
Case Report Form

Version Management

 Paulina Leszczynski, Communications Coordinator

 Clinical Research Unit

 Cumming School of Medicine

 University of Calgary

CRU Background

 The Clinical Research Unit (CRU) is located in

the Cumming School of Medicine at the

University of Calgary

 Offers research data support services to

University researchers

 Has always been DataFax-centric

Abstract

 CRU clients routinely request changes to existing

CRF content in live studies

 DataFax is quite safe to make these changes

 However, we often found ourselves in never-

ending loops of overlapping change requests

 Implementation of document change

management system based on the Git distributed

version control toolset

CRFs, DataFax, and a Growing Team

 Framemaker for first 5 years using DF 3.8.2

 Transition to InDesign since DF 4.3.0

 Change Management reared its head as we

scaled our team of form developers and

coordinators

 The notion of parallel development on a

single CRF set drove the selection of GIT/Git-

Flow as our CVS solution and branching

paradigm

Change Management Workflow

 Standard Operating Procedure-driven

 Version control and project management

system integration

 Appropriate sign-off and PM processes

integrated into document change process

Tools

 Git Source Control Manager

 http://git-scm.com

 Git Flow Branch Management Extension

 http://nvie.com/posts/a-successful-git-branching-model/

 Git Lab Web-Based Repository Management

Application

 https://about.gitlab.com/

Git Flow

CRF Change Management Workflow

CRF Change Management

 All incoming work requests to the CRU are processed in the

CRU project management portal

 Inbound requests are identified as a CRF change request

CRF Change Management

 Confirm the request initiator is identified as project PI/PI is

copied on the request

 Verify with CRU project management portal that project

status is Active

 Confirm project CRF source files are available in the CRU

repository

 Identify most recent release

CRF Change Management

 Process change request content into single edit task list

 Using Git Flow, create a feature branch off of the develop branch

 Give branch a name including the id of the initial change request

 Make and commit each change listed in edit task list to the

feature branch

 Finish the feature branch merging content back into main

development trunk

Pre-Release Review

 Provide change request initiator with request content

 Should review identify subsequent changes entire process

will start again until sign-off for release is obtained

 If changes satisfy request initialize a release process from

the development branch

Release

 Create a release branch using the appropriate numbering

convention

 n.n for non-urgent

 n.n.n for urgent releases

 Using Git Flow, finalize the release branch

 Push master, develop and release branch changes to remote

 Delete the release branch on remote

 Push tags to the master branch of remote

Release

 A release branch is similar to a feature

branch with the following exceptions:

 Changes to content in the release branch are release

specific

 Finishing the release branch results in a merge back to

develop

 Tagged merge into the master branch

 Content associated with tagged commits to the master

branch are officially released content

Post-Release Actions

 Upload CRFs to DataFax

 Modify Setup to accommodate change that

should be readily identified by working

through the edit task list item by item

Other Git Thoughts

 Your team has access to the history of

changes made to a set of content

 Users can cherry-pick commits

 Granularity with commits

 One true source of content

 Free

Questions?

Contact us: cru@ucalgary.ca

