
Case Report Form

Version Management

 Paulina Leszczynski, Communications Coordinator

 Clinical Research Unit

 Cumming School of Medicine

 University of Calgary

CRU Background

 The Clinical Research Unit (CRU) is located in

the Cumming School of Medicine at the

University of Calgary

 Offers research data support services to

University researchers

 Has always been DataFax-centric

Abstract

 CRU clients routinely request changes to existing

CRF content in live studies

 DataFax is quite safe to make these changes

 However, we often found ourselves in never-

ending loops of overlapping change requests

 Implementation of document change

management system based on the Git distributed

version control toolset

CRFs, DataFax, and a Growing Team

 Framemaker for first 5 years using DF 3.8.2

 Transition to InDesign since DF 4.3.0

 Change Management reared its head as we

scaled our team of form developers and

coordinators

 The notion of parallel development on a

single CRF set drove the selection of GIT/Git-

Flow as our CVS solution and branching

paradigm

Change Management Workflow

 Standard Operating Procedure-driven

 Version control and project management

system integration

 Appropriate sign-off and PM processes

integrated into document change process

Tools

 Git Source Control Manager

 http://git-scm.com

 Git Flow Branch Management Extension

 http://nvie.com/posts/a-successful-git-branching-model/

 Git Lab Web-Based Repository Management

Application

 https://about.gitlab.com/

Git Flow

CRF Change Management Workflow

CRF Change Management

 All incoming work requests to the CRU are processed in the

CRU project management portal

 Inbound requests are identified as a CRF change request

CRF Change Management

 Confirm the request initiator is identified as project PI/PI is

copied on the request

 Verify with CRU project management portal that project

status is Active

 Confirm project CRF source files are available in the CRU

repository

 Identify most recent release

CRF Change Management

 Process change request content into single edit task list

 Using Git Flow, create a feature branch off of the develop branch

 Give branch a name including the id of the initial change request

 Make and commit each change listed in edit task list to the

feature branch

 Finish the feature branch merging content back into main

development trunk

Pre-Release Review

 Provide change request initiator with request content

 Should review identify subsequent changes entire process

will start again until sign-off for release is obtained

 If changes satisfy request initialize a release process from

the development branch

Release

 Create a release branch using the appropriate numbering

convention

 n.n for non-urgent

 n.n.n for urgent releases

 Using Git Flow, finalize the release branch

 Push master, develop and release branch changes to remote

 Delete the release branch on remote

 Push tags to the master branch of remote

Release

 A release branch is similar to a feature

branch with the following exceptions:

 Changes to content in the release branch are release

specific

 Finishing the release branch results in a merge back to

develop

 Tagged merge into the master branch

 Content associated with tagged commits to the master

branch are officially released content

Post-Release Actions

 Upload CRFs to DataFax

 Modify Setup to accommodate change that

should be readily identified by working

through the edit task list item by item

Other Git Thoughts

 Your team has access to the history of

changes made to a set of content

 Users can cherry-pick commits

 Granularity with commits

 One true source of content

 Free

Questions?

Contact us: cru@ucalgary.ca

