Date _____

Acids & Bases

Properties

	Acid	Base
Taste	sour/tart	bitter
Feel	burn	slippery
Metal rxn	yes	no
Litmus	red	blue
Conductivity	yes	yes

Definitions

```
Arrhenius acid (1880's) –
```

In actuality the reaction occurs by the H^{\ast} attaching itself to H_2O forming H_3O^{\ast} , the hydronium ion. You may write either symbol, but you need to know the true form.

Some common every day acids are vinegar, citric, gastric (HCl 0.1 M)

<u>Arrhenius base -</u>

Where does the OH⁻ really come from?

Some common every day bases are soap, bleach, ammonia (NH₃), drano, detergent, milk of magnesia, antacids

Problem: The Arrhenius definition couldn't explain neutralization rxns like $NH_3 + HCl \rightarrow NH_4Cl$, In this rxn, all that happens is that the H⁺ from HCl moves to NH_3 & the opposite ions attract. In effect a PROTON is DONATED

Bronsted - Lowry acid

Bronsted - Lowry base

Thus according to Bronsted-Lowry – acid base reactions are proton transfer reactions. So rxns w/ water are also acid base rxns in which H₂O acts as acid or base. *Acid Pictures powerpoint slide 3*

Name ____

Eg. 1 Identify the acid and the base in the reaction $HCHO_2 + H_2O \leftrightarrow H_3O^+ + CHO_2^-$

General form of an acid rxn $HA + H_2O \leftarrow A^- + H_3O^+$

General form of an base rxn $B + H_2O \leftarrow \rightarrow OH^- + BH^+$

Eg. 2 Identify the acid & base in the following rxns. All of these are weak acids & bases. a $HOCl + H_2O \leftrightarrow H_3O^+ + OCl^-$

b $HSO_4^- + PO_4^{3-} \leftrightarrow SO_4^{2-} + HPO_4^{2-}$

c $H_2O + NH_3 \leftrightarrow NH_4^+ + OH^-$

- d NaCO₃ + H₂O $\leftarrow \rightarrow$ HCO₃⁻ + OH⁻
- e $CaO(s) + H_2O \leftrightarrow Ca^{2+} + 2OH^{-}$

The best way to look at acid base rxns is to view them as an equilibrium. Identify the acid & base in each rxn, forward & reverse. You can identify substances that are related to each other by donating or accepting a proton as a Conjugate acid-base pair. Any Bronsted-Lowry equilibium has 2 acid-base pairs. An easy way to identify the acid member of the pair is that it has one more H^+ than the base member.

Eg 3 Write the conjugate base for nitric acid & hydrogen sulfate ion.

Eg. 4 What are the conjugate acids of $OH^{-} \& PO_{4}^{3-}$?

Amphoteric, amphiprotic -

Strength

Autoionization of water -

Write K_c for autoionization of H₂O

$K_w =$

This value holds true for 25°C. Just like other equilibriums K_w is affected by temperature

K_w is also referred to as the ion-product constant of water.

A neutral solution is

An acid solution has

A basic solution has

Acid Strength What determines the strength of an acid or base?

Strong acids & bases -

Weak acids & bases -

TABLE 14.1 in the book provides properties of weak vs strong acids

The value of K gives an indication of the relative strength of an acid. The smaller the K_a value the weaker the acid.

Eg. 7 Place the following in order of acid strength from weakest to strongest: a) HOCl, HI, NH_4^+ , $HC_7H_5O_2$

b) HF, H₂SO₄, H₃BO₃, HSO₄

Using K_w to calculate [H⁺] & [OH⁻]

Eg. 5 In a sample of blood at 25° C the [H⁺] = 4.6 X 10^{-8} M. Find [OH⁻] and decide if the sample is acidic, basic, or neutral.

Eg. 6 An aqueous solution of sodium bicarbonate has $[OH^-] = 7.8 \times 10^{-6}$. What is $[H^+]$? Acidic, basic, or neutral?

pH scale

Because you take the negative log, pH decreases as $[H^+]$ increases. Because it's in a log scale for every 1 unit change in pH the $[H^+]$ increases by 10 times. If the pH changes by 2 then the $[H^+]$ changes by _____.

Write the expression for K_w.

pH + pOH = 14.00

Remember how sig figs work w/ logs.

Eg. 1 Calculate the pOH & $[H^+]$ of a solution w/ a pH of 11.68.

Eg. 1b Calculate the pH & [OH⁻] of a solution with a pOH of 3.67

Calculating pH of strong acids

Here we will start to work on a problem solving strategy we will use for the ENTIRE unit.

Eg. 2 Calculate the pH & [OH⁻] of a 0.341 M HCl solution. *With all acid base problems the following steps will help the solution process* <u>1) Identify the major species in the beaker & find their K values</u>

2) Decide which species is contributing significantly to the $[H^+]$ of the solution & write the equation for it.

3) Determine $[H^+]$ using the significant species.

4) Calculate pH.

- Eg. 3 Calculate the pH & $[OH^-]$ of a 2.6 x 10^{-3} M HNO₃ solution.
- 2)
- 2)
- 3)
- 4)
- Eg. 4 Calculate the $[H^+]$ of a solution of HClO₄ solution that has a pH of 5.78.

Eg. 5 Calculate the pH & $[H^+]$ of a 5.3 x 10^{-10} M HBr solution.

Eg. 6 Calculate the pH of a solution made of 7.2×10^{-5} M HClO₄ and 3.4×10^{-4} HI.

Strong Bases

Strong Bases:

Rxn w/ water

Calculations w/ strong bases

Similar to calculations with a strong acid but w/ an added step.

- Eg. 2 Calculate pH of a solution of 0.20M NaOH.
- Eg. 3 Determine the pH of a solution of 0.30 M Ba(OH)₂
- Eg. 4 The pH of a solution of $Mg(OH)_2$ is 13.65. Determine the concentration of $Mg(OH)_2$.

Weak acids do not

Equation for weak acid $HA + H_2O \leftrightarrow H_3O^+ + A^-$ Write the K expression for a weak acid.

 K_a = acid ionization constant Review meaning for K_a values

K_a & pH Calculations for weak acids

A similar process is used to calculate pH of weak acids, but the addition of solving an equilibrium problem is added. Keep in mind that many weak acids have very small K_a values, so assumptions can be made. The 5% rule for the assumptions made for small K values works because the K_a values themselves are accurate to within 5%.

Eg. 1 A 1.0 M solution of acetic acid has a $K_a = to 1.8 \times 10^{-5}$. Calculate the pH. 1) major species (what's in the beaker)

2) significant contributor - largest K is the most significant contributor

3) write the equilibrium expression for the significant contributor

4) using the given info set up the equilibrium problem

5) determine concentrations at equilibrium

6) Use K_a to solve for [H⁺]. Remember assumptions if they apply

7) check 5% rule

8) calculate pH

Eg. 2 Lactic acid ($HC_3H_5O_3$) which is present in sour milk, also gives sauerkraut its tartness. Calculate the pH of a 0.100 M solution of lactic acid at 25°C.

1) major species (what's in the beaker?)

2) significant contributor: largest K is the most significant contributor

3) write the equilibrium expression for the significant contributor

4) using the given info set up the equilibrium problem

5) determine concentrations at equilibrium

6) Use K_a to solve for [H⁺]. Remember assumptions if they apply

7) check 5% rule

8) calculate pH

Eg. 3 Calculate the pH of a solution made of 0.60 M acetic acid & 4.3 M boric acid.

Calculate the concentration of the borate ion.

Percent dissociation Formula

The percent of dissociated acid in a solution increases as the solution [] decreases. Why? LeChatelier:

Kinetics:

Mathematics:

Note: As a solution becomes more dilute, it is less likely that the 5% rule will apply due to the fact that % dissociation increases as [HA] decreases.

Eg. 4 Calculate the % dissociation of acetic acid in eg. 1 & eg. 3. Compare.

Eg. 5 An 0.400 M acid solution is 4.50% dissociated. Calculate the K_a for this acid and the pH.