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Abstract. We introduce a new test for detection of power-law cross-correlations among a pair of time series
– the rescaled covariance test. The test is based on a power-law divergence of the covariance of the partial
sums of the long-range cross-correlated processes. Utilizing a heteroskedasticity and auto-correlation robust
estimator of the long-term covariance, we develop a test with desirable statistical properties which is well
able to distinguish between short- and long-range cross-correlations. Such test should be used as a starting
point in the analysis of long-range cross-correlations prior to an estimation of bivariate long-term memory
parameters. As an application, we show that the relationship between volatility and traded volume, and
volatility and returns in the financial markets can be labeled as the power-law cross-correlated one.

1 Introduction1

Analysis of the power-law auto-correlations and long-term2

memory has a long tradition in the econophysics field.3

Starting from the early studies in 1990s [1–4], the main fo-4

cus has been put on financial time series, specifically scal-5

ing of auto-correlations of returns and volatility measures.6

The long-range dependent processes are characterized by7

the long-term memory parameter H – Hurst exponent –8

which ranges between 0 and 1 for stationary processes.9

The breaking point of 0.5 is characteristic for uncorre-10

lated and short-term memory processes (with exponen-11

tially decaying auto-correlations). Processes with H > 0.512

are labeled as persistent and they resemble locally trend-13

ing series, and processes with H < 0.5 are anti-persistent14

with frequently switching direction of increments. The dy-15

namics of the long-term dependent series with H �= 0.5 is16

pronounced in the scaling of the auto-correlation function17

ρ(k) with lag k which follows an asymptotic power-law de-18

cay, ρ(k) ∝ k2H−2 for k → ±∞, and in the divergence of19

the spectrum f(λ) with frequency λ so that f(λ) ∝ λ1−2H
20

for λ → 0+ [5].21

Availability of huge sets of financial data has increased22

the number of empirical studies and the topic of the power-23

law scaling of auto-correlation functions remains a popu-24

lar topic [6–13]. Apart from the empirical works, there25

have been numerous papers on statistical properties of26

various estimators of the long-term memory discussing27

their performance under various memory and distribu-28

tional properties [14–23]. These studies show that prac-29

tically all estimators are biased by some of these proper-30

ties and spurious long-term memory can be quite easily31
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reported. Several tests for presence of long-term memory 32

have been proposed as an initial step in the long-term 33

memory analysis. The original rescaled range has been 34

proposed by Hurst [24] and later adjusted by Mandebrot 35

and Wallis [25]. Lo [26] proposes a modified version of the 36

rescaled range statistic which controls for the short-term 37

memory bias. Giraitis et al. [27] introduce the rescaled 38

variance statistic and show that it supersedes the modified 39

rescaled range analysis and KPSS statistic [28] for various 40

settings of short-term and long-term memory processes. 41

With the outburst of the Global Financial Crisis 42

in 2007/2008, the study of correlations and cross- 43

correlations between various assets has attracted an in- 44

creasing interest. In econophysics, growing number of 45

papers has focused on the power-law behavior of the 46

cross-correlation function [29–36]. To this point, sev- 47

eral estimators of the bivariate Hurst exponent Hxy 48

have been introduced – detrended cross-correlation anal- 49

ysis (DCCA) [37–40], multifractal height cross-correlation 50

analysis (MF-HXA) [41], detrended moving-average cross- 51

correlation analysis (DMCA) [42], multifractal statistical 52

moments cross-correlation analysis (MFSMXA) [43] and 53

average periodogram method (APE) [44]. Compared to 54

the univariate case, there has been practically no atten- 55

tion given to an actual testing for presence of the power- 56

law cross-correlations between two series. Up to our best 57

knowledge, there has been only one test proposed by 58

Podobnik et al. [45] utilizing the DCCA-based correlation 59

of Zebende [46]. 60

We propose a new test based on the divergence of 61

covariance of the partial sums of the power-law cross- 62

correlated processes which is robust to short-term mem- 63

ory effects – the rescaled covariance test. The paper is 64
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structured as follows. In Section 2, basic definitions and1

concepts of the long-range cross-correlated processes are2

introduced together with propositions needed for the con-3

struction of the rescaled covariance test in Section 3. Fi-4

nite sample properties of the test are described in Sec-5

tion 4. In Section 5, the test is applied on a set of financial6

time series. Section 6 concludes.7

2 Methodology8

The power-law (or long-term/long-range) cross-correlated9

processes can be defined in multiple ways – to name the10

most important ones, via scaling of the cross-correlation11

function or a slowly at infinity varying function, through12

a non-summability of the cross-correlation function, and13

a divergent at origin cross-power spectrum. For our pur-14

poses, it is sufficient to define the long-range cross-15

correlated processes via the power-law decay of the cross-16

correlation function ρxy(k) with time lag k ∈ Z defined as:17

18

ρxy(k) =
〈(xt − 〈xt〉)(yt−k − 〈yt〉)〉√
〈x2

t − 〈xt〉2〉〈y2
t − 〈yt〉2〉

. (1)

The following two definitions illustrate the crucial differ-19

ence between short-range and long-range cross-correlated20

processes which stems in a contrast between decay and21

vanishing of the cross-correlation function.22

Definition: Short-range cross-correlated processes.23

Two jointly stationary processes {xt} and {yt} are short-24

range cross-correlated (SRCC) if for k > 0 and/or k < 0,25

the cross-correlation function behaves as:26

ρxy(k) ∝ exp(−k/δ) (2)

with a characteristic time decay 0 ≤ δ < +∞.27

Definition: Long-range cross-correlated processes.28

Two jointly stationary processes {xt} and {yt} are long-29

range cross-correlated (LRCC) if for k → +∞, the cross-30

correlation function behaves as:31

ρxy(k) ∝ k−γxy (3)

with a long-term memory parameter 0 < γxy < 1.32

The definition of the LRCC process, thus, needs only a33

half of the cross-correlation function to follow the power-34

law and the same is true for the SRCC processes. If the35

cross-correlation function vanishes exponentially for k < 036

and decays hyperbolically for k > 0, it is treated as LRCC37

as the power-law decay dominates the exponential one. In38

a more general sense, the cross-correlation function is, in39

contrast to the auto-correlation function, usually asym-40

metric. However, we show that the asymmetry does not41

affect several statistical properties of the LRCC, as well42

as SRCC, processes. Parallel to the univariate case, we la-43

bel the LRCC processes as either long-range (long-term)44

cross-correlated or cross-persistent. Contrary to the uni-45

variate case, we can separate the LRCC processes be-46

tween positively (negatively) long-range (long-term) cross-47

correlated or positively (negatively) cross-persistent. For48

practical purposes, the analysis of the asymptotic behav- 49

ior of cross-correlation function is rather complicated for 50

finite samples. In the time domain, it turns out that it is 51

usually more convenient to study the behavior of partial 52

sums of the processes. 53

Definition: Partial sum. Let’s have a stationary 54

process {xt} with 〈xt〉 = 0 and 〈x2
t 〉 = σ2

x < +∞. Par- 55

tial sum process {Xt} is defined as: 56

Xt = x1 + x2 + . . . + xt =

t∑

i=1

xi. (4)

Historically, long-range dependence was analyzed by 57

Hurst [24] using the rescaled range analysis [25], which is 58

based on the assumption that the adjusted rescaled ranges 59

of the partial sums of a zero mean process scale accord- 60

ing to a power-law. Other measures of variation have been 61

used alongside the adjusted ranges to study long-term de- 62

pendence, the most popular being the detrended fluctu- 63

ation analysis [18,47,48] and various methods covered by 64

Taqqu et al. [14–16]. We follow this logic for the long-range 65

cross-correlated processes in the next propositions (proofs 66

are given in the Appendix). 67

Proposition: Partial sum covariance scaling. Let’s 68

have two jointly stationary processes {xt} and {yt} and 69

their respective partial sums {Xt} and {Yt}. If pro- 70

cesses {xt} and {yt} are long-range cross-correlated, the 71

covariance between their partial sums scales as: 72

Cov(Xn, Yn) ∝ n2Hxy (5)

as n → +∞ where Hxy is the bivariate Hurst exponent. 73

Moreover, it holds that Hxy = 1 − γxy

2
. 74

Proposition: Diverging limit of covariance of par- 75

tial sums. For two jointly stationary long-range cross- 76

correlated processes, {xt} and {yt} and their respective 77

partial sums {Xt} and {Yt}, it holds that 78

lim
n→+∞

Cov(Xn, Yn)

n
= +∞. (6)

The above divergence is parallel to the divergence of 79

the variance of the partial sums for the long-range 80

dependent processes [49] and can, thus, be seen as a sign 81

of long-range cross-correlations. However, distinguishing 82

between the short- and long-range cross-correlated pro- 83

cesses only makes sense if the diverging limit is not the 84

case for the short-range cross-correlated processes. The 85

following proposition and its proof (in the Appendix) in- 86

deed show so. 87

Proposition: Converging limit of covariance of par- 88

tial sums. For two jointly stationary short-range cross- 89

correlated processes, {xt} and {yt}, and their respective 90

partial sums {Xt} and {Yt}, the expression 91

lim
n→+∞

Cov(Xn, Yn)

n
(7)

converges. 92

We use these definitions to propose a new test for pres- 93

ence of the power-law cross-correlations between two pro- 94

cesses – the rescaled covariance test. 95
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3 Rescaled covariance test1

Motivated by the works of Giraitis et al. [27] and Lavancier2

et al. [50], we propose a new test for the presence of3

long-range cross-correlations between two series. The test,4

which we call the rescaled covariance test, is based on the5

scaling of the partial sums covariance and on the diverging6

limit of the covariance of the partial sums. Before propos-7

ing the test itself, we need to define the heteroskedastic-8

ity and autocorrelation consistent (HAC) estimator of the9

cross-covariance sxy,q [27,50].10

Definition: HAC-estimator of covariance. Let pro-11

cesses {xt} and {yt} be jointly stationary with a cross-12

covariance function γxy(k) for lags k ∈ Z. The het-13

eroskedasticity and auto-correlation consistent estimator14

of γxy(0) is defined as:15

ŝxy,q =

q∑

k=−q

(
1 − |k|

q + 1

)
γ̂xy(k), (8)

where q is a number of lags of the cross-covariance func-16

tion taken into consideration and the cross-covariances are17

weighted with the Barlett-kernel weights.18

The basic idea behind the rescaled covariance test19

(RCT) is to utilize the divergence of covariances of the par-20

tial sums of the long-range cross-correlated processes but21

also the convergence of the short-range cross-correlated22

processes and at the same time controlling for different23

levels of correlations in the case of the short-term mem-24

ory utilizing ŝxy,q. The rescaled covariance test is then25

defined as follows:26

Definition: Rescaled covariance test. Let processes27

{xt} and {yt}, with t = 1, 2, . . . , T , be jointly stationary28

processes with a cross-covariance function γxy(k) for k ∈ Z29

and with respective partial sums {Xt} and {Yt}. Assuming30

that
∑+∞

k=−∞
γxy(k) �= 0, the rescaled covariance statistic31

Mxy,T (q) is defined as:32

Mxy,T (q) = qĤx+Ĥy−1 Ĉov(XT , YT )

T ŝxy,q

, (9)

where ŝxy,q is the HAC-estimator of the covariance be-33

tween {xt} and {yt}, Ĉov(XT , YT ) is the estimated co-34

variance between partial sums {XT } and {YT }, and Ĥx35

and Ĥy are estimated Hurst exponents for separate pro-36

cesses {xt} and {yt}, respectively.37

Similarly to the tests for long-range dependence in the38

univariate series which are based on the modified vari-39

ance, such as the rescaled variance [27] and the modified40

rescaled range analysis [26], the choice of parameter q is41

crucial. If the parameter is too low, the strong short-range42

cross-correlations can be detected as the long-range cross-43

correlations and reversely, if the parameter is too high, the44

true long-range cross-correlations can be filtered out as the45

short-range ones. This issue is discussed later. Returning46

to the construction of RCT, the motivation was to con-47

struct a test which would have a test statistic that would48

be (at least partially) independent of the parameters in- 49

cluded in the null hypothesis. For the test, we have the 50

null hypothesis of short-range cross-correlated processes 51

and the alternative of cross-persistent processes. There- 52

fore, it is desirable to have a testing statistic independent 53

of the correlation level of the short-range cross-correlated 54

processes, as well as the time decay δ. In Figure 1, we 55

present the means and standard deviations of the testing 56

statistics Mxy,T (q) for both short- and long-term memory 57

cases with varying parameters. The short-term memory 58

processes are represented by AR(1) processes {xt} and 59

{yt} with correlated error terms and memory parameter θ: 60

xt = θ1xt−1 + εt

yt = θ2xt−1 + νt

〈εt〉 = 〈νt〉 = 0

〈ε2
t 〉 = 〈ν2

t 〉 = 1

〈εtνt〉 = ρεν (10)

and the long-term memory processes are covered by 61

ARFIMA(0,d,0) processes {xt} and {yt} with correlated 62

error terms: 63

xt =

+∞∑

n=0

an(d1)εt−n

yt =
+∞∑

n=0

an(d2)νt−n

an(di) =
Γ (n + di)

Γ (n + 1)Γ (di)

〈εt〉 = 〈νt〉 = 0

〈ε2
t 〉 = 〈ν2

t 〉 = 1

〈εtνt〉 = ρεν . (11)

To discuss the basic properties of the test1, we set θ1 = 64

θ2 = θ and d1 = d2 = d and we fix q = 30. Note that 65

the fractional differencing parameter d is connected to 66

the long-term memory Hurst exponent as H = d + 0.5. 67

For the short-range cross-correlated processes, we observe 68

that the mean value is remarkably stable for parameters 69

up to θ = 0.7 regardless of the correlation between error 70

terms. For higher values, the statistic deviates which can 71

be, however, attributed to the fact that we applied q = 30 72

for estimation of the test statistic and that is evidently 73

insufficient for such a strong memory. Interestingly, the 74

mean value of the test statistic for 0 ≤ θ ≤ 0.7 practically 75

overlays with the testing statistic of the rescaled variance 76

test [27], which is defined as 77

U =

∫ 1

0

(
W 0

t

)2
dt −

(∫ 1

0

W 0
t dt

)2

(12)

where W 0
t is the standard Brownian bridge. Mean value 78

of the statistic U is equal to 1/12, which is represented by 79

1 R-project codes for the rescaled covariance test are
available at http://staff.utia.cas.cz/kristoufek/

Ladislav_Kristoufek/Codes.html or upon request from
the author.
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Fig. 1. Mean values and standard deviations of RCT test. Test statistic Mxy,5000(30) for differently correlated processes.
Correlation between error terms varies between 0.2 and 1 with a step of 0.2 and the darker the line in the chart is, the higher
the correlation is. On the left, correlated AR(1) processes with θ ranging between 0 and 0.9 with a step of 0.1 are shown. On
the right, correlated ARFIMA(0,d,0) processes with d ranging between 0 and 0.45 with a step of 0.05 are shown. Means are
based on 1000 simulations with a time series length of 5000 and presented in a semi-log scale for better legibility.

a red line in Figure 1. In the figure, we also show behav-1

ior of the standard deviation of the statistic. Even though2

it is evidently dependent on the correlation between er-3

ror terms of the AR(1) processes, it is remarkably stable4

across different levels of θ. Importantly, the variance de-5

creases with increasing correlation between error terms6

which is a very desirable property. For the perfectly cor-7

related error terms of the series, the standard deviation of8

the statistics even attains the levels for U which is equal9

to 1/
√

360. For the long-range cross-correlated processes,10

we observe that the mean value of the statistic increases11

with d as expected. Again, the mean value is very stable12

with respect to the correlation of error terms. However,13

the variance of the estimator increases with d parameter14

and is also dependent on the correlations between error15

terms.16

4 Finite sample properties17

Even though the Mxy,T (q) statistic shows some very de-18

sirable properties, we opt to base our decision in favor or19

against the alternative hypothesis based on the moving-20

block bootstrap (MBB) procedure [51–53], mainly due to21

dependence of the variance of the estimator on the cor-22

relations level. In the procedure, a bootstrapped series is23

obtained by separating the series into blocks of size ζ and24

shuffling the blocks, the parameter of interest is then es-25

timated on the bootstrapped series for which the short-26

range dependence and the distributional properties of the27

original series are preserved. Based on B bootstrapped 28

estimates, the empirical confidence intervals for a spe- 29

cific level α and an empirical p-value are obtained. In the 30

case of the rescaled covariance test, we work with a two- 31

sided test with the null hypothesis of short-range cross- 32

correlated processes against the alternative hypothesis of 33

cross-persistence. 34

To examine the size and power of the test, we use the 35

same setup as in the previous section (Eqs. (10)–(11)). 36

Specifically, we are interested in the finite sample proper- 37

ties of the rescaled covariance test for correlated, short- 38

term correlated and long-term correlated processes with 39

moderately and strongly correlated error terms. For the 40

first case, we simply use a bivariate Gaussian noise series. 41

For the second one, we utilize AR(1) processes with three 42

levels of memory – θ = 0.1, 0.5, 0.8 – to control for weak, 43

medium and strong cross-correlations. For the last one, we 44

employ ARFIMA(0,d,0) processes with two levels of mem- 45

ory – d = 0.1, 0.4 – to discuss weak and strong power-law 46

cross-correlations. For all previous cases, we discuss two 47

levels of correlation between the error terms –0.5 and 0.9. 48

For correlated but not cross-correlated processes 49

(Tab. 1), we observe that the test is more precise with 50

increasing correlation ρεν between error terms of the pro- 51

cesses. For ρεν = 0.9, the size of the test practically 52

matches the set significance levels. The size of the test 53

gets better with increasing q and practically does not vary 54

with time series length T . Practically the same results are 55

observed for the short-range cross-correlated processes as 56

shown in Table 2. The sizes practically overlay with the 57
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Table 1. Size of Mxy,T (q) statistic I. Monte-Carlo-based test size for 1000 replications of processes xt = εt and yt = νt

with different correlations ρεν .

ρ = 0.5 ρ = 0.9
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.011 0.045 0.092 0.011 0.050 0.099
T = 500 q = 5 0.009 0.042 0.092 0.010 0.050 0.099

q = 10 0.011 0.042 0.090 0.011 0.052 0.102
q = 30 0.011 0.042 0.090 0.011 0.052 0.102
q = 1 0.011 0.048 0.101 0.014 0.062 0.094

T = 1000 q = 5 0.012 0.052 0.101 0.014 0.060 0.094
q = 10 0.011 0.053 0.100 0.014 0.053 0.095
q = 30 0.011 0.053 0.100 0.014 0.053 0.095
q = 1 0.014 0.047 0.100 0.012 0.049 0.101

T = 5000 q = 5 0.014 0.048 0.102 0.012 0.050 0.100
q = 10 0.014 0.048 0.098 0.012 0.050 0.099
q = 30 0.014 0.048 0.098 0.012 0.050 0.099

Table 2. Size of Mxy,T (q) statistic II. Monte-Carlo-based test size for 1000 replications of two AR(1) processes with θx = θy = 0.1
and different correlations ρεν .

ρ = 0.5 ρ = 0.9
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.006 0.045 0.109 0.009 0.036 0.084
T = 500 q = 5 0.005 0.048 0.104 0.009 0.038 0.082

q = 10 0.006 0.048 0.108 0.007 0.034 0.085
q = 30 0.006 0.048 0.108 0.007 0.034 0.085
q = 1 0.013 0.061 0.102 0.018 0.049 0.093

T = 1000 q = 5 0.010 0.063 0.104 0.017 0.049 0.087
q = 10 0.010 0.058 0.105 0.018 0.048 0.090
q = 30 0.010 0.058 0.105 0.018 0.048 0.090
q = 1 0.014 0.054 0.117 0.011 0.050 0.109

T = 5000 q = 5 0.014 0.053 0.114 0.012 0.050 0.110
q = 10 0.014 0.051 0.115 0.012 0.052 0.109
q = 30 0.014 0.051 0.115 0.012 0.052 0.109

theoretical values of the significance levels. These are very1

strong results in favor of the rescaled covariance test as it2

is practically intact by even very strong short-term mem-3

ory. The combination of the moving-block bootstrap and4

HAC-estimator of covariance is evidently able to suffi-5

ciently control for possible short-term memory biases in6

case of the RCT test.7

For long-range cross-correlated processes, we compare8

cases when Hx = Hy = 0.6 and Hx = Hy = 0.9 to dis-9

tinguish between weak and strong cross-persistence. We10

assume these values of Hx and Hy in the testing pro-11

cedure. The power of the test is relatively low for the12

weak cross-persistence case (Tab. 5). We, however, observe13

several interesting points. First, the power of the test is14

very similar regardless the correlation level between er-15

ror terms. Second, the power of the test increases with16

the time series length. Third, the power increases rapidly17

with increasing α. And fourthly, the power of the test18

even increases with an increasing q, which is caused by19

the qĤx+Ĥy−1 factor in the testing statistic which well20

compensates for high q. For the strong cross-persistence21

(Tab. 6), the power of the test increases considerably and22

the four features of the test are the same as in the previ-23

ous case. As expected, the test is more powerful with in-24

creasing ρεν , i.e. the cross-persistence is more stable. The 25

power of the test increases to as high as 0.967 for some 26

cases. The test thus shows very good statistical character- 27

istics and is well able to distinguish between short-range 28

and long-range cross-correlations. 29

5 Application 30

In financial economics, volatility is one of the most impor- 31

tant variables as it is utilized in option pricing, portfolio 32

analysis and risk management. In econophysics, volatility 33

has been frequently studied due to its power-law nature 34

(long-term memory, extreme events and aftershocks dy- 35

namics to name the most important ones). Studying the 36

power-law cross-correlations in financial series thus natu- 37

rally leads to the financial series connected to volatility. To 38

utilize the proposed rescaled covariance test, we analyze 39

two pairs of series which are of the main interest in finance 40

– volatility/returns and volatility/volume. Both pairs are 41

interesting from the economics point of view – volatil- 42

ity/return relationship is known as the leverage effect as 43

negative returns are believed to be followed by increasing 44

volatility [54,55], and volatility/volume pair is interesting 45
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Fig. 2. Volatility, returns and traded volume of NASDAQ-100 and S&P500. Realized volatility (top left), logarithmic re-
alized volatility (top right), logarithmic returns (bottom left) and logarithmic traded volume (bottom right) are shown for
NASDAQ-100 (in black) and S&P500 (in grey).

Table 3. Size of Mxy,T (q) statistic III. Monte-Carlo-based test size for 1000 replications of two AR(1) processes
with θx = θy = 0.5 and different correlations ρεν .

ρ = 0.5 ρ = 0.9
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.006 0.044 0.101 0.012 0.046 0.095
T = 500 q = 5 0.003 0.043 0.095 0.012 0.047 0.084

q = 10 0.005 0.044 0.092 0.009 0.046 0.083
q = 30 0.005 0.044 0.092 0.009 0.046 0.083
q = 1 0.011 0.057 0.103 0.012 0.049 0.104

T = 1000 q = 5 0.009 0.053 0.099 0.012 0.046 0.096
q = 10 0.008 0.052 0.093 0.012 0.043 0.096
q = 30 0.008 0.052 0.093 0.012 0.043 0.096
q = 1 0.006 0.047 0.090 0.015 0.053 0.106

T = 5000 q = 5 0.006 0.042 0.083 0.013 0.055 0.107
q = 10 0.005 0.043 0.079 0.012 0.056 0.106
q = 30 0.005 0.043 0.079 0.012 0.056 0.106

due to the fact that both variables are influenced by sim-1

ilar effects and one may influence the other [56].2

The volatility process is estimated with a use of the3

realized variance (volatility) approach, which employs the4

high-frequency data and yields consistent and efficient es-5

timates of the true variance process [57–59]. The realized6

variance is practically the uncentered second moment of7

the high-frequency series during a specific day. In our case,8

we use the 5 min frequency, which provides a good balance9

between efficiency and market microstructure noise bias.10

The realized variance is then defined as:11

σ̂2
t,RV =

n∑

i=1

r2
t,i, (13)

where rt,i is a return of the i-th 5-min interval during day12

t and n is the number of these 5-min intervals for a given13

day. To overcome potential problems with non-standard14

distribution and non-negativity of the volatility series, we15

focus on the logarithmic volatility, i.e. the logarithm of the16

square root of the realized variance, which is standardly17

done in reference [60]. In our analysis, we focus on two US18

indices – NASDAQ-100 and S&P500 – between 1.1.200019

and 31.12.2012 (3245 and 3240 observations, respectively). 20

In Figure 2, we observe that returns and volatility series 21

for both indices practically overlap and the indices ex- 22

perienced very similar periods of increased volatility af- 23

ter the DotCom bubble of 2000 and an outburst of the 24

Global Financial Crisis in 2007/2008. Development of the 25

traded volume differs for the indices as the volume of the 26

NASDAQ index has been quite stable during the analyzed 27

period while the S&P500 underwent an increasing expo- 28

nential trend until the break of 2008 and 2009, stabilizing 29

afterwards. To control for this development of the trading 30

volume, we focus our analysis on the detrended logarith- 31

mic volume series. 32

Prior to turning to the results of the rescaled covari- 33

ance test, we present the cross-correlation functions for 34

both analyzed pairs in Figure 3. We observe that the re- 35

lationships are very different from one another. Starting 36

with the volatility/volume pair, we can see that positive 37

cross-correlations are present for both halves of the cross- 38

correlation function for both analyzed indices. For both, 39

we find that the effect works in both directions. How- 40

ever, the effect of volatility on traded volume is more 41
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Fig. 3. Cross-correlation functions for returns, volatility and traded volume of NASDAQ-100 and S&P500. Cross-correlatios
among volatility and traded volume (top left and in log-log scale in top right), and among returns and volatility (bottom left
and in log-log scale in bottom right) are shown for NASDAQ-100 (�) and S&P500 (◦).

Table 4. Size of Mxy,T (q) statistic IV. Monte-Carlo-based test size for 1000 replications of two AR(1) processes
with θx = θy = 0.8 and different correlations ρεν .

ρ = 0.5 ρ = 0.9

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.019 0.075 0.135 0.010 0.048 0.104

T = 500 q = 5 0.013 0.063 0.120 0.008 0.048 0.100

q = 10 0.011 0.058 0.116 0.009 0.047 0.094

q = 30 0.011 0.058 0.116 0.009 0.047 0.094

q = 1 0.020 0.068 0.130 0.014 0.050 0.097

T = 1000 q = 5 0.015 0.059 0.121 0.012 0.045 0.085

q = 10 0.012 0.054 0.110 0.011 0.047 0.083

q = 30 0.012 0.054 0.110 0.011 0.047 0.083

q = 1 0.017 0.072 0.120 0.022 0.065 0.108

T = 5000 q = 5 0.016 0.064 0.111 0.017 0.054 0.104

q = 10 0.013 0.058 0.104 0.017 0.053 0.102

q = 30 0.013 0.058 0.104 0.017 0.053 0.102

Table 5. Power of Mxy,T (q) statistic I. Monte-Carlo-based test power for 1000 replications of two ARFIMA(0,d,0) processes
with dx = dy = 0.1 and different correlations ρεν .

ρ = 0.5 ρ = 0.9

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.018 0.087 0.148 0.029 0.094 0.141

T = 500 q = 5 0.081 0.184 0.275 0.103 0.196 0.278

q = 10 0.117 0.232 0.343 0.142 0.254 0.344

q = 30 0.117 0.232 0.343 0.142 0.254 0.344

q = 1 0.030 0.111 0.172 0.023 0.090 0.166

T = 1000 q = 5 0.097 0.205 0.295 0.094 0.215 0.312

q = 10 0.135 0.252 0.349 0.155 0.283 0.369

q = 30 0.135 0.252 0.349 0.155 0.283 0.369

q = 1 0.091 0.200 0.283 0.090 0.201 0.282

T = 5000 q = 5 0.187 0.320 0.409 0.195 0.342 0.438

q = 10 0.233 0.368 0.466 0.235 0.399 0.500

q = 30 0.233 0.368 0.466 0.235 0.399 0.500
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Fig. 4. Rescaled covariance statistics Mxy,T (q) for NASDAQ-100 and S&P500. Testing statistics are shown for varying q

parameter between 1 and 100 to control for short-term memory. The statistics are shown for NASDAQ-100 (�) and S&P500
(◦) and the 95% confidence intervals are shown in solid lines (black for NASDAQ-100 and grey for S&P500). If the testing
statistics lay outside of the confidence intervals, the null hypothesis of no LRCC is rejected. The results are shown for the
volatility-volume (left) and returns-volatility (right) pairs.

Table 6. Power of Mxy,T (q) statistic II. Monte-Carlo-based test power for 1000 replications of two ARFIMA(0,d,0) processes
with dx = dy = 0.4 and different correlations ρεν .

ρ = 0.5 ρ = 0.9
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

q = 1 0.111 0.229 0.318 0.147 0.272 0.356
T = 500 q = 5 0.649 0.725 0.768 0.734 0.797 0.839

q = 10 0.772 0.830 0.862 0.869 0.904 0.924
q = 30 0.772 0.830 0.862 0.869 0.904 0.924
q = 1 0.205 0.339 0.421 0.255 0.371 0.464

T = 1000 q = 5 0.697 0.774 0.814 0.747 0.813 0.846
q = 10 0.817 0.867 0.891 0.857 0.893 0.914
q = 30 0.817 0.867 0.891 0.857 0.893 0.914
q = 1 0.464 0.584 0.636 0.584 0.685 0.737

T = 5000 q = 5 0.823 0.878 0.899 0.892 0.922 0.934
q = 10 0.898 0.922 0.933 0.934 0.958 0.967
q = 30 0.898 0.922 0.933 0.934 0.958 0.967

long-lasting than the other way around. Interestingly, the1

shape of the cross-correlation function is very similar for2

both indices but the level of correlations is approximately3

halved for NASDAQ-100 compared to the S&P500 in-4

dex. Nonetheless, a simple visual detection uncovers that5

the pair is a good candidate for the presence of LRCC.6

Such statement is further supported by visible power-law7

scaling of the right part of the cross-correlation function8

shown in the right panel of Figure 3. Turning to the re-9

turns/volatility pair, we can see a very different shape of10

the cross-correlation function which is strongly asymmet-11

ric. We observe a one-way effect from returns to volatility12

and not the other way around. Since the sample cross-13

correlations for the positive lags are all negative, it im-14

plies that positive (negative) returns cause, on statistical15

basis, decrease (increase) of volatility. This result is well16

in hand with the standard notion of the leverage effect in17

finance. Again, the decay of cross-correlations for positive18

lags is very slow and the pair is again a good candidate19

for the LRCC analysis which is visually supported by the20

power-law decay of the right part of the cross-correlation21

function illustrated in the right panel of Figure 3. We thus22

have two pairs suspected to be LRCC while one being pos-23

itively and the other negatively cross-persistent.24

Results of the rescaled covariance test for both pairs25

are summarized in Figure 4. In the figure, we present26

the testing statistic Mxy,T (q) for parameter q varying be-27

tween 1 and 100 to see its behavior for different mem-28

ory strengths. For the volatility/volume pair, we observe 29

that the testing statistic is well below the critical values 30

indicating statistically significant cross-persistence. This 31

is true both for NASDAQ-100 and for S&P500. The re- 32

sults are robust across different lags q taken into consider- 33

ation and evidently, the LRCC is not spuriously found due 34

to the short-term memory bias. For the returns/volatility 35

pair, we again find that there is a statistical evidence of 36

long-range cross-correlations among returns and volatility. 37

This is again true regardless the number of lags q taken 38

into consideration2. Both pairs are thus power-law cross- 39

correlated according to the rescaled covariance test. 40

6 Conclusions 41

We introduced a new test for detection of power-law cross- 42

correlations among a pair of time series – the rescaled 43

2 We observe that the signs of the testing statistic are differ-
ent for returns/volatility (positive) and volume/volatility (neg-
ative) pairs. For the former pair, this is caused by the fact that
both the covariance of the partial sums and the covariance be-
tween original series are negative. And for the latter, the neg-
ativity indicates that even though both the volume and the
volatility series are persistent, their partial sums follow local
trends of opposite directions quite frequently. This stresses the
need of the test to be two-sided.
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covariance test. The test is based on a power-law diver-1

gence of the covariance of the partial sums of the LRCC2

processes. Together with a heteroskedasticity and auto-3

correlation robust (HAC) estimator of the long-term co-4

variance, we developed a test with desirable statistical5

properties. As the application, we showed that the rela-6

tionship between volatility and traded volume, and volatil-7

ity and returns in the financial markets can be labeled8

as the one with power-law cross-correlations. Such test9

should be used as a starting point in the analysis of long-10

range cross-correlations prior to an estimation of bivariate11

long-term memory parameters.12

The support from the Grant Agency of Charles Univer-13

sity (GAUK) under Project 1110213, Grant Agency of14

the Czech Republic (GACR) under Projects P402/11/094815

and 402/09/0965, and Project SVV 267 504 are gratefully16

acknowledged.17

Appendix18

Proof to “partial sum covariance scaling” proposition19

Using the zero mean and stationarity properties of pro-20

cesses {xt} and {yt}, we can write the covariance of the21

partial sums as:22

Cov(Xn, Yn) = 〈XnYn〉

= σxσy

(
nρxy(0) +

n−1∑

k=1

(n − k)(ρxy(k) + ρxy(−k))

)

∝ nρxy(0) +
n−1∑

k=1

(n − k)(ρxy(k) + ρxy(−k)). (A.1)

Now, assuming that ρxy(k) is symmetric for k > 0 and23

k < 0, we have24

Cov(Xn, Yn) ∝ nρxy(0) + n

n−1∑

k=1

ρxy(k) −
n−1∑

k=1

kρxy(k).

(A.2)
Using the LRCC definition and approximating the infi-25

nite sums with definite integrals according to the Euler–26

MacLaurin integration formula [61,62], we get27

n

n−1∑

k=1

ρxy(k) ∝ n

n−1∑

k=1

k−γxy ≈ n

∫ n

1

k−γxydk ∝ n2−γxy ,

(A.3)

n−1∑

k=1

kρxy(k) ∝
n−1∑

k=1

k1−γxy ≈
∫ n

1

k1−γxydk ∝ n2−γxy .

(A.4)

Finally, we use that the linear growth of nρxy(0) is asymp-28

totically dominated by the power-law growth in the latter29

terms, i.e. using the l’Hôpital’s rule we have 30

lim
n→+∞

n2−γxy

nρxy(0)
= lim

n→+∞

(2 − γxy)n1−γxy

ρxy(0)

= +∞ for 0 < γxy < 1 (A.5)

and we get 31

Cov(Xn, Yn) ∝ n2−γxy as n → +∞. (A.6)

Note that the substitutions in equations (A.3) and (A.4) 32

from
∑n−1

k=1
ρxy(k) to

∑n−1

k=1
k−γxy are done for k between 33

1 and n−1 without a loss on generality as we are interested 34

in the asymptotic properties of Cov(Xn, Yn). 35

Further, we have 2Hxy = 2 − γxy so that 36

Hxy = 1 − γxy

2
. (A.7)

For the asymmetric cross-correlation function, the results 37

do not differ significantly. We have 38

Cov(Xn, Yn) ≈ nρxy(0) + n
n−1∑

k=1

k−γ1

xy −
n−1∑

k=1

k−γ1

xy
+1

︸ ︷︷ ︸
∝n

2−γ1
xy

+ n

n−1∑

k=1

k−γ2

xy −
n−1∑

k=1

k−γ2

xy
+1

︸ ︷︷ ︸
∝n

2−γ2
xy

, (A.8)

where the approximate proportionality comes from equa- 39

tions (A.3) and (A.4). Asymptotically, the power-law scal- 40

ing is dominated by the higher exponent, i.e. the lower 41

γxy. For γ1
xy < γ2

xy, we have Cov(Xn, Yn) ∼ n2−γ1

xy and 42

vice versa. Note that the lower γxy is connected to the 43

higher bivariate Hurst exponent Hxy which implies that 44

the scaling of covariances is dominated by the stronger 45

cross-persistence. 46

Proof to “diverging limit of covariance of partial sums” 47

proposition 48

We have 49

lim
n→+∞

Cov(Xn, Yn)

n
∝ lim

n→+∞

n2Hxy

n
= lim

n→+∞

n2−γxy

n

= lim
n→+∞

n1−γxy = +∞ for 0 < γxy < 1. (A.9)

Proof to “converging limit of covariance of partial 50

sums” proposition 51

In accordance with the proof for the LRCC case, we as- 52

sume a symmetric cross-correlation function3 so that we 53

3 For an asymmetric case, the proof is parallel.
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can write1

Cov(Xn, Yn) ∝ nρxy(0) + n

n−1∑

k=1

ρxy(k) −
n−1∑

k=1

kρxy(k).

(A.10)
It holds that2

lim
n→+∞

Cov(Xn, Yn)

n

∝ lim
n→+∞

(
ρxy(0) +

n−1∑

k=1

ρxy(k) − 1

n

n−1∑

k=1

kρxy(k)

)
.

(A.11)

Solving the sums separately with a use of short-range3

cross-correlations definition, we get4

n−1∑

k=1

ρxy(k) ∝
n−1∑

k=1

exp

(
−k

δ

)
∝ 1 − exp

(
−n

δ

)

1 − exp
(
− 1

δ

) (A.12)

n−1∑

k=1

kρxy(k) ∝
n−1∑

k=1

k exp

(
−k

δ

)
= exp

(
−1

δ

)

− n exp
(
−n

δ

)
+ (n − 1) exp

(
−n + 1

δ

)
.

(A.13)

Substituting back, we obtain5

lim
n→+∞

Cov(Xn, Yn)

n
∝ lim

n→+∞

[
ρxy(0) +

1 − exp
(
−n

δ

)

1 − exp
(
− 1

δ

)

− exp
(
− 1

δ

)

n
+

n

n
exp

(
−n

δ

)

+
n − 1

n
exp

(
−n + 1

δ

) ]

= ρxy(0) +
1

1 − exp
(
− 1

δ

) (A.14)

and the limit evidently converges for 0 ≤ δ < +∞ which6

concludes the proof.7
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