\qquad

Acids \& Bases

Properties

	Acid	
Taste	sour/tart	bitter
Feel	burn	slippery
Metal rxn	yes	no
Litmus	red	blue
Conductivity	yes	yes

Definitions

Arrhenius acid (1880's) -

In actuality the reaction occurs by the H^{+}attaching itself to $\mathrm{H}_{2} \mathrm{O}$ forming $\mathrm{H}_{3} \mathrm{O}^{+}$, the hydronium ion. You may write either symbol, but you need to know the true form.

Some common every day acids are vinegar, citric, gastric (HCl 0.1 M)

Arrhenius base -

Where does the OH^{-}really come from?

Some common every day bases are soap, bleach, ammonia $\left(\mathrm{NH}_{3}\right)$, drano, detergent, milk of magnesia, antacids

Problem: The Arrhenius definition couldn't explain neutralization rxns like $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$, In this rxn, all that happens is that the H^{+}from HCl moves to $\mathrm{NH}_{3} \&$ the opposite ions attract. In effect a PROTON is DONATED

Bronsted - Lowry acid

Bronsted - Lowry base

Thus according to Bronsted-Lowry - acid base reactions are proton transfer reactions.
So rxns w/ water are also acid base rxns in which $\mathrm{H}_{2} \mathrm{O}$ acts as acid or base. Acid Pictures powerpoint slide 3

Eg. 1 Identify the acid and the base in the reaction $\mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-}$

General form of an acid rxn

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

General form of an base rxn

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{OH}^{-}+\mathrm{BH}^{+}
$$

Eg. 2 Identify the acid \& base in the following rxns. All of these are weak acids \& bases.
a

$$
\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}
$$

$\mathrm{b} \quad \mathrm{HSO}_{4}{ }^{-}+\mathrm{PO}_{4}{ }^{3-} \leftarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{HPO}_{4}{ }^{2-}$
c $\quad \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
d $\quad \mathrm{NaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-}$
e $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
The best way to look at acid base rxns is to view them as an equilibrium. Identify the acid \& base in each rxn, forward \& reverse. You can identify substances that are related to each other by donating or accepting a proton as a Conjugate acid-base pair. Any Bronsted-Lowry equilibium has 2 acid-base pairs. An easy way to identify the acid member of the pair is that it has one more H^{+}than the base member.

Eg 3 Write the conjugate base for nitric acid \& hydrogen sulfate ion.

Eg. 4 What are the conjugate acids of $\mathrm{OH}^{-} \& \mathrm{PO}_{4}{ }^{3-}$?

Amphoteric, amphiprotic -

Strength

Autoionization of water -

Write K_{c} for autoionization of $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{\mathrm{w}}=$

This value holds true for $25^{\circ} \mathrm{C}$. Just like other equilibriums K_{w} is affected by temperature
K_{w} is also referred to as the ion-product constant of water.

A neutral solution is

An acid solution has

A basic solution has

Acid Strength

What determines the strength of an acid or base?

Strong acids \& bases -

$\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)$

TABLE 14.1 in the book provides properties of weak vs strong acids

The value of K gives an indication of the relative strength of an acid. The smaller the K_{a} value the weaker the acid.

Eg. 7 Place the following in order of acid strength from weakest to strongest:
a) $\mathrm{HOCl}, \mathrm{HI}, \mathrm{NH}_{4}{ }^{+}, \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
b) $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{HSO}_{4}$

Using K_{w} to calculate $\left[\mathrm{H}^{+}\right]$\& $\left[\mathrm{OH}^{-}\right]$

Eg. 5 In a sample of blood at $25^{\circ} \mathrm{C}$ the $\left[\mathrm{H}^{+}\right]=4.6 \times 10^{-8} \mathrm{M}$. Find $\left[\mathrm{OH}^{-}\right]$and decide if the sample is acidic, basic, or neutral.

Eg. 6 An aqueous solution of sodium bicarbonate has $\left[\mathrm{OH}^{-}\right]=7.8 \times 10^{-6}$. What is $\left[\mathrm{H}^{+}\right]$? Acidic, basic, or neutral?

pH scale

Because you take the negative log, pH decreases as $\left[\mathrm{H}^{+}\right]$increases.
Because it's in a log scale for every 1 unit change in pH the $\left[\mathrm{H}^{+}\right]$increases by 10 times. If the pH changes by 2 then the $\left[\mathrm{H}^{+}\right]$ changes by \qquad _.

Write the expression for K_{w}.
$\mathrm{pH}+\mathrm{pOH}=14.00$
Remember how sig figs work w/ logs.

Eg. 1 Calculate the $\mathrm{pOH} \&\left[\mathrm{H}^{+}\right]$of a solution w/ a pH of 11.68.

Eg. 1b Calculate the $\mathrm{pH} \&\left[\mathrm{OH}^{-}\right]$of a solution with a pOH of 3.67

Calculating $\mathbf{p H}$ of strong acids

Here we will start to work on a problem solving strategy we will use for the ENTIRE unit.
Eg. 2 Calculate the $\mathrm{pH} \&\left[\mathrm{OH}^{-}\right]$of a 0.341 M HCl solution.
With all acid base problems the following steps will help the solution process

1) Identify the major species in the beaker \& find their K values
2) Decide which species is contributing significantly to the $\left[\mathrm{H}^{+}\right]$of the solution \& write the equation for it.
3) Determine $\left[\mathrm{H}^{+}\right]$using the significant species.
4) Calculate pH .

Eg. 3 Calculate the $\mathrm{pH} \&\left[\mathrm{OH}^{-}\right]$of a $2.6 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution.
1)
2)
3)
4)

Eg. 4 Calculate the $\left[\mathrm{H}^{+}\right]$of a solution of HClO_{4} solution that has a pH of 5.78.

Eg. 5 Calculate the $\mathrm{pH} \&\left[\mathrm{H}^{+}\right]$of a $5.3 \times 10^{-10} \mathrm{M} \mathrm{HBr}$ solution.

Eg. 6 Calculate the pH of a solution made of $7.2 \times 10^{-5} \mathrm{M} \mathrm{HClO}_{4}$ and $3.4 \times 10^{-4} \mathrm{HI}$.

Strong Bases

Strong Bases:

Rxn w/ water

Calculations w/ strong bases

Similar to calculations with a strong acid but w/ an added step.

Eg. 2 Calculate pH of a solution of 0.20 M NaOH .

Eg. 3 Determine the pH of a solution of $0.30 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$

Eg. 4 The pH of a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 13.65. Determine the concentration of $\mathrm{Mg}(\mathrm{OH})_{2}$.

Weak acids

Weak acids do not

Equation for weak acid $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
Write the K expression for a weak acid.
$\mathrm{K}_{\mathrm{a}}=\operatorname{acid}$ ionization constant Review meaning for K_{a} values

$\mathbf{K}_{\mathbf{a}} \& \mathbf{p H}$ Calculations for weak acids

A similar process is used to calculate pH of weak acids, but the addition of solving an equilibrium problem is added. Keep in mind that many weak acids have very small K_{a} values, so assumptions can be made. The 5% rule for the assumptions made for small K values works because the K_{a} values themselves are accurate to within 5%.

Eg. $1 \quad$ A 1.0 M solution of acetic acid has a $\mathrm{K}_{\mathrm{a}}=$ to 1.8×10^{-5}. Calculate the pH . 1) major species (what's in the beaker)
2) significant contributor - largest K is the most significant contributor
3) write the equilibrium expression for the significant contributor
4) using the given info set up the equilibrium problem
5) determine concentrations at equilibrium
6) Use K_{a} to solve for $\left[\mathrm{H}^{+}\right]$. Remember assumptions if they apply
7) check 5% rule
8) calculate pH

Eg. 2 Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$ which is present in sour milk, also gives sauerkraut its tartness. Calculate the pH of a 0.100 M solution of lactic acid at $25^{\circ} \mathrm{C}$.

1) major species (what's in the beaker?)
2) significant contributor: largest K is the most significant contributor
3) write the equilibrium expression for the significant contributor
4) using the given info set up the equilibrium problem
5) determine concentrations at equilibrium
6) Use K_{a} to solve for $\left[\mathrm{H}^{+}\right]$. Remember assumptions if they apply
7) check 5% rule
8) calculate pH

Eg. 3 Calculate the pH of a solution made of 0.60 M acetic acid \& 4.3 M boric acid.

Calculate the concentration of the borate ion.

Percent dissociation

Formula

The percent of dissociated acid in a solution increases as the solution [] decreases. Why? LeChatelier:

Kinetics:
Mathematics:

Note: As a solution becomes more dilute, it is less likely that the 5% rule will apply due to the fact that \% dissociation increases as [HA] decreases.

Eg. 4 Calculate the \% dissociation of acetic acid in eg. $1 \&$ eg. 3. Compare.

Eg. 5 An 0.400 M acid solution is 4.50% dissociated. Calculate the K_{a} for this acid and the pH .

