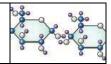


Na	mme: Date:
	Student Exploration: Dehydration Synthesis
	ocabulary: carbohydrate, chemical formula, dehydration synthesis, disaccharide, glucose, drolysis, monosaccharide, polysaccharide, valence
Pr	ior Knowledge Questions (Do these BEFORE using the Gizmo.)
1.	If you exercise on a hot day, you need to worry about dehydration. In this context, what do you think <i>dehydration</i> means?
	·
2.	Astronauts and backpackers often bring dehydrated food. What do you think dehydrated food is?
WI Th are bu mo Giz mo	zmo Warm-up hat do rice, potatoes, and sugar have in common? hey are all foods rich in carbohydrates. Carbohydrates e an important energy source for your body. The basic hilding block of most carbohydrate compounds is the holecule glucose. Using the Dehydration Synthesis higher to make larger carbohydrate molecules.
То	begin, select the CREATE GLUCOSE tab.
1.	Look at the chemical formula for glucose. How many carbon (C), hydrogen (H), and oxygen (O) atoms are found in a molecule of glucose? C: H: O:
2.	Turn on Show chemical structure . Each black sphere represents a carbon, hydrogen, or oxygen atom. The lines connecting the spheres represent chemical bonds.
	A. How many black spheres are in the diagram?
	B. How does this relate to the number of carbon, hydrogen, and oxygen atoms in the
	chemical formula for glucose?


Α	ctivity A:	Get the Gizmo ready:		000000			
	uild a glucose olecule	Be sure the CREATE GLUCOSE tab is still selected.		0000000			
		ement tends to form a certain number of chemical boment. For example, a carbon atom has a valence of		his value is			
Go	al: Construct a mo	olecule of glucose.					
1.	. <u>Identify</u> : The structure of a water molecule (H_2O) can be written as H-O-H, with each dash representing a chemical bond. Count the number of bonds the oxygen and hydrogen atoms form in a water molecule.						
	A. What is the	e valence of oxygen?					
	B. What is the	e valence of hydrogen?					
2.	glucose molecule	e the carbon, oxygen, and hydrogen atoms from the action the empty hexagon in the building region. Use the guide, and pay attention to the valence of each atom	chemi	cal structure in			
		u have correctly constructed the glucose molecule, cue to modify your molecule until it is correct.	lick Ch	eck. If			
3.	COPY SCREEN b	Congratulations, you have completed a molecule of gutton to take a snapshot of your completed molecule nent and label the image "Glucose."					
4.		he valence of each element help you determine the s	structur	e of the			
	glucose molecule?						
5.	including carbohyo	: Carbon forms the backbone of every major type of l drates, fats, proteins, and nucleic acids. How does ca to form these large and complex biomolecules?					

Activity B:
Dehydration
synthesis

Get the Gizmo ready:

• Select the DEHYDRATION tab.

Question: What occurs when two glucose molecules bond?

1.	<u>Infer</u> : Glucose is an example of a monosaccharide , the simplest type of carbohydrate. A disaccharide is made from bonding two monosaccharides together.
	What do you think the prefixes mono- and di- mean? Mono-: Di-:
2.	<u>Predict</u> : Turn on Show description . Drag both glucose molecules into the building region. Observe the highlighted region. What do you think will happen to the atoms in this region when the glucose molecules bond?
3.	Run Gizmo: Click Continue and watch the animation.
	A. What happened?
	B. What was removed from the glucose molecules when they bonded to form maltose?
4.	<u>Infer</u> : Based on what you have seen, create a balanced equation for the dehydration synthesis reaction. (Recall that the formula for glucose is $C_6H_{12}O_6$.) You will have to determine the formula of maltose yourself.
	Turn on Show current formula/equation to check your answer.
5.	Summarize: Use what you have observed to explain what occurs during a dehydration
	synthesis reaction.
6.	Apply: A <i>trisaccharide</i> is a carbohydrate made of three monosaccharides. What do you think would be the chemical formula of a trisaccharide made of three bonded glucose molecules?

Activity C: Hydrolysis			•	he Gizmo in Select the Turn on Select the formula/e	Hydrolys how des	cription	and Sh e	ow cur	rent			
ро	lysaccl	i on: Carboh narides. In a lual monosa	react	ion known	as hydro	olysis, yo	our body	/ break	s down			
Qu	estion	: What occu	ırs wh	en polysa	ccharide	s break	up into	mono	sacch	arid	es?	
1.	1. <u>Predict</u> : Examine the polysaccharide in the building region and its chemical formula.											
	A.	How many	monos	saccharide	es can for	m if this p	oolysac	charide	break	s upʻ	?	
	B.	Recall the f	formula	a of glucos	se is C ₆ H ₁	₂ O ₆ . How	/ many	carbon	, oxyge	en, a	nd hydr	ogen
		atoms will y	ou ne	ed for thre	e glucose	e molecul	es?					
		Ĭ			J							
	C.	What must molecules?			•					ee gli	ucose	
2.	2. Observe: Turn off Show current formula/equation. Drag a water molecule into the buildin							uilding				
	region. Click Continue . What happened?											
3.	<u>Infer</u> : (Create a bala	anced	equation fo	or the hyd	drolysis re	eaction	that jus	st occu	rred.		

Turn on **Show current formula/equation** to check your answer.

4. Observe: Turn off **Show current formula/equation**. Drag the second water molecule into the building region. Click **Continue**. What happened?

(Activity C continued on next page)

Activity C (continued from previous page)

5.	<u>Summarize</u> : Now create a balanced equation for that shows the entire hydrolysis reaction. (In other words, the equation should show how the polysaccharide broke up into three separate glucose molecules.)
	Turn on Show current formula/equation to check your answer.
6.	Compare: How do hydrolysis reactions compare to dehydration synthesis reactions?
7.	Apply: Amylose is a polysaccharide made from the synthesis of four glucose molecules.
	A. How many water molecules are produced when amylose forms?
	B. What do you think is the chemical formula for amylose?
	C. How many water molecules would be needed to break amylase down into four
	glucose molecules?
8.	Extend your thinking: Hydrolysis of the carbohydrates you eat begins in your mouth as you chew. How do you think this process might be affected if a person's salivary glands were unable to produce saliva, which is mostly composed of water?
	-

Vocabulary: Dehydration Synthesis

Vocabulary

- <u>Carbohydrate</u> an organic molecule made up of carbon, hydrogen, and oxygen.
 - Carbohydrates are the main energy source for most types of cells.
 - Carbohydrates are initially formed by plants through the processes of photosynthesis and *dehydration synthesis*.
 - Foods rich in carbohydrates include grains, fruits, and sugars.
- Chemical formula a symbolic representation of an element or compound.
 - Chemical formulas use subscripts and parentheses to denote the number of atoms in a molecule of the substance.
 - Examples of chemical formulas include NaCl (table salt), H₂O (water), and Ca(OH)₂ (calcium hydroxide).
- <u>Dehydration synthesis</u> a chemical reaction in which two or more molecules bond by losing one or more water molecules.
 - Plants build starches through dehydration synthesis.
- <u>Disaccharide</u> a carbohydrate made of two monosaccharides.
 - Examples of disaccharides include maltose (two glucose molecules) and sucrose (one glucose molecule and one fructose molecule).
- Glucose a monosaccharide with the chemical formula C₆H₁₂O₆.
 - Glucose is the primary molecule used during cellular respiration reactions.
- <u>Hydrolysis</u> a chemical reaction in which the interaction of water and a compound result in the breaking up of that compound.
 - Your digestive system breaks down starches through hydrolysis.
- Monosaccharide the simplest type of carbohydrate.
 - Examples of monosaccharides include glucose and fructose.
- Polysaccharide a carbohydrate made of three or more monosaccharides.
 - Examples of polysaccharides include starch and cellulose.
- <u>Valence</u> the number of chemical bonds an element is capable of forming.
 - The valence of an element is equal to the number of electrons that an atom of that element gains, loses, or shares while forming chemical bonds.

