Case Report Form
Version Manhagement

Paulina Leszczynski, Communications Coordinator
Clinical Research Unit

Cumming School of Medicine

University of Calgary

cru

CRU Background

= The Clinical Research Unit (CRU) is located in
the Cumming School of Medicine at the
University of Calgary

= Offers research data support services to
University researchers

= Has always been DataFax-centric

Abstract

CRU clients routinely request changes to existing
CRF content in live studies

DataFax is quite safe to make these changes

However, we often found ourselves in never-
ending loops of overlapping change requests

Implementation of document change
management system based on the Git distributed
version control toolset

CRFs, DataFax, and a Growing Team

Framemaker for first 5 years using DF 3.8.2
Transition to InDesign since DF 4.3.0

Change Management reared its head as we
scaled our team of form developers and
coordinators

The notion of parallel development on a
single CRF set drove the selection of GIT/Git-
Flow as our CVS solution and branching
paradigm

Change Management Workflow

= Standard Operating Procedure-driven

= Version control and project management
system integration

" Appropriate sign-off and PM processes
integrated into document change process

Tools

= Git Source Control Manager
= http://git-scm.com

= Git Flow Branch Management Extension

= http://nvie.com/posts/a-successful-git-branching-model/

= Git Lab Web-Based Repository Management
Application
= https://about.gitlab.com/

feature release
branches develop branches hotfixes

fed Tar
production
heafix 0.2

FRRaRg
‘aeanch for
Froen this point on,
et retease”
migknd the releate

master

CRF Change Management Workflow

Confirm PI Confirm
change initiated project is [
request request Active

Process Finish
change > Bl Feature
requests

Subsequent
changes

Locate

CRU portal source CRF

New

Release — release
branch

CRF Change Management

Identify CRF
change
request

Ny Process in
CRU portal

Incoming
Request

= Allincoming work requests to the CRU are processed in the
CRU project management portal

" |nbound requests are identified as a CRF change request

CRF Change Management

Confirm PI Confirm
Administrative = nitiated S projectis
request Active

Locate
source CRF

Confirm the request initiator is identified as project PI/Pl is
copied on the request

Verify with CRU project management portal that project
status is Active

Confirm project CRF source files are available in the CRU
repository

|dentify most recent release

CRF Change Management

Process Feature Finish
change —> Ba Branch [Bl Feature
requests

" Process change request content into single edit task list

= Using Git Flow, create a feature branch off of the develop branch

Give branch a name including the id of the initial change request

Make and commit each change listed in edit task list to the
feature branch

Finish the feature branch merging content back into main
development trunk

Pre-Release Review

Subsequent

Pre-release changes

Provide change request initiator with request content

Should review identify subsequent changes—> entire process
will start again until sign-off for release is obtained

If changes satisfy request—> initialize a release process from
the development branch

Release

New

Release —P release
branch

Create a release branch using the appropriate numbering
convention

" n.n for non-urgent
" n.n.n for urgent releases
Using Git Flow, finalize the release branch
Push master, develop and release branch changes to remote
Delete the release branch on remote
Push tags to the master branch of remote

Release

= A release branch is similar to a feature
branch with the following exceptions:

Changes to content in the release branch are release
specific

Finishing the release branch results in a merge back to
develop

Tagged merge into the master branch

Content associated with tagged commits to the master
branch are officially released content

Post-Release Actions

= Upload CRFs to DataFax

" Modify Setup to accommodate change that
should be readily identified by working
through the edit task list item by item

Other Git Thoughts

Your team has access to the history of
changes made to a set of content

Users can cherry-pick commits
Granularity with commits

One true source of content
Free

Questions?

Contact us: cru@ucalgary.ca

