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Abstract

In this note, we will reprove the McDiarmid’s inequality with more elementary analysis.

Moreover we derive its variant Bennett and Berstein’s inequalities.

McDiarmid’s inequlity was first proved in paper [1] using Martingale theory. This
method has been widely used in combinatorial applications [1] and in learning theory
[3, 4]. However if we assume the variables are independent, the proof will be very
elementary. In this note, we will reprove it and give its variants of Bennett and

Berstein’s types.

Before we list the propositions, let’s give some notations. Given a family of in-
dependent random variables z = (z1, 22, * -, 2,) with z; in a set € according to a
n
distribution P for each k . Suppose that the real valued function f : H Qr — R. In
k=1
order to prove our results, it is useful to introduce new functions

(

gn(zla T 7Zn) = f(217227 e 7Zn) - ]Ezn <f(21,2:2, T 7Zn>>
gn—l(zlazQJ ot 7Z7’L—1) - ]Ezn (f(zlv T Jzn—lazn)) - Ezn—l,zn (f(ZhZQ? Ut 7Z1’L—17Z7’L))

gk(Zh 29, 7Zk) = Ezk+1,~~~ ,Zn (f(Z)) - Ezk, \Zn (f(Z))

91(2’1) = E227-~~7zn (f(zh Ty zn)) - EZl,--~7zn (f(zh 22y, Zn))

\



then we have

> gk, 2,0 0 2m) = [(2) — By f (2)
k=1

E. (9(z1,22, - ,2£)) =0 forall 1<k<n

(1)

Definition 1. We say the function f : HQk — R with bounded differences {cy}7_;
k=1
if, for all1 < k <n,

sup |f(217"'7Zk—17zkazk+1a"'7Zn)__f<zla"'7Zk—17227zk+17"'7zn)|§;Ck
215 2152k, 120

Proposition 1. (McDiarmid’s inequality) Suppose f : HQk — R with bounded

k=1
differences {cx }y_, then , for all € > 0, there holds

262

Prz{f(z) —E.f(z) > (—:} <e TRaih.

Lemma 1. If a random variable X satisfies EX = 0 and a < X < b, then
E(e"X) < es"*0=0* for qll h > 0

Proof of Lemma 1 .  One can find the the proof in [2]. For the completeness we

list the proof here. Indeed, by the convexity of e"*, we have

X
<
¢ _(b—a (b—a

)eha'

Therefore

b _
E(ehx) < ehe 4 a

“b—a b — aehb = (1 —p)e ™ + pel P = /W)

where p = (;=%),y = (b — a)h, f(y) = —py + log(1 — p + peY)

The fact f(0) = f/(0) =0 and f"(y) = % < 1 gives the claim. O

Proof of Proposition 1 . Set
be :=sup gr(z1, 22, - 2k)  ak = 1nf ge(21, 22, -+, 2)-
2k %k

hence we get
ar §gk(21,~~~,zk) Sbk andOSbk—ak Sck.



Moreover, utilizing property (1) and the Markov inequality we obtain for any h > 0,

Prz{ f(z) —E,f(z) > e} < e R, <€h(f(Z)—Ezf(Z))) e (ehzzlgk).
Rewrite the expected value as an integral, we have

/ N TE 9P (2)) - - - dPy(2)

- / | ﬁeh% ( / ehg”dPn(zn))dPl(zl) e dPy (5 )

215 5Zn—1 k=1 n

Now we estimate the term in the brace. Since E, g,(z1, -, 2n-1,2,) = 0 in seen in
(1), we get by the Lemma 1,

h2c2

ool

/ ehgn('zl:ZQ»"’7Zn—1vzn)dpn(zn) S eéhZ(bn_a’ﬂ)Q S e

Zn

Therefore we have

. h2c? =
E, (ehzk—19k> < exp{ 80" } / [Te"aPi(z1) - dPu i (z0-1)-
1

21y En—1 f—1

Using the property E, _ gn,1(21,292, " ,2,_1) = 0 again, repeat the above proce-

dure we have

. h2(c2 2 n—2
Ez{ehzkﬂk} < eXp(W) / H ehgkdpl(zl) o dPy_o(2p_).

21, 32 —2 k=1

Repeat the above procedure n times, we finally obtain

2 n 2
- 8

which yields
h? &
Prz{f(z) —E,f(z) > e} < exp{—he + 5 Zcz}
k=1

Set h = 714%6 , we get the McDiarmid inequality
k

7 Prz{f(Z)—Ezf(Z)Ze}Sexp{— 2c }

Zzzl Ci
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In the following, we will derive inequalities of ”Bennett” and ”Bernstein” forms .

It is necessary to introduce some notations. Denote

(

Vi = supE,, (f(z) - Ezkf(z>)2

z\z,

=y Vi (2)
k=1

B := max sup|f(z) — E,, f(z)]

I<k<n o

\

Proposition 2. With the notations above and ¢ > 0 , we have

Prz{f(Z) —E,f(z) > 6} < exp{—%log(l + %)}

Pr.{ f0) - Buf0) 2 o] < Xp{‘m}

and

Proof. For any h > 0, we have

PrZ{f(Z) —E,f(z) > 6} < e MR, (ehzz—l gk)'
Now we write the expected value as integral

/ NI APy (21) - d Py (2)

n—1

= / H ehor </ ehgndPn(zn)) dPy(z1) - dPy—1(zn-1). (3)
215 Zn—1 =1 Zn
Applying Taylor expansion to e"9" combined with E,_g, (21, -+ , 2p_1, 2n) = 0 as shown

in (1), we get

thQ
/ ehgn(zlvz%"'7Zn)dpn<zn) — / (1 + hgn -+ 2 . + - ) dPn(Zn)

Zn Zn

_ / {1+h2giG(hgn)} APy ()

Zn

where G(z) == <1<,

2



Observe G(x) is increasing. This can be seen by the following
G'(z)=a7° ((a: —2)e" + 2+ a:)

Set h(z) = (z — 2)e* + 2 4 x, then h'(z) = (z — 1)e* + 1, h"(x) = ze” and W' (0) =
0,h(0) = 0. Then one can see 0 is the only minimum point of h'(x). Hence h'(z) > 0
for all . That is, h(z) is nondecreasing. Note that h(0) = 0, which means h(z) < 0
for v < 0 and h(z) > 0 for z > 0. Therefore we have G'(z) > 0.

Hence we get, by the definition of B, V], as shown in (2),

/ ehonGrz2m)gp (2 ) < 14+ h*V,G(hB) < eXp{hZVnG(hB)}-

Zn
Repeating the procedure above n times, we finally have

n—1

(3) < exp{h2VnG(hB)} / H ehgkdpl (Zl) T dPn,1<Zn,1)
21,22, 52n—1 fp—1
n—2
< exp{h2 {vn + vn_l} G(hB)} / [[e"dPi(z1) - - dPy—s(zn—2)
21,520 -2 f—1

< exp{h262G(hB)}.
Therefore we obtain
Prz{f(Z) —E.f(z) > e} < exp{ —he + h252G(hB)}

= exp —he+g—i{eh3—1—h3}}.

Set h = % log(l + %), then

Prof o)~ Buflo) 2 o < exp{_g—z 0+ o1+ ) - 25 |

52
If we apply the inequality

(1+:1:)log(1+w)—x2glog(l—i—x) forall z>0

we get the ”"Bennett” inequality,

Prz{f(Z) “E.(z) > } < exp{—% 1og(1 " f—) }
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If we use the inequality

3x?

forall x>0
6+ 2z

(I1+2)log(l+2z) —2z >

then we get the ”"Bernstein” inequality,

Pr.{ f(0) - Euf(2) 2 ] < Xp{‘m}

O
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