Name:	
name:	

Chapter 18 Test A

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. All of the following are types of fields EXCEPT:
 - a. gravity.
 - b. light.
 - c. magnetism.
 - d. mass.
- _____ 2. The strength of a field:
 - a. decreases the farther you get from the source.
 - b. increases the farther you get from the source.
 - c. stays the same throughout.
 - d. varies randomly throughout.
- 3. Compared to an electric or gravitational field, the strength of a magnetic field:
 - a. increases more quickly as you get farther from the source.
 - b. decreases more quickly as you get farther from the source.
 - c. is identical.
 - d. None of the above
 - _ 4. The force of gravity you feel from Earth reaches you through:
 - a. Earth's magnetic field.
 - b. Earth's core.
 - c. Earth's gravitational field.
 - d. electromagnetic waves.
- 5. What type of field surrounds a moving charged particle?
 - a. Electric field only
 - b. Magnetic field only
 - c. Gravitational field only
 - d. All of the above
 - 6. If an object with a charge of 0.05 coulombs experiences an electric force of 5 newtons, the electric field strength in newtons/coulomb is _____ N/C.
 - a. 0.01
 - b. 0.25
 - c. 100
 - d. 500
- 7. Gravitational fields and electric fields are similar in all the following ways EXCEPT:
 - a. their intensities follow an inverse square law.
 - b. they are both vector fields.
 - c. they are both force fields.
 - d. they both are created by mass.
 - 8. How does the intensity of light 2 meters from a light bulb compare to the intensity 4 meters away from the light bulb?
 - a. It is 2 times more intense.
 - b. It is 2 times less intense.
 - c. It is 4 times more intense.
 - d. It is 4 times less intense.

- 9. The greatest speed at which a field can spread forces, energy, or information is _____ m/s.
 - a. 100,000
 - b. 300,000,000
 - c. 9.8
 - d. There is no limit to the speed.

Figure-18A

The distance between the Sun and Earth is 1.5×10^{11} meters. The mass of the Sun is 1.99×10^{30} kg. The radius of the Sun is 6.9×10^8 meters. Answer the following questions about the Sun-Earth system.

- 10. Referencing the information in Figure-18A, how long does it take the light produced by the Sun to travel to your eyes on Earth?
 - a. 0.002 seconds
 - b. 4.5×10^{19} seconds
 - c. 500 seconds
 - d. Instantly
- 11. Referencing Figure-18A, if the Sun were to explode, how long would it be before the explosion would be seen on Earth?
 - a. 0.002 seconds
 - b. 4.5×10^{19} seconds
 - c. 500 seconds
 - d. instantly
- 12. Referencing Figure-18A, if the Sun were to explode and vanish, which of the following would happen to Earth?
 - a. Earth would immediately explode and vanish.
 - b. Earth would fly out of its orbit after a 500-second delay.
 - c. Earth would fly out of its orbit immediately.
 - d. No change would occur.
- 13. Referencing Figure-18A, the gravitational field strength due to the Sun at the surface of Earth is _____ N/kg.
 - a. 9.8
 - b. 8.9×10^8
 - c. 7.5×10^{-19}
 - d. 0.006

14. Referencing Figure-18A, the gravitational field (value of g) on the surface of the Sun is _____ N/kg.

- a. 1.9×10^{11}
- b. 6.67×10^{-11}
- c. 279
- d. 9.5×10^{47}

Name:

- a. 6.67×10^{-11}
- b. 1.4×10^{-10}
- c. 9.8
- d. 6.8×10^{-9}
- 16. What creates an electric field?
 - a. Drift speed
 - b. The forces between charged particles
 - c. Magnetic attractions
 - d. The forces between masses
- 17. What happens to an electric field as you get farther away from the charge that creates the field?
 - a. It changes to a magnetic field.
 - b. It decreases.
 - c. It increases.
 - d. None of the above
- 18. The electric field inside a conductor that is NOT carrying current is:
 - a. increasing.
 - b. zero.
 - c. positive.
 - d. negative.
- 19. Electric field lines always point:
 - a. away from positive charge and toward negative charge.
 - b. toward positive charge and away from negative charge.
 - c. across each other.
 - d. to the inside of a conductor.
- 20. Placing a conductor into an electric field creates a:
 - a. shielding effect with no electric field inside the conductor.
 - b. current inside the conductor.
 - c. negative charge inside the conductor.
 - d. positive charge inside the conductor.
- 21. The force in newtons of an electric field of strength 2.0 newtons/coulomb on a positive charge of
 - 0.5 coulombs is ____ N. a. 0.25
 - a. 0.25 b. 0.5
 - c. 1.0
 - d. 4.0
- 22. An object with charge of 5×10^{-9} C experiences an upward force of 20×10^{-9} N when placed at a certain point in an electric field. The electric field strength at that point is N/C.
 - a. 0.25
 - b. 4.0
 - c. 100
 - d. 4×10^{-9}

23. Which of the following diagrams is NOT a possible representation of an electric field?

- 24. An electric field has a strength of 2 volts/meter. It exerts a force of _____ N on a positive charge of 0.002 coulombs.
 - a. 9.8
 - b. 0.004
 - c. 1,000
 - d. 0.001
- - a. 9.8
 - b. 2
 - c. 20,000
 - d. 5×10^{-5}

26. Which of the following is a unit used to measure the strength of an electric field?

a.	volts		kilograms × meters
	meter C.	seconds ² \times coulombs	
	marritoma		

b. $\frac{\text{newtons}}{\text{coulomb}}$

d. All of the above

____27.

The graph represents the relationship between electric force and the charge of an object. The slope of the graph represents:

- a. the strength of the electric field.
- b. Coulomb's constant, $k = 9 \times 10^9 \text{ N} \times \text{m}^2/\text{C}^2$.
- c. momentum.
- d. voltage.
- _ 28. The electric field around two positive charges looks most like:

