Study Guide – Stoichiometry Post-Te Chemistry			est	Name:		
2 poin	ts]	<u>DUE AT POST-TEST</u>	(TUES., 4/29/14)	Date: _	Hour:	
Topics/concepts covered on post-tes stoichiometry balancing equations limiting reactant writing compound formulas preciptate		epts covered on post-tes niometry icing equations ing reactant ng compound formulas ptate	t: mole-mole stoichio coefficients excess reactant molar masses Lab #17 (percent yi	metry eld/precip	mass-mass stoichiometry mole ratios double displacement reaction solubility of salts chart itate lab)	
Practio	ce ques	stions:				
1)	(a)	When watching a reaction, how can you identify the limiting reactant?				
	(b)	When doing a stoichiometry calculation, how can you identify the limiting reactant?				
2)	What	What do the coefficients in a balanced equation stand for?				
3)	How	many moles of ammoni	a gas (NH ₃) can be r + H _{2 (g)}	nade from	5.00 moles of hydrogen gas? NH _{3 (g)} [3.33 mol H ₂]	

4) Tungsten carbide is a compound composed of tungsten and carbon. One possible equation for its formation is

_____ W + _____ C ---> _____ WC

If a chemist starts with 4.00 g of W and 4.00 g of C,

- (a) How many grams of WC can be formed? (requires two calculations) [4.26 g]
- (b) What is the limiting reactant?
- (c) What is the excess reactant?

5) Nickel and carbon dioxide can be produced using a decomposition reaction.

_____Ni(CO)₄ -----> _____Ni + ____CO

If 4.50 grams of nickel are produced, how many grams of carbon monoxide will be produced? [8.59 g CO]

6) A rocket fuel is prepared by reacting hydrazine and dinitrogen tetroxide according to the balanced equation

 $2 N_2 H_4 (\ell) + N_2 O_4 (\ell) ----> 3 N_2 (g) + 4 H_2 O (g)$

Write six mole ratios for this reaction:

- 7) A chemist calculated that she could make 56.72 g of product using a certain reaction. During the lab, she was only able to produce 43.95 g. What was her percent yield? [77.49%]
- 8) (a) Iron (III) chloride and potassium phosphate react in a double displacement reaction. How many grams of precipitate can be produced when 3.50 g of iron (III) chloride and excess potassium phosphate react? [3.25 g FePO₄]

(b) Draw and label the lab set-up for separating the precipitate from the solution: