), y = sin(3t).

Solution Since (cos(3t))2 + (sin(3t))2 = 1, we have x2 + y2 = 1, giving motion around the unit circle. But
from Table 4.5, we see that the particle in this example is moving three times as fast as the particle

in Example 1. (See Figure 4.96.)

y

x

t = 3π/6

t = 2π/6

t = π/6

t = 0 t = 4π/6

Figure 4.96: The circle parameterized by
x = cos(3t), y = sin(3t)

Table 4.5 Points on circle with

x = cos(3t), y = sin(3t)

t x y

0 1 0

π/6 0 1

2π/6 −1 0

3π/6 0 −1

4π/6 1 0
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Example 3 is obtained from Example 1 by replacing t by 3t; this is called a change in parameter.
If we make a change in parameter, the particle traces out the same curve (or a part of it) but at a

different speed or in a different direction.

Example4 Describe the motion of the particle whose x and y coordinates at time t are given by

x = cos(e−t2), y = sin(e−t2).

Solution As in Examples 1 and 3, we have x2 + y2 = 1 so the motion lies on the unit circle. As time t goes

from −∞ (way back in the past) to 0 (the present) to ∞ (way off in the future), e−t2 goes from

near 0 to 1 back to near 0. So (x, y) = (cos(e−t2), sin(e−t2)) goes from near (1, 0) to (cos 1, sin 1)
and back to near (1, 0). The particle does not actually reach the point (1, 0). (See Figure 4.97 and
Table 4.6.)

t = 0

t = −1, t = 1

t = −100, t = 1001 radian

(cos 1, sin 1)

(1, 0)
x

y

Figure 4.97: The circle parameterized by

x = cos (e−t2), y = sin (e−t2)

Table 4.6 Points on circle

with x = cos(e−t2),

y = sin(e−t2)

t x y

−100 ∼ 1 ∼ 0

−1 0.93 0.36

0 0.54 0.84

1 0.93 0.36

100 ∼ 1 ∼ 0

Motion in a Straight Line

An object moves with constant speed along a straight line through the point (x0, y0). Both the x-
and y-coordinates have a constant rate of change. Let a = dx/dt and b = dy/dt. Then at time t the
object has coordinates x = x0 + at, y = y0 + bt. (See Figure 4.98.) Notice that a represents the
change in x in one unit of time, and b represents the change in y. Thus the line has slopem = b/a.

t = −1
t = 0

t = 1

t = 2
(x0 − a, y0 − b)

(x0, y0)
(x0 + a, y0 + b)

(x0 + 2a, y0 + 2b)

(0, 0)

Figure 4.98: The line x = x0 + at, y = y0 + bt

This yields the following:

Parametric Equations for a Straight Line

An object moving along a line through the point (x0, y0), with dx/dt = a and dy/dt = b,
has parametric equations

x = x0 + at, y = y0 + bt.

The slope of the line ism = b/a.
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Example5 Find parametric equations for:

(a) The line passing through the points (2,−1) and (−1, 5).
(b) The line segment from (2,−1) to (−1, 5).

Solution (a) Imagine an object moving with constant speed along a straight line from (2,−1) to (−1, 5),
making the journey from the first point to the second in one unit of time. Then dx/dt = ((−1)−
2)/1 = −3 and dy/dt = (5 − (−1))/1 = 6. Thus the parametric equation are

x = 2 − 3t, y = −1 + 6t.

(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1) and t = 1 corresponds
to the point (−1, 5). So the parameterization of the segment is

x = 2 − 3t, y = −1 + 6t, 0 ≤ t ≤ 1.

There are many other possible parametric equations for this line.

Speed and Velocity

An object moves along a straight line at a constant speed, with dx/dt = a and dy/dt = b. In one
unit of time, the object moves a units horizontally and b units vertically. Thus, by the Pythagorean
Theorem, it travels a distance

√
a2 + b2. So its speed is

Speed =
Distance traveled

Time taken
=

√
a2 + b2

1
=
√

a2 + b2.

For general motion along a curve with varying speed, we make the following definition:

The instantaneous speed of a moving object is defined to be

v =

√

(

dx

dt

)2

+

(

dy

dt

)2

.

The quantity vx = dx/dt is the instantaneous velocity in the x-direction; vy = dy/dt is the
instantaneous velocity in the y-direction.

The quantities vx and vy are called the components of the velocity in the x- and y-directions.

Example6 A particle moves in the xy-plane with x = 2t3 − 9t2 + 12t and y = 3t4 − 16t3 + 18t2, where t is
time.

(a) At what times is the particle

(i) Stopped (ii) Moving parallel to the x- or y- axis?

(b) Find the speed of the particle at time t.

Solution (a) Differentiating gives

dx

dt
= 6t2 − 18t + 12

dy

dt
= 12t3 − 48t2 + 36t.

We are interested in the points at which dx/dt = 0 or dy/dt = 0. Solving gives

dx

dt
= 6(t2 − 3t + 2) = 6(t − 1)(t − 2) so

dx

dt
= 0 if t = 1 or t = 2.

dy

dt
= 12t(t2 − 4t + 3) = 12t(t − 1)(t − 3) so

dy

dt
= 0 if t = 0, t = 1, or t = 3.
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(i) The particle is stopped if both dx/dt and dy/dt are 0, which occurs at t = 1.

(ii) The particle is moving parallel to the x-axis if dy/dt = 0 but dx/dt 6= 0. This occurs at
t = 0 and t = 3. The particle is moving parallel to the y-axis if dx/dt = 0 but dy/dt 6= 0.
This occurs at t = 2.

(b) We have

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

=
√

(6t2 − 18t + 12)2 + (12t3 − 48t2 + 36t)2

= 6
√

4t6 − 32t5 + 89t4 − 102t3 + 49t2 − 12t + 4.

Example7 A child is sitting on a ferris wheel of diameter 10 meters, making one revolution every 2 minutes.
Find the speed of the child

(a) Using geometry. (b) Using a parameterization of the motion.

Solution (a) The child moves at a constant speed around a circle of radius 5 meters, completing one revo-

lution every 2 minutes. One revolution around a circle of radius 5 is a distance of 10π, so the
child’s speed is 10π/2 = 5π ≈ 15.7 m/min. See Figure 4.99.

5 m

5 m Speed
15.7 m/min

Speed
15.7 m/min

Figure 4.99: Motion of a child on a ferris wheel at two different times is
represented by the arrows. The direction of each arrow is the direction of motion

at that time.

(b) The ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2 min-
utes. If the origin is at the center of the circle and we measure x and y in meters, the motion is
parameterized by equations of the form

x = 5 cos(ωt), y = 5 sin(ωt),

where ω is chosen to make the period 2 minutes. Since the period of cos(ωt) and sin(ωt) is
2π/ω, we must have

2π

ω
= 2, so ω = π.

Thus, for t in minutes, the motion is described by the equations

x = 5 cos(πt), y = 5 sin(πt).

So the speed is given by

v =

√

(

dx

dt

)2

+

(

dy

dt

)2

=

√

(−5π)2 sin2(πt) + (5π)2 cos2(πt) = 5π

√

sin2(πt) + cos2(πt) = 5π ≈ 15.7 m/min,

which agrees with the speed we calculated in part (a).
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Tangent Lines

To find the tangent line at a point (x0, y0) to a curve given parametrically, we find the straight line
motion through (x0, y0) with the same velocity in the x and y directions as the curve.

Example8 Find the tangent line at the point (1, 2) to the curve defined by the parametric equation

x = t3, y = 2t.

Solution At time t = 1 the particle is at the point (1, 2). The velocity in the x-direction at time t is vx =
dx/dt = 3t2, and the velocity in the y-direction is vy = dy/dt = 2. So at t = 1 the velocity in
the x-direction is 3 and the velocity in the y-direction is 2. Thus the tangent line has parametric
equations

x = 1 + 3t, y = 2 + 2t.

Parametric Representations of Curves in the Plane

Sometimes we are more interested in the curve traced out by the particle than we are in the motion

itself. In that case we will call the parametric equations a parameterization of the curve. As we can

see by comparing Examples 1 and 3, two different parameterizations can describe the same curve in

the xy-plane. Though the parameter, which we usually denote by t, may not have physical meaning,
it is often helpful to think of it as time.

Example9 Give a parameterization of the semicircle of radius 1 shown in Figure 4.100.

−1 1

1

−1

x

y

Figure 4.100: Parameterization of
semicircle for Exam-

ple refex:paramex8:chap4:sec8:07MAY2004

1
2

− 1
2

−1

1

x

y

Figure 4.101: Parameterization of the
ellipse 4x2 + y2 = 1 for Example 10

Solution We can use the equations x = cos t and y = sin t for counterclockwise motion in a circle, from
Example 1 on page 219. The particle passes (0, 1) at t = π/2, moves counterclockwise around the
circle, and reaches (0,−1) at t = 3π/2. So a parameterization is

x = cos t, y = sin t,
π

2
≤ t ≤ 3π

2
.

To find the xy-equation of a curve given parametrically, we eliminate the parameter t in the
parametric equations. In the previous example, we use the Pythagorean identity, so

cos2 t + sin2 t = 1 gives x2 + y2 = 1.

Example10 Give a parameterization of the ellipse 4x2 + y2 = 1 shown in Figure 4.101.

Solution Since (2x)2 + y2 = 1, we adapt the parameterization of the circle in Example 1. Replacing x by 2x
gives the equations 2x = cos t, y = sin t. A parameterization of the ellipse is thus

x = 1
2 cos t, y = sin t, 0 ≤ t ≤ 2π.
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We usually require that the parameterization of a curve go from one end of the curve to the

other without retracing any portion of the curve. This is different from parameterizing the motion

of a particle, where, for example, a particle may move around the same circle many times.

Parameterizing the Graph of a Function

The graph of any function y = f(x) can be parameterized by letting the parameter t be x:

x = t, y = f(t).

Example11 Give parametric equations for the curve y = x3 − x. In which direction does this parameterization
trace out the curve?

Solution Let x = t, y = t3 − t. Thus, y = t3 − t = x3 − x. Since x = t, as time increases the x-coordinate
moves from left to right, so the particle traces out the curve y = x3 − x from left to right.

Curves Given Parametrically

Some complicated curves can be graphed more easily using parametric equations; the next example

shows such a curve.

Example12 Assume t is time in seconds. Sketch the curve traced out by the particle whose motion is given by

x = cos(3t), y = sin(5t).

Solution The x-coordinate oscillates back and forth between 1 and −1, completing 3 oscillations every 2π
seconds. The y-coordinate oscillates up and down between 1 and −1, completing 5 oscillations
every 2π seconds. Since both the x- and y-coordinates return to their original values every 2π
seconds, the curve is retraced every 2π seconds. The result is a pattern called a Lissajous figure.
(See Figure 4.102.) Problems 45–48 concern Lissajous figures x = cos(at), y = sin(bt) for other
values of a and b.

−1 1

−1

1

x

y

Figure 4.102: A Lissajous figure: x = cos(3t), y = sin(5t)

Slope and Concavity of Parametric Curves

Suppose we have a curve traced out by the parametric equations x = f(t), y = g(t). To find the
slope at a point on the curve, we could, in theory, eliminate the parameter t and then differentiate
the function we obtain. However, the chain rule gives us an easier way.

Suppose the curve traced out by the parametric equations is represented by y = h(x). (It may
be represented by an implicit function.) Thinking of x and y as functions of t, the chain rule gives

dy

dt
=

dy

dx
· dx

dt
,

so we obtain the slope of the curve as a function of t:

Slope of curve =
dy

dx
=

dy/dt

dx/dt
.



226 Chapter Four USING THE DERIVATIVE

We can find the second derivative, d2y/dx2, by a similar method and use it to investigate the con-

cavity of the curve. The chain rule tells us that if w is any differentiable function of x, then

dw

dx
=

dw/dt

dx/dt
.

For w = dy/dx, we have
dw

dx
=

d

dx

(

dy

dx

)

=
d2y

dx2
,

so the chain rule gives the second derivative at any point on a parametric curve:

d2y

dx2
=

d

dt

(

dy

dx

)/

dx

dt
.

Example13 If x = cos t, y = sin t, find the point corresponding to t = π/4, the slope of the curve at the point,
and d2y/dx2 at the point.

Solution The point corresponding to t = π/4 is (cos(π/4), sin(π/4)) = (1/
√

2, 1/
√

2).
To find the slope, we use

dy

dx
=

dy/dt

dx/dt
=

cos t

− sin t
,

so when t = π/4,

Slope =
cos(π/4)

− sin(π/4)
= −1.

Thus, the curve has slope−1 at the point (1/
√

2, 1/
√

2). This is as we would expect, since the curve
traced out is the circle of Example 8.

To find d2y/dx2, we use w = dy/dx = −(cos t)/(sin t), so

d2y

dx2
=

d

dt

(

−cos t

sin t

)/

(− sin t) = − (− sin t)(sin t) − (cos t)(cos t)

sin2 t
·
(

− 1

sin t

)

= − 1

sin3 t
.

Thus, at t = π/4
d2y

dx2

∣

∣

∣

∣

t=π/4

= − 1

(sin(π/4))3
= −2

√
2.

The concavity is negative since the point is on the top half of the circle where the graph is bending

downward.

Exercises and Problems for Section 4.8

Exercises

For Exercises 1–4, use the graphs of f and g to describe
the motion of a particle whose position at time t is given by
x = f(t), y = g(t).

1.

1 2 3 4
−1

1

t

x
f(t)

1 2 3 4
−1

1

t

y
g(t)

2.

1 2 3 4

1

2

t

x

f(t)

1 2 3 4

1

2

t

y

g(t)

3.

1 2 3 4

1

2

t

x
f(t)

1 2 3 4
−1

1

t

y g(t)
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4.

1 2 3 4
−1

1

t

x

f(t)

1 2 3 4
−1

1

t

y

g(t)

Exercises 5–10 give parameterizations of the unit circle or a

part of it. Describe in words how the circle is traced out, in-

cluding when and where the particle is moving clockwise and

when and where the particle is moving counterclockwise.

5. x = sin t, y = cos t

6. x = cos t, y = − sin t

7. x = cos(t2), y = sin(t2)

8. x = cos(t3 − t), y = sin(t3 − t)

9. x = cos(ln t), y = sin(ln t)

10. x = cos(cos t), y = sin(cos t)

For Exercises 11–14, find the speed for the given motion of a

particle. Find any times when the particle comes to a stop.

11. x = t2, y = t3

12. x = cos(t2), y = sin(t2)

13. x = cos 2t, y = sin t

14. x = t2 − 2t, y = t3 − 3t

15. Find parametric equations for the tangent line at t = 2
for Problem 11.

In Exercises 16–22, write a parameterization for the curves in

the xy-plane.

16. A circle of radius 3 centered at the origin and traced out
clockwise.

17. A vertical line through the point (−2,−3).

18. A circle of radius 5 centered at the point (2, 1) and traced
out counterclockwise.

19. A circle of radius 2 centered at the origin traced clock-
wise starting from (−2, 0) when t = 0.

20. The line through the points (2,−1) and (1, 3).

21. An ellipse centered at the origin and crossing the x-axis
at ±5 and the y-axis at ±7.

22. An ellipse centered at the origin, crossing the x-axis at
±3 and the y-axis at ±7. Start at the point (−3, 0) and
trace out the ellipse counterclockwise.

In Exercises 23–25, find an equation of the tangent line to the

curve for the given value of t.

23. x = t3 − t, y = t2 when t = 2

24. x = t2 − 2t, y = t2 + 2t when t = 1

25. x = sin(3t), y = sin(4t) when t = π

Problems

26. A line is parameterized by x = 10 + t and y = 2t.

(a) What part of the line do we get by restricting t to
t < 0?

(b) What part of the line do we get by restricting t to
0 ≤ t ≤ 1?

27. A line is parameterized by x = 2 + 3t and y = 4 + 7t.

(a) What part of the line is obtained by restricting t to
nonnegative numbers?

(b) What part of the line is obtained if t is restricted to
−1 ≤ t ≤ 0?

(c) How should t be restricted to give the part of the line
to the left of the y-axis?

28. (a) Explain how you know that the following two pairs

of equations parameterize the same line:

x = 2 + t, y = 4 + 3t and x = 1− 2t, y = 1− 6t.

(b) What are the slope and y intercept of this line?

29. Describe the similarities and differences among the mo-

tions in the plane given by the following three pairs of

parametric equations:

(a) x = t, y = t2 (b) x = t2, y = t4

(c) x = t3, y = t6.

30. What can you say about the values of a, b and k if the
equations

x = a + k cos t, y = b + k sin t, 0 ≤ t ≤ 2π,

trace out the following circles in Figure 4.103?

(a) C1 (b) C2 (c) C3

10

−10

10
C2

C1

C3

x

y

Figure 4.103
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31. Suppose a, b, c, d, m, n, p, q > 0. Match each pair of
parametric equations with one of the lines l1, l2, l3, l4 in
Figure 4.104.

I.

{

x = a + ct,

y = −b + dt.
II.

{

x = m + pt,

y = n − qt.

l1

l2

l3

l4

x

y

Figure 4.104

32. Describe in words the curve represented by the paramet-

ric equations

x = 3 + t3, y = 5 − t3.

33. (a) Sketch the parameterized curve x = t cos t, y =
t sin t for 0 ≤ t ≤ 4π.

(b) By calculating the position at t = 2 and t = 2.01,
estimate the speed at t = 2.

(c) Use derivatives to calculate the speed at t = 2 and
compare your answer to part (b).

34. The position of a particle at time t is given by x = et and

y = 2e2t.

(a) Find dy/dx in terms of t.
(b) Eliminate the parameter and write y in terms of x.
(c) Using your answer to part (b), find dy/dx in terms
of x.

35. For x and y in meters, the motion of the particle given by

x = t3 − 3t, y = t2 − 2t,

where the y-axis is vertical and the x-axis is horizontal.

(a) Does the particle ever come to a stop? If so, when

and where?

(b) Is the particle ever moving straight up or down? If

so, when and where?

(c) Is the particle ever moving straight horizontally right

or left? If so, when and where?

36. At time t, the position of a particle moving on a curve is
given by x = e2t − e−2t and y = 3e2t + e−2t.

(a) Find all values of t at which the curve has

(i) A horizontal tangent.

(ii) A vertical tangent.

(b) Find dy/dx in terms of t.
(c) Find lim

t→∞

dy/dx.

37. At tme t, the position of a particle is x(t) = 5 sin(2t)
and y(t) = 4 cos(2t), with 0 ≤ t < 2π.

(a) Graph the path of the particle for 0 ≤ t < 2π, indi-
cating the direction of motion.

(b) Find the position and velocity of the particle when

t = π/4.
(c) How many times does the particle pass through the

point found in part (b)?

(d) What does your answer to part (b) tell you about

the direction of the motion relative to the coordinate

axes when t = π/4?
(e) What is the speed of the particle at time t = π?

38. At time t, a projectile launched with angle of elevation
α and initial velocity v0 has position x(t) = (v0 cos α)t
and y(t) = (v0 sin α)t − 1

2
gt2, where g is the accelera-

tion due to gravity.

(a) A football player kicks a ball at an angle of 36◦

above the ground with an initial velocity of 60 feet
per second. Write the parametric equations for the

position of the football at time t seconds. Use g =
32ft/sec2.

(b) Graph the path that the football follows.

(c) How long does it take for the football to hit the

ground? How far is it from the spot where the foot-

ball player kicked it?

(d) What is the maximum height the football reaches

during its flight?

(e) At what speed is the football traveling 1 second after
it was kicked?

39. Two particles move in the xy-plane. At time t, the po-
sition of particle A is given by x(t) = 4t − 4 and
y(t) = 2t − k, and the position of particle B is given
by x(t) = 3t and y(t) = t2 − 2t − 1.

(a) If k = 5, do the particles ever collide? Explain.
(b) Find k so that the two particles do collide.
(c) At the time that the particles collide in part (b),

which particle is moving faster?

40. (a) Find d2y/dx2 for x = t3 + t, y = t2.
(b) Is the curve concave up or down at t = 1?

41. (a) An object moves along the path x = 3t and y =
cos(2t), where t is time. Write the equation for the
line tangent to this path at t = π/3.

(b) Find the smallest positive value of t for which the
y-coordinate is a local maximum.

(c) Find d2y/dx2 when t = 2. What does this tell you
about the concavity of the graph at t = 2?
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42. The position of a particle at time t is given by x = et +3
and y = e2t + 6et + 9.

(a) Find dy/dx in terms of t.
(b) Find d2y/dx2. What does this tell you about the

concavity of the graph?

(c) Eliminate the parameter and write y in terms of x.
(d) Using your answer from part (c), find dy/dx and

d2y/dx2 in terms of x. Show that these answers are
the same as the answers to parts (a) and (b).

43. A particle moves in the xy-plane so that its position at
time t is given by x = sin t and y = cos(2t) for
0 ≤ t < 2π.

(a) At what time does the particle first touch the x-axis?
What is the speed of the particle at that time?

(b) Is the particle ever at rest?

(c) Discuss the concavity of the graph.

44. Derive the general formula for the second derivative

d2y/dx2 of a parametrically defined curve:

d2y

dx2
=

(dx/dt)(d2y/dt2) − (dy/dt)(d2x/dt2)

(dx/dt)3
.

Graph the Lissajous figures in Problems 45–48 using a calcu-

lator or computer.

45. x = cos 2t, y = sin 5t

46. x = cos 3t, y = sin 7t

47. x = cos 2t, y = sin 4t

48. x = cos 2t, y = sin
√

3t

49. A hypothetical moon orbits a planet which in turn or-

bits a star. Suppose that the orbits are circular and that

the moon orbits the planet 12 times in the time it takes

for the planet to orbit the star once. In this problem we

will investigate whether the moon could come to a stop

at some instant. (See Figure 4.105.)

(a) Suppose the radius of the moon’s orbit around the

planet is 1 unit and the radius of the planet’s orbit

around the star is R units. Explain why the motion
of the moon relative to the star can be described by

the parametric equations

x = R cos t + cos(12t), y = R sin t + sin(12t).

(b) Find values for R and t such that the moon stops
relative to the star at time t.

(c) On a graphing calculator, plot the path of the moon

for the value of R you obtained in part (b). Experi-
ment with other values for R.

Star

Planet’s path

Moon’s path

Figure 4.105
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FOUR

Exercises

For Exercises 1–2, indicate all critical points on the given

graphs. Which correspond to local minima, local maxima,

global maxima, global minima, or none of these? (Note that

the graphs are on closed intervals.)

1.

1 2 3 4 5 6

10

30

50
f(x)

x

2.

1 2 3 4 5

4

8
f(x)

x
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In Exercises 3–6, do the following:

(a) Find f ′ and f ′′.

(b) Find the critical points of f .

(c) Find any inflection points.

(d) Evaluate f at the critical points and the endpoints. Iden-
tify the global maxima and minima of f .

(e) Sketch f . Indicate clearly where f is increasing or de-
creasing, and its concavity.

3. f(x) = x3 − 3x2 (−1 ≤ x ≤ 3)

4. f(x) = x + sin x (0 ≤ x ≤ 2π)

5. f(x) = e−x sin x (0 ≤ x ≤ 2π)

6. f(x) = x−2/3 + x1/3 (1.2 ≤ x ≤ 3.5)

In Exercises 7–9, find the limits as x tends to +∞ and −∞,
and then proceed as in Exercises 3–6. (That is, find f ′, etc.).

7. f(x) = 2x3 − 9x2 + 12x + 1

8. f(x) =
4x2

x2 + 1

9. f(x) = xe−x

In Exercises 10–12, find the exact global maximum and min-

imum values of the function.

10. h(z) =
1

z
+ 4z2

for z > 0

11. g(t) =
1

t3 + 1
for t ≥ 0

12. f(x) =
1

(x − 1)2 + 2

In Exercises 13–18, use derivatives to identify local maxima

and minima and points of inflection. Graph the function. Con-

firm your answers using a calculator or computer.

13. f(x) = x3 + 3x2 − 9x − 15

14. f(x) = x5 − 15x3 + 10

15. f(x) = x − 2 ln x for x > 0

16. f(x) = x2e5x

17. f(x) = e−x2

18. f(x) =
x2

x2 + 1

Find the best possible bounds for the functions in Exer-

cises 19–21.

19. e−x sin x, for x ≥ 0

20. x sin x, for 0 ≤ x ≤ 2π

21. x3 − 6x2 + 9x + 5 for 0 ≤ x ≤ 5

Problems

22. For the function, f , graphed in Figure 4.106:

(a) Sketch f ′(x).
(b) Where does f ′(x) change its sign?
(c) Where does f ′(x) have local maxima or minima?

x1 x2 x3

x4 x5
x

f(x)

Figure 4.106

23. Using your answer to Problem 22 as a guide, write a

short paragraph (using complete sentences) which de-

scribes the relationships between the following features

of a function f :

• The local maxima and minima of f .
• The points at which the graph of f changes concav-
ity.

• The sign changes of f ′.

• The local maxima and minima of f ′.

24. Figure 4.107 is a graph of f ′. For what values of x does
f have a local maximum? A local minimum?

1 3 5

f ′

x

Figure 4.107: Graph of f ′ (not f )

25. On the graph of f ′ in Figure 4.108, indicate the x-values
that are critical points of the function f itself. Are they
local maxima, local minima, or neither?

−2 −1 1 2

−2

2

4

x

f ′(x)

Figure 4.108: Graph of f ′, not f
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26. Figure 4.109 is the graph of f ′, the derivative of a func-

tion f . At which of the points 0, x1, x2, x3, x4, x5, is the

function f :

(a) At a local maximum value?

(b) At a local minimum value?

(c) Climbing fastest?

(d) Falling most steeply?

x1

x2 x3

x4

x5

f ′

x

Figure 4.109: Graph of f ′ not f

For the graphs of f ′ in Problems 27–30 decide:

(a) Over what intervals is f increasing? Decreasing?

(b) Does f have maxima or minima? If so, which, and
where?

27.

x

f ′(x)
28.

x

f ′(x)

29.

2 4
x

f ′(x)
30.

−1 1
x

f ′(x)

31. Find values of a and b so that the function y = axe−bx

has a local maximum at the point (2, 10).

32. A drug is injected into a patient at a rate given by r(t) =
ate−bt ml/sec, where t is in seconds since the injection
started, 0 ≤ t ≤ 5, and a and b are constants. The max-
imum rate of 0.3 ml/sec occurs half a second after the
injection starts. Find a formula for a and b.

33. Any body radiates energy at various wavelengths. Fig-

ure 4.110 shows the intensity of the radiation of a black

body at a temperature T = 3000◦ kelvin as a function of

the wavelength. The intensity of the radiation is highest

in the infrared range, that is, at wavelengths longer than

that of visible light (0.4–0.7µm). Max Planck’s radiation
law, announced to the Berlin Physical Society on October

19, 1900, states that

r(λ) =
a

λ5(eb/λ − 1)
.

Find constants a and b so that the formula fits the graph.
(Later in 1900 Planck showed from theory that a =
2πc2h and b = hc

Tk
where c = speed of light, h = Planck’s

constant, and k = Boltzmann’s constant.)

4

wavelength

λ (µm)

intensity of radiation

r(λ) (MW/m2 /µm)

(0.96, 3.13)

Figure 4.110

34. Sketch several members of the family y = x3 − ax2

on the same axes. Show that the critical points lie on the

curve y = − 1
2
x3.

35. A right triangle has one vertex at the origin and one ver-

tex on the curve y = e−x/3 for 1 ≤ x ≤ 5. One of the
two perpendicular sides is along the x-axis; the other is
parallel to the y-axis. Find the maximum and minimum
areas for such a triangle.

36. A rectangle has one side on the x-axis and two corners
on the top half of the circle of radius 1 centered at the

origin. Find the maximum area of such a rectangle. What

are the coordinates of its vertices?

37. A square-bottomed box with a top has a fixed volume, V .
What dimensions minimize the surface area?

38. A business sells an item at a constant rate of r units per
month. It reorders in batches of q units, at a cost of a+bq
dollars per order. Storage costs are k dollars per item per
month, and, on average, q/2 items are in storage, waiting
to be sold. [Assume r, a, b, k are positive constants.]

(a) How often does the business reorder?

(b) What is the average monthly cost of reordering?

(c) What is the total monthly cost, C of ordering and
storage?

(d) Obtain Wilson’s lot size formula, the optimal batch

size which minimizes cost.
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39. A ship is steaming due north at 12 knots (1 knot = 1.85

kilometers/hour) and sights a large tanker 3 kilometers

away northwest steaming at 15 knots due east. For rea-

sons of safety, the ships want to maintain a distance of at

least 100 meters between them. Use a calculator or com-

puter to determine the shortest distance between them if

they remain on their current headings, and hence decide

if they need to change course.

40. Boise, Idaho, is about 300 miles inland from the nearest

point on the Pacific coast; San Diego is about 1000 miles

south of that point down the coast. (See Figure 4.111.)

Assuming the coast is a straight line going north-south,

C is the point along the coast directly west of Boise. It
costs 2 cents per mile to transport a ton of potatoes by

truck and 1 cent per mile to transport them by ship. The

Idaho Potato Company wants to find the point, P , on the
Pacific coast to which it should truck its potatoes before

loading them aboard a cargo ship in order to minimize the

total cost of transporting them from Boise to San Diego.

(a) Set up the function which The Idaho Potato Com-

pany must minimize.

(b) Find the position of P which minimizes cost.

San Diego

P

C
300

✻

❄

1000

✻
❄
x

Boise

Figure 4.111

41. A polystyrene cup is in the shape of a frustum (the part

of a cone between two parallel planes cutting the cone),

has top radius 2r, base radius r and height h. The surface
area S of such a cup is given by S = 3πr

√
r2 + h2 and

its volume V by V = 7πr2h/3. If the cup is to hold 200
ml, use a calculator or a computer to estimate the value

of r that minimizes its surface area.

42. You are given the n numbers a1, a2, a3, · · · , an. For a

variable x, consider the expression

D = (x−a1)
2+(x−a2)

2+(x−a3)
2+· · ·+(x−an)2.

Show that D is a minimum when x is the average of
a1, a2, a3, · · · , an.

43. Suppose g(t) = (ln t)/t for t > 0.

(a) Does g have either a global maximum or a global
minimum on 0 < t < ∞? If so, where, and what
are their values?

(b) What does your answer to part (a) tell you about the

number of solutions to the equation

ln x

x
=

ln 5

5
?

(Note: There are many ways to investigate the num-

ber of solutions to this equation. We are asking you

to draw a conclusion from your answer to part (a).)

(c) Estimate the solution(s).

44. For a > 0, the following line forms a triangle in the first
quadrant with the x- and y-axes:

a(a2 + 1)y = a − x.

(a) In terms of a, find the x- and y-intercepts of the line.
(b) Find the area of the triangle, as a function of a.
(c) Find the value of a making the area a maximum.
(d) What is this greatest area?

(e) If you want the triangle to have area 1/5, what
choices do you have for a?

45. A piece of wire of length L cm is cut into two pieces.
One piece, of length x cm, is made into a circle; the rest
is made into a square.

(a) Find the value of x that makes the sum of the areas
of the circle and square a minimum. Find the value

of x giving a maximum.
(b) For the values of x found in part (a), show that the
ratio of the length of wire in the square to the length

of wire in the circle is equal to the ratio of the area

of the square to the area of the circle.9

(c) Are the values of x found in part (a) the only values
of x for which the ratios in part (b) are equal?

46. The vase in Figure 4.112 is filled with water at a constant

rate (i.e., constant volume per unit time).

(a) Graph y = f(t), the depth of the water, against time,
t. Show on your graph the points at which the con-
cavity changes.

(b) At what depth is y = f(t) growing most quickly?
Most slowly? Estimate the ratio between the growth

rates at these two depths.

y

✻

y1

y2

y3

Figure 4.112

9From Sally Thomas.
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47. (a) Graph the functions− 1

x
and

1

a

(

arctan
(

x

a

)

− π

2

)

when x > 0 for a = 0.1, a = 0.01, and a = 0.001.
Describe what you see.

(b) Evaluate lim
a→0+

1

a

(

arctan
(

x

a

)

− π

2

)

.

(c) Explain the connection between parts (a) and (b).

In Problems 48–49 determine whether the limit exists, and

where possible evaluate it.

48. lim
x→0

1 − cosh(5x)

x2
49. lim

x→0

x − sinh(x)

x3

50. The rate of change of a population depends on the current

population, P , and is given by

dP

dt
= kP (L − P ) for positive constants k, L.

(a) For what nonnegative values of P is the population
increasing? Decreasing? For what values of P does
the population remain constant?

(b) Find d2P/dt2 as a function of P .

51. A spherical balloon is inflated so that its radius is increas-

ing at a constant rate of 1 cm per second. At what rate is

air being blown into the balloon when its radius is 5 cm?

52. When the growth of a spherical cell depends on the

flow of nutrients through the surface, it is reasonable

to assume that the growth rate, dV/dt, is proportional
to the surface area, S. Assume that for a particular cell
dV/dt = 1

3
· S. At what rate is its radius r increasing?

53. A horizontal disk of radius a centered at the origin in
the xy-plane is rotating about a vertical axis through the
center. The angle between the positive x-axis and a radial
line painted on the disk is θ radians.

(a) What does dθ/dt represent?
(b) What is the relationship between dθ/dt and the
speed v of a point on the rim?

54. A chemical storage tank is in the shape of an inverted

cone with depth 12meters and top radius 5meters. When
the depth of the chemical in the tank is 1 meter, the level
is falling at 0.1meters per minute. How fast is the volume
of chemical changing?

55. A voltage, V volts, applied to a resistor of R ohms pro-
duces an electric current of I amps where V = IR.
As the current flows the resistor heats up and its resis-

tance falls. If 100 volts is applied to a resistor of 1000
ohms the current is initially 0.1 amps but rises by 0.001
amps/minute. At what rate is the resistance falling if the

voltage remains constant?

56. A radio navigation system used by aircraft gives a cock-

pit readout of the distance, s, in miles, between a fixed
ground station and the aircraft. The system also gives a

readout of the instantaneous rate of change, ds/dt, of this
distance in miles/hour. An aircraft on a straight flight path

at a constant altitude of 10,560 feet (2 miles) has passed
directly over the ground station and is now flying away

from it. What is the speed of this aircraft along its con-

stant altitude flight path when the cockpit readouts are

s = 4.6 miles and ds/dt = 210 miles/hour?

Problems 57–58 involve Boyle’s Law which states that for a

fixed quantity of gas at a constant temperature, the pressure,

P , and the volume, V , are inversely related. Thus, for some
constant k

PV = k.

57. A fixed quantity of gas is allowed to expand at constant

temperature. Find the rate of change of pressure with re-

spect to volume.

58. A certain quantity of gas occupies 10 cm3 at a pressure of

2 atmospheres. The pressure is increased, while keeping

the temperature constant.

(a) Does the volume increase or decrease?

(b) If the pressure is increasing at a rate of 0.05 atmo-

spheres/minute when the pressure is 2 atmospheres,

find the rate at which the volume is changing at that

moment. What are the units of your answer?

CAS Challenge Problems

59. A population, P , in a restricted environment may grow
with time, t, according to the logistic function

P =
L

1 + Ce−kt

where L is called the carrying capacity and L, C and k
are positive constants.

(a) Find lim
t→∞

P . Explain why L is called the carrying

capacity.

(b) Using a computer algebra system, show that the

graph of P has an inflection point at P = L/2.

60. For positive a, consider the family of functions

y = arctan

(√
x +

√
a

1 −√
ax

)

, x > 0.

(a) Graph several curves in the family and describe how

the graph changes as a varies.
(b) Use a computer algebra system to find dy/dx, and
graph the derivative for several values of a. What do
you notice?

(c) Do your observations in part (b) agree with the an-

swer to part (a)? Explain. [Hint: Use the fact that√
ax =

√
a
√

x for a > 0, x > 0.]
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61. The function arcsinhx is the inverse function of sinh x.

(a) Use a computer algebra system to find a formula for

the derivative of arcsinhx.
(b) Derive the formula by hand by differentiating both

sides of the equation

sinh(arcsinhx) = x.

[Hint: Use the identity cosh2 x − sinh2 x = 1.]

62. The function arccoshx, for x ≥ 0, is the inverse function
of cosh x, for x ≥ 0.

(a) Use a computer algebra system to find the derivative

of arccoshx.
(b) Derive the formula by hand by differentiating both

sides of the equation

cosh(arccoshx) = x, x ≥ 1.

[Hint: Use the identity cosh2 x − sinh2 x = 1.]

63. Consider the family of functions

f(x) =

√
a + x√

a +
√

x
, x ≥ 0, for positive a.

(a) Using a computer algebra system, find the local

maxima and minima of f .
(b) On one set of axes, graph this function for several

values of a. How does varying a affect the shape of
the graph? Explain your answer in terms of the an-

swer to part (a).

(c) Use your computer algebra system to find the inflec-

tion points of f when a = 2.

64. (a) Use a computer algebra system to find the derivative

of

y = arctan

(

√

1 − cos x

1 + cos x

)

.

(b) Graph the derivative. Does the graph agree with the

answer you got in part (a)? Explain using the identity

cos(x) = cos2(x/2) − sin2(x/2).

65. In 1696, the first calculus textbook was published by the

Marquis de l’Hopital. The following problem is a simpli-

fied version of a problem from this text.

❑

❯

1m

✲✛ √
3m

Figure 4.113

In Figure 4.113, two ropes are attached to the ceil-

ing at points
√

3 meters apart. The rope on the left is 1
meter long and has a pulley attached at its end. The rope

on the right is 3 meters long; it passes through the pul-

ley and has a weight tied to its end. When the weight is

released, the ropes and pulley arrange themselves so that

the distance from the weight to the ceiling is maximized.

(a) Show that the maximum distance occurs when the

weight is exactly halfway between the the points

where the ropes are attached to the ceiling. [Hint:

Write the vertical distance from the weight to the

ceiling in terms of its horizontal distance to the point

at which the left rope is tied to the ceiling. A com-

puter algebra system will be useful.]

(b) Does the weight always end up halfway between the

ceiling anchor points no matter how long the left-

hand rope is? Explain.

CHECK YOUR UNDERSTANDING

Are the statements in Problems 1–8 true or false for a function

f whose domain is all real numbers? If a statement is true, ex-
plain how you know. If a statement is false, give a counterex-

ample.

1. A local minimum of f occurs at a critical point of f .

2. If x = p is not a critical point of f , then x = p is not a
local maximum of f .

3. A local maximum of f occurs at a point where

f ′(x) = 0.

4. If x = p is not a local maximum of f , then x = p is not
a critical point of f .

5. If f ′(p) = 0, then f(x) has a local minimum or local
maximum at x = p.

6. If f ′(x) is continuous and f(x) has no critical points,
then f is everywhere increasing or everywhere decreas-
ing.

7. If f ′′(p) = 0, then the graph of f has an inflection point
at x = p.

8. If f ′′(x) is continuous and the graph of f has an inflec-
tion point at x = p, then f ′′(p) = 0.



PROJECTS FOR CHAPTER FOUR 235

In Problems 9–10, give an example of function(s) with the

given properties.

9. A family of functions, f(x), depending on a parameter
a, such that each member of the family has exactly one
critical point.

10. A family of functions, g(x), depending on two parame-
ters, a and b, such that each member of the family has
exactly two critical points and one inflection point. You

may want to restrict a and b.

11. Let f(x) = x2. Decide if the following statements are

true or false. Explain your answer.

(a) f has an upper bound on the interval (0, 2).
(b) f has a global maximum on the interval (0, 2).
(c) f does not have a global minimum on the interval

(0, 2).
(d) f does not have a global minimum on any interval

(a, b).
(e) f has a global minimum on any interval [a, b].

12. Which of the following statements is implied by the state-

ment “If f is continuous on [a, b] then f has a global
maximum on [a, b]”?

(a) If f has a global maximum on [a, b] then f must be
continuous on [a, b].

(b) If f is not continuous on [a, b] then f does not have
a global maximum on [a, b].

(c) If f does not have a global maximum on [a, b] then
f is not continuous on [a, b].

Are the statements in Problems 13–20 true of false? Give an

explanation for your answer.

13. The global maximum of f(x) = x2 on every closed in-

terval is at one of the endpoints of the interval.

14. A function can have two different upper bounds.

15. If a differentiable function f(x) has a global maximum
on the interval 0 ≤ x ≤ 10 at x = 0, then f ′(0) ≤ 0.

16. If the radius of a circle is increasing at a constant rate,

then so is the circumference.

17. If the radius of a circle is increasing at a constant rate,

then so is the area.

18. The curve given parametrically by x = f(t) and y =
g(t) has no sharp corners if f and g are differentiable.

19. If a curve is given parametrically by x = cos(t2), y =
sin(t2), then its slope is tan(t2).

20. If g′(a) 6= 0, then lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

In Problems 21–26, give an example of a function f that
makes the statement true, or say why such an example is im-

possible. Assume that f ′′ exists everywhere.

21. f is concave up and f(x) is positive for all x

22. f is concave down and f(x) is positive for all x

23. f is concave down and f(x) is negative for all x

24. f is concave up and f(x) is negative for all x

25. f(x)f ′′(x) < 0 for all x

26. f(x)f ′(x)f ′′(x)f ′′′(x) < 0 for all x.10

PROJECTS FOR CHAPTER FOUR

1. Building a Greenhouse

Your parents are going to knock out the bottom of the entire length of the south wall of

their house and turn it into a greenhouse by replacing the bottom portion of the wall with a

huge sloped piece of glass (which is expensive). They have already decided they are going to

spend a certain fixed amount. The triangular ends of the greenhouse will be made of various

materials they already have lying around.11

The floor space in the greenhouse is only considered usable if they can both stand up in

it, so part of it will be unusable. They want to choose the dimensions of the greenhouse to get

the most usable floor space. What should the dimensions of the greenhouse be and how much

usable space will your parents get?

2. Fitting a Line to Data

(a) The line which best fits the data points (x1, y1), (x,2 , y2) . . . (xn, yn) is the one which
minimizes the sum of the squares of the vertical distances from the points to the line. These

are the distances marked in Figure 4.114. Find the best fitting line of the form y = mx for
the points (2, 3.5), (3, 6.8), (5, 9.1).

10From the 1998 William Lowell Putnam Mathematical Competition, by permission of the Mathematical Association of

America.
11Adapted from M. Cohen, E. Gaughan, A. Knoebel, D. Kurtz, D. Pengelley, Student Research Projects in Calculus

(Washington DC: Mathematical Association of America, 1992).
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(x2, y2)

✻

❄

(x3, y3)

✻
❄

(x1, y1)

✻

❄

y = mx

x

y

Figure 4.114

(b) A cone with height and radius both equal to r has volume, V , proportional to r3; that is,

V = kr3 for some constant k. A lab experiment is done to measure the volume of several
cones; the results are in the following table. Using the method of part (a), determine the

best value of k. [Note: Since the volumes were determined experimentally, the values may
not be accurate. Assume that the radii were measured accurately.]

Radius (cm) 2 5 7 8

Volume (cm3) 8.7 140.3 355.8 539.2

(c) Using the method of part (a), show that the best fitting line of the form y = mx for the
points (x1, y1), (x2, y2) . . . (xn, yn) has

m =
x1y1 + x2y2 + · · · + xnyn

x2
1 + x2

2 + · · · + x2
n

.

3. Interstate Trucking

In this project we investigate the effect of the price of diesel fuel and drivers’ wages on a

trucker’s optimal driving speed. We analyze the relationship between fuel cost and wages and

the 55 mph speed limit. 12

After an extensive study, the Interstate Commerce Commission has concluded that the

primary variable expenses for any over-the-road freight hauler are the wages for the driver and

the cost of fuel. The study concluded that maintenance and replacement costs for vehicles,

although considerable, did not vary significantly from carrier to carrier. On the other hand, the

fuel costs and wages did vary. Given this result, your project is to determine how these two

variables affect the cost of transporting freight. In particular, you are to determine if there is an

optimal wage to fuel cost relationship for which most haulers would encourage their drivers to

abide by a 55 mile per hour speed limit.

Reading the study tells you that under ideal conditions, an interstate freight hauling vehicle

(18 wheeler) gets 6 miles per gallon of fuel. This mileage is affected by the speed of the vehicle

and its weight. In general, the miles per gallon of fuel decreases by 0.2 for each increase of

10,000 pounds in the weight of the truck and freight over 25,000 pounds. Also, the miles per

gallon of fuel decreases by 0.1 mile per gallon for each mile per hour the truck averages above

45 miles per hour.

(a) Using this information, create an expression for the cost per mile of driving, taking into

account only the drivers’ wages and fuel cost.

(b) Suppose that the national average for diesel fuel is $1.25 per gallon, that drivers on the

average earn $15.00 per hour, and that the average weight of a loaded truck is 75,000

pounds. What is the optimal average speed under these conditions?

(c) Compute the cost per mile for 55 and 60 miles per hour. Suppose you hauled produce from
California to Maine. What average speed would you choose?

12Adapted from L. Carl Leinbach, Calculus Laboratories Using Derive, (Belmont, CA: Wadsworth, 1991). Reprinted by

permission of Brooks/Cole Publishing Company, a division of International Thompson Publishing, Inc.
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(d) In solving parts (a)-(c), you found an equation relating cost, wages, fuel cost, weight of

the truck, and the average speed of the truck. This equation is a mathematical model of

interstate freight hauling costs. Using this model, determine the fuel cost that makes 55

miles per hour the optimum average speed for trucking companies.

(e) Each year drivers’ wages change as a result of contract renewals and inflation. The cost of

fuel also fluctuates, but can be adjusted by surcharges and fuel taxes. Thus, the relationship

between wages and the cost of fuel can be altered by various government agencies. Assum-

ing that 75,000 pounds remains the national average for the weight of a truck involved in

interstate freight hauling, what should be the relationship between fuel cost and wages to

maintain 55 miles per hour as the optimal speed?

(f) There have been some suggestions of changing the road use tax to lower the average weight

of over-the-road freight haulers. Assuming the relationship of wages to fuel cost found in

part (e) is maintained, how would lowering the average weight affect the optimal average

speed?

4. Firebreaks

The summer of 2000 was devastating for forests in the western US: over 3.5 million acres of

trees were lost to fires, making this the worst fire season in 30 years. This project studies a

fire management technique called firebreaks, which reduce the damage done by forest fires. A

firebreak is a strip where trees have been removed in a forest so that a fire started on one side of

the strip will not spread to the other side. Having many firebreaks helps confine a fire to a small

area. On the other hand, having too many firebreaks involves removing large swaths of trees.13

(a) A forest in the shape of a 50 km by 50 km square has firebreaks in rectangular strips 50 km

by 0.01 km. The trees between two firebreaks are called a stand of trees. All firebreaks in
this forest are parallel to each other and to one edge of the forest, with the first firebreak at

the edge of the forest. The firebreaks are evenly spaced throughout the forest. (For example,

Figure 4.115 shows four firebreaks.) The total area lost in the case of a fire is the area of

the stand of trees in which the fire started plus the area of all the firebreaks.

Stands
of trees

Firebreaks

❑

❨

✙

☛

✒

✯

❥

❯
✲✛ 50 km

✻

❄

50 km

Figure 4.115

(i) Find the number of firebreaks that minimizes the total area lost to the forest in the case

of a fire.

(ii) If a firebreak is 50 km by b km, find the optimal number of firebreaks as a function of b.
If the width, b, of a firebreak is quadrupled, how does the optimal number of firebreaks
change?

13Adapted from D. Quinney and R. Harding, Calculus Connections (New York: John Wiley & Sons, 1996).
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(b) Now suppose firebreaks are arranged in two equally spaced sets of parallel lines, as shown

in Figure 4.116. The forest is a 50 km by 50 km square, and each firebreak is a rectangular

strip 50 km by 0.01 km. Find the number of firebreaks in each direction that minimizes the
total area lost to the forest in the case of a fire.

✲✛ 50 km

✻

❄

50 km

Firebreaks

Firebreaks

✠ ❄ ❘ ❥

❑

■

✠

☛

Figure 4.116


