KING FAHD UNIVERSITY OF PETROLEUM AND MINERAL

Department of Mathematical Sciences

Test No. I	MATH - 521	Sem 111
Student #:	Name:	

Show All Your Work. No Credits for Answers Not Supported by Work.

In this exam the symbols \mathfrak{I}_F , \mathfrak{I}_C , and \mathfrak{I}_D will denote the topology of finite complement, the topology of countable complement and the discrete topology respectively.

Q1) (14 Points) Define each of the following:

- a. Numerically equivalent sets
- b. Topologically equivalent spaces
- c. A basis for a topological space
- d. Dense subset
- e. Frontier of a set
- f. Housdorff space
- g. Normal space

Q2) (8 Points) Let *A* and *B* be two subsets of a set *X* and let $f : X \to X$ be a function. Complete each of the following:

- a. $f^{-1}(A \cap B)$ $f^{-1}(A) \cap f^{-1}(B)$
- b. $f^{-1}(A-B)$ $f^{-1}(A) f^{-1}(B)$
- c. $f(f^{-1}(A))$ A
- d. $f^{-1}(f(A))$ A

Q3) (12 Points) Consider the space $(\mathbb{Z}_+, \mathfrak{I}_F)$. Let $A = \{0, 1\}$ and $B = \{3n : n \in \mathbb{Z}_+\}$.
--

a. Is $A \ \mathfrak{I}_F$ - open?	g. Is $B \ \mathfrak{I}_F$ -open?
b. Is $A \mathfrak{I}_F$ -closed?	h. Is $B \mathfrak{I}_F$ -closed?
c. Find A°	i. Find B°
d. Find \overline{A}	j. Find \overline{B}
e. Find $fr(A)$	k. Find $fr(B)$
f. Find A'	I. Find B'

Q4) (8 Points) Let X be a set and consider the topologies \mathfrak{T}_F , \mathfrak{T}_C , and \mathfrak{T}_D for X.

- a. How are \mathfrak{I}_C and \mathfrak{I}_F related, if at all?
- b. How are \mathfrak{I}_C and \mathfrak{I}_D related, if at all?
- c. If $\mathfrak{I}_C = \mathfrak{I}_D$ what must be true about *X*?
- d. If $\mathfrak{T}_C = \mathfrak{T}_F$ what must be true about *X*?
- Q5) (8 Points) True or false. Tick as true (\parallel) or false (X):
 - a. Any two countable sets are equivalent.
 - b. If A is countably infinite subset of an uncountable set B, then $B \sim B-A$
 - c. Every subset of a topological space is either open or closed.
 - d. The set of all open rays is a basis for the usual topology for \mathbb{R} .
 - e. The set of all open intervals is a subbasis for the usual topology for $\mathbb R$.
 - f. The boundary of any set is closed.
 - g. The set $\cup \{[1/n, n] \mid n \in \mathbb{Z}_+\}\$ is closed set in \mathbb{R} with the usual topology.
 - h. Each boundary point of A is a limit point of a set A.

Q6) (8 Points) Let (X, \mathfrak{I}) be a topological space and let $A \subseteq Y \subseteq X$.

- a. Briefly describe how \mathfrak{T}_{relY} is defined.
- b. How are \overline{A} and \overline{A}_{relY} related?
- c. How are A° and A°_{rely} related?
- d. How are fr(A) and $fr(A)_{rely}$ related?

Q7) (8 Points) Consider \mathbb{R}^2 with the usual topology. Consider the subsets $A = \{(x,0) | -2 \le x \le 2\}$ and $B = \{(x,y) | x^2 + y^2 \ge 2\}$.

- (a) Find A°
- (b) Find B°
- (c) Find fr(A)
- (d) Find fr(B)
- (e) Find A'
- (f) Find B'
- (g) Find $\overline{A} \cap \overline{B}$

Q8) (6 Points) Let X be uncountable set and consider the topologies \mathfrak{T}_F , \mathfrak{T}_C , and \mathfrak{T}_D for X. Circle the property which the space has.

a.	(X,\mathfrak{I}_F) is	T_0	T_1	T_2	regular	normal	T_3	T_4
b.	(X,\mathfrak{I}_{C}) is	T_0	T_1	T_2	regular	normal	T_3	T_4
c.	(X,\mathfrak{I}_D) is	T_0	T_1	T_2	regular	normal	T_3	T_4

Q9) (10 Points) Let (X, \mathfrak{I}) be a topological space and let $A \subseteq X$. Prove or disprove each of the following:

- a. $X \overline{A} = (X A)^{\circ}$
- b. $A^\circ = \left(\overline{A}\right)^\circ$

Q10) (10 Points) Let X be a nonempty set and let $\{X_i\}$ be a class of topological spaces. Assume that we have a set of functions $\{f_i : X \to X_i\}$. The smallest topology on X that will make each f_i continuous is called the **weak topology for X generated by the** f_i 's.

Assume that $X_i = \mathbb{R}$ with the usual topology \mathfrak{I}_u for each *i*, and consider the set $\{f_i : \mathbb{R} \to X_i\}$. Describe the weak topology generated by the f_i 's, where

- a. $\{f_i\}$ is the set of all constant functions.
- b. $\{f_i\}$ is the set of functions each of which is equal to $f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$.

Q11) (18 Points) Let (X, \mathfrak{I}) be a topological space and let $A \subseteq X$. Prove each of the following:

- a. The set A is dense in X if its complement has empty interior.
- b. If the set A has empty frontier, then it is both open and closed.