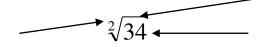
Algebra II Section 5-5 Notes Roots of Real Numbers

Name _____

Target Goals:

1. Simplify radicals


2. Use a calculator to approximate radicals

- I) SQUARES VS. SQUARE ROOTS
 - a. Squares

b. Square Roots

b. Notation

The ______ is the positive value of a square root.

- > If a radical sign is already in the problem, our answer is always the principal root $\sqrt{81} = 9$
- > If there is an equation that has to be solved , this is something we can factor and take into account both positive and negative answers

 $x^{2}-81 = 0$ (x-9)(x+9) = 0 zero_product_property (x-9) = 0 (x+9) = 0 x = 9, -9

If the radical sign is NOT in the problem to start, and YOU put it there, you must include a _______ symbol in your final answer.

- c. Examples
 - 1) $\sqrt{36} =$ 2) $\sqrt{64} =$ 3) $\sqrt{\frac{9}{100}} =$

4)
$$x^2 = 36$$
 5) $a^2 = \frac{4}{9}$ **6)** $w^2 = 625$

a. Cubes $2^{3}=$ $\sqrt[3]{8}=? (x^{3}=8)$ $-2^{3}=$ $\sqrt[3]{1}=$ $(-2)^{3}=$

b. Examples with indexes other than 2 and 3.

$$\sqrt[4]{16} = \sqrt[6]{64} =$$

$$\sqrt[3]{\frac{1}{125}} = \sqrt[5]{32} = -\sqrt[5]{32} =$$

c. Calculator Practice!

i. Cube Root	ii. n th Root
1. MATH	1. Enter the index
2. 4 : <u>3</u> √(2. MATH
3. Enter the radicand	3. 5: [∗] √(
	4. Enter the radicand

iii. Try a couple!

$$\sqrt[3]{343} = \sqrt[5]{32768} = \sqrt[4]{28561} =$$

III) RADICANDS CONTAINING VARIABLES

a. The trick...

i.
$$\sqrt{(-3)^2} =$$

ii. $\sqrt{3^2} =$

iii. Whether 3 is _____ or ____, then the answer is still positive 3

b. The Rule:

Take a look at $\sqrt[2]{y^2}$ =

c. Examples

$$\sqrt{x^8} = \sqrt{9x^2} = \sqrt{x^2} =$$

$$\sqrt{3}\sqrt{27y^6} = \sqrt{16x^{16}} =$$

IV) LET'S TRY SOME MORE COMPLEX EXAMPLES

a)
$$-\sqrt{121a^6b^2}$$
 b) $\pm\sqrt{169x^4}$ c) $-\sqrt{(8x-3)^2}$

d)
$$\sqrt{x^2 - 8x + 16}$$
 e) $\sqrt[3]{-m^3 n^3}$ f) $\sqrt[5]{32x^5 y^{10}}$

g)
$$\sqrt[4]{(an)^4}$$
 h) $\sqrt[6]{(3-y^2)^{18}}$