An Object-Oriented Software Architecture for the Explorer-2
Knowledge Management Environment

David B. Tarabar, M.S.
Robert A. Greenes, M.D., Ph.D.
Eric T. Slosser

Harvard Medical School, Decision Systems Group
Brigham and Women's Hospital, Department of Radiology
Boston, Massachusetts

Abstract

Explorer-2 is a workstation based environment to
facilitate knowledge management. It provides consistent
access to a broad range of knowledge on the basis of
purpose, not type. We have developed a software
architecture based on Object-Oriented programming for
Explorer-2. We have defined three classes of program
objects: Knowledge ViewFrames, Knowledge Resources,
and Knowledge Bases. This results in knowledge
management at three levels: the screen level, the disk level
and the meta-knowledge level. ‘We have applied this design
to several knowledge bases, and believe that there is a broad
applicability of this design.

1. Introduction

Explorer-2 is a workstation based environment to
facilitate knowledge management. By this we refer to the set
of tasks involving (1) selective retrieval of knowledge for
problem solving, (2) browsing and navigation through
available knowledge bases, and (3) annotation and tailoring
of pathways through knowledge bases for personal storage
and subsequent access. [6]. Explorer-2 is a successor to
Explorer-1 [3). Explorer-1 is a knowledge management
system that primarily supports hypertext and keyword-based
access to knowledge, along with limited access to tabular
data and simulations. Explorer-2 extends our earlier work by
using a consistent approach to supporting access to a
broader range of knowledge types. In Explorer-2 the linking
and communication among knowledge units is generalized.
Our view is that knowledge is accessed on the basis of
purpose, not type [5]. We wish to provide seamless access to
lists, outlines, hypertext, images, or dynamic knowledge in
the form of simulations, analyses or inferencing.

This paper describes the software design that we have
developed for the implementation of Explorer-2. Experience
with Explorer-1 has influenced this design — both user and
developer experience. We have based this design on a
software technology, Object-Oriented Programming, that
seems appropriate to the current and future task of
implementing Explorer-2. We will define some basic concepts
of knowledge management and then describe a software
design that we have used to realize these concepts.

An aim of Explorer-2 is to provide a highly interactive
graphical environment for medical "knowledge workers" on a

0195-4210/89/0000/0093$01.00 © 1989 SCAMC, Inc.

widely accessible and affordable workstation. We have
implemented Explorer-2 on the Macintosh® family of
personal computers (Apple Computer, Inc.), utilizing its muiti-
window, event driven programming style. As our
implementation language, we have used Object Pascal [1], a
set of Object-Oriented programming extensions to Pascal
developed by Apple.

2. The lessons learned from Explorer-1

In our evaluations of Explorer-1, we noted a generally
favorable response to the concept of electronic access to
medical knowledge. This enthusiasm was tempered by the
limits of the knowledge available through Explorer-1 [4].
Authoring of hypertext content for Explorer-1 was primarily
done using standard word processing programs, and then
running a compiler which imported the content into Explorer-
1 files and created links. Interactive author editing and
establishment of links while browsing through content was
not supported — which made the content generation process
cumbersome.

One of the principal features of Explorer-1 is the support
of several navigation aids. Multiple overlapping windows of
content can be displayed concurrently. A "desk” menu
provides a list of opened windows and allows any one to be
selected and brought to the front. An "overview map" window
displays the pathway of connectivity that has been followed
by the user in navigating the knowledge base. For any
knowledge unit (corresponding to a window), a list of
potential links to/from that window can be displayed and a
link of interest may be selected and followed. Nonetheless,
with many windows opened concurrently, a more effective
display of context was also considered desirable to maintain
user orientation. This includes both a modeless overview
map which would not take over the screen, and also direct
context information on a per window basis.

The initial implementation of Explorer-1 was done on a
512K Macintosh — a machine that seems quaintly
underpowered by today's standards. The early Macintosh
provided a clear vision of the graphic user interface, but
required great effort on the part of the developer to squeeze
something useful into such a small machine. As a result, the
programs were not designed for growth, but rather they were
designed to fit. As Macs became more powerful, we were
able to add functions to Explorer-1, but it became more and
more difficult. As our wish list increased it became necessary
to do a reimplementation. Explorer-2 duplicates and greatly

expands the functionality of its predecessor. It has been
designed with a software architecture that supports flexibility
and growth.

3. Object-Oriented programming

Object-Oriented Programming (OOP) [2,9] is a software
technology with roots in the late 1960's. It has become
increasingly popular in the 1980's — influencing the design
of system software for workstations and spawning new
variants of procedural programming languages. An Object-
Oriented Program is organized as a set of intelligent data
objects which contain both data and procedures (called
methods) to manipulate that data. The program is responsible
for sending messages to objects. These messages will
invoke methods to accomplish the desired computation.

The power of OOP comes from two factors. The first is
the modularity inherent in the class definition mechanism. In
Object Pascal, one defines an object type (or class) with an
extension of a Pascal record definition. Besides the normal
variables defined in a record, procedures are also defined in
an object. This object definition serves to insulate the internal
structure of an object from the rest of the program. This results
in an appropriately modular program design. Object classes
may be defined in a hierarchy. This provides the greatest
leverage of OOP — object inheritance. When you define an
object class in terms of another class, the descendant
inherits all of the data and methods of its parent. The
subclass may add new variables or new methods, and it can
override the implementation of existing methods. This allows
one to implement a subclass by concentrating only on the
new features of the object, while using already debugged
methods when appropriate. A well designed scheme of class
inheritance can make a program very extensible. It also
facilitates group collaboration on large development projects,
a feature that we have found extremely valuable.

4. What is a Knowledge ViewFrame ?

Inasmuch as we set out to build a knowledge
management tool, we will describe here what we have found
to be a useful pragmatic definition of knowledge. In general,
knowledge is undefinable, but since we are working in the
context of a computer workstation, we can venture the
definition of a Knowledge ViewFrame (KVF) as an arbitrary
unit of knowledge that appears in a window on a computer
screen. It is important to realize that the human experience of
this knowledge is not limited to its visual presentation, but
also by interacting with it. The interaction may take the form of
menu commands, keyboard actions or direct manipulation
with a pointing device. The Knowledge ViewFrame may
interact via procedural computation, animation or even
sound. The net result of this visual and physical interaction is
to transfer to a person some stored body of knowledge. Thus
Explorer-2 is a knowledge management tool in that it
supports the creation and manipulation of Knowledge
ViewFrames.

The methods of a KVF support all of the standard
operations of the desktop metaphor: resizing, moving,

94

overlapping and updating. Optional methods support user
interaction via keyboard or mouse input. Subclasses of the
standard KVF may implement interactions such as linking, list
expansion or whatever effectively transmits knowledge to the
user.

5. What Is a Knowledge Resource ?

The world's medical knowledge is not currently
organized into the KVFs that we have defined. Machine
readable knowledge bases typically exist as some mass of
disk storage in one of many storage formats. We will define a
Knowledge Resource (KR) as the program object that is
aware of a single type of storage format and is able to create
Knowledge ViewFrames on command. There are two
properties of a specific disk format: (1) the storage
mechanism that is used, e.g. ISAM, sequential files, custom
database; and (2) the specific layout of records that are
retrieved. A Knowledge Resource object implements these
details and consists of methods that will create Knowledge
ViewFrames. In Explorer-2, new KVFs are generated either
by menu commands, global searches or via linking from a
current KVF.

In the most simple case, we can consider a KR to be a
database, where the creation of a KVF involves retrieving
stored data and the formatting of it for display. However we
see a Knowledge Resource as being much more flexible than
that. Knowledge ViewFrames may be the result of extensive
computation on stored data, so that the KVF is never actually
stored on disk but is computed on request. A procedural
Knowledge Resource may have no stored data, but only code
that can perform some simulation or analysis in response to
user input. In addition, a single Knowledge Resource may be
used to produce several different ‘types' of Knowledge
ViewFrames. The wide range of possibilities that can be
included under the Knowledge Resource abstraction is a key
to the extensibility of Explorer-2.

6. What Is a Knowledge Base ?

As we have stated earlier, Explorer-2 accesses
knowledge on the basis of purpose, not type. Conceptually,
we consider a Knowledge Base to be a collection of related
information about a certain subject. We will define the
Knowledge Base (KB) as the program object that captures
the general properties of a related collection of knowledge. In
Explorer-2, a KB always consists of one or more KRs. Notice
that this means that the same KR may be a part of several
KBs — thus there is no need to duplicate an existing KR if you
are preparing a KB for a different purpose.

The methods of a Knowledge Base implement the
global operations available on a KB. Explorer-2 can open
and close a KB; display a description of a KB; execute top
level menu commands of a KB; or search for KVFs based on
keywords or relatedness between them. The implementation
of these methods will in turn call methods of its KRs. Opening
a KB involves opening the KRs that are a part of it. Menu
commands will usually be dispatched to the appropriate KR.

7. Explorer-2 levels of Knowiedge Management

The functionality of Explorer-2 can be divided into three
levels: manipulation of KVFs; selection and manipulation of
KBs/KRs; and what we call meta-knowledge utilities, as
depicted in Figure 1.

On the first level, Explorer-2 is a program that
manipulates Knowledge ViewFrames as resizeable, movable
and overlapping screen windows on a interactive graphic
workstation. The program supports the desktop metaphor and
most importantly it directs user input to the topmost KVF in
order to trigger the interactive possibilities of the KVF. A user
can organize the available screen space to display the
collection of Knowledge ViewFrames that best serve the
purpose of the interaction.

On the second level, Explorer-2 provides an interface
between disk storage and KVFs through the abstractions of
Knowledge Resources and Knowledge Bases - thus
allowing KBs and KRs to be prepared at multiple sites and
and exchanged. The user of Explorer-2 has potential access
to a universe of Knowledge Bases. The program provides
features to select from the available KBs for personal needs.
On this level, users can open and close KBs, use menus to
retrieve Knowledge ViewFrames and search the available
viewframes of a KB by keyword or some other relationship.

Most importantly, Explorer-2 provides search and
navigational aids for the mass of knowledge that becomes
available at the desktop. With all of the flexibility provided,
there is a danger of getting lost in the knowledge universe.
The overview map is perhaps the most powerful feature — it
maintains a view of the pathway that the user has taken and
allows the user to inspect (and select) the potentially
available links related to a given KVF. In addition, the map
may be edited and saved as a customized pathway through
KVFs that pertain to a specific topic. These state maps may

later be retrieved to recreate the desktop, with these specific
KVFs. A Desk menu allows the user to select an obscured
window by its title and bring it to the front. Finally, keyword
search tools allow the user to find the appropriate KVFs
based on keyword or pseudo-natural language query,
instead of being constrained to the author-supplied structure.

8. Appropriateness of Object Oriented Design

Our design emphasizes Knowledge ViewFrames as the
focal point of Explorer-2. We believe that the Knowledge
ViewFrame is an appropriate abstraction for the purposes of
Knowledge Management. By combining information and
interaction, we may take advantage of the capabilities of the
computer that are not present in existing books and journals.
Text presented in a sequential and static manner will never
improve upon the printed page. By adding interaction, we can
build an active knowledge manager.

Our definition of a Knowledge ViewFrame echos the
data and procedure of a program object and thus suggests
an object-oriented programming approach. Using inheritance
we can develop a hierarchy of KVFs that can share code as
much as possible. We have also developed object definitions
for KBs and KRs. OOP provides robustness due to the
modularity that it enforces. It also provides extensibility due to
the modularity and inheritance capabilities. Modularity is
important, since Explorer-2 represents contributions from
several members of our research group and we expect
further work to be done by others.

We should also be more precise about what is meant by
the 'type’ of KVFs, KRs and KBs. In all cases we mean
nothing more than that there is an object class which
implements that 'type'. Deciding what should make up a type
is solely a software design issue. The only constraint on
defining a type is the desire or need to reuse it in the object
hierarchy.

Overview Map
280 |—e .
=o N

/ l:} >

e

User Query /
Eind[EEam—ra] M
Meta-Knowledge level KVFs —the screen level KBs and KRs — the disk level

Figure 1: Relationships among the three levels of Knowledge Management in Explorer-2

95

Knowledge
Base

Knowledge
Resource

Knowledge

ViewFrame

Figure 2: A block diagram of two Knowledge Bases and how they fit into our Software Architecture

9. A KB composed of many KRs: CASPER

The CASPER [4] KB was developed for Explorer-1 as
an aid to diagnostic workup selection involving imaging
procedures. It was originally implemented in hypertext form
derived from a radiology diagnostic workup strategy
handbook [7] — along with procedural displays that were
added in an ad hoc manner. The design of Explorer-2 was
motivated in large part by a desire to provide a formalized
way to provide these multiple knowledge formats. The
resulting architecture provides us an opportunity to recast this
knowledge base using a wider variety of KVFs and KRs and
to link with other existing KRs.

In our design, CASPER contains three Knowledge
Resources (see figure 2). Once again, the bulk of the
information is in hypertext form, as a "hypermedia KR", but we
will use the "Structured HyperMedia" Knowledge
ViewFrames (SHKVF), currently being completed, which are
another key feature of Explorer-2. SHKVFs, as with Explorer-
1 hypertext windows, can include content in the form of
tables, diagrams and pictures, as well as narrative text. The
author may designate active spots (or "hotspots®) that are to
be linked to other KVFs. A SHKVF unit is built up of sections
that are either text, pictures or outline headers. Outline
headers refer to other SHKVFs — they allow the author to
convey the structure of the Knowledge Resource as a
hierarchy of individual viewframes. Outline headers allow the
reader to control what appears on the desktop by list
expansion and collapse within a window, as with popular
outline processors, as well as by separating embedded
viewframes into their own windows. This enables the user to
better maintain a sense of context via tighter control over the
number of disparate windows and being able to keep
structurally related knowledge together.

Supporting the hypermedia KR, is a What-If Calculator
KR. For a given radiological procedure and possible patient
condition, this KR looks up values of sensitivity and specificity.
The What-If Knowledge ViewFrame then presents a
spreadsheet-like decision support tool. The physician then

96

may modify the pre-test probability. as well as rule-in and
rule-out thresholds. There are links to specific What-If KVFs
throughout the main body of Casper.

A third Knowledge Resource contains a Simulation that
displays both numerically and graphically the meanings of
Sensitivity, Specificity and Predictive Value. This KR contains
a single KVF to which linkage can also be made.

We have discussed three KRs that we are currently
building to create the new version of CASPER. The
architecture we have presented also provides the potential of
using other Knowledge Resources that are developed
independently. Future KRs could include bibliographic
reference files which could be searched to provide access to
the references currently embedded in CASPER. Another KR
that we may incorporate is a structured description of clinical
workup strategy that can be used to dynamically generate a
clinical algorithm KVF, rather than the static algorithm
displays that are currently part of CASPER.

10. A KR used in many KBs: QMR

The Decision Systems Group has implemented a
version of QMR® (8] on the Macintosh as a result of an
agreement with and the generous sharing of information by
R. Miller and colleagues at the University of Pittsburgh. QMR
is a differential diagnosis KB where the basic knowledge
units are lists called Disease Profiles and Differential
Diagnoses. A Disease Profile is a list of findings associated
with a disease plus a list of diseases that are related to it. A
Differential Diagnosis of a finding is a list of all diseases with
which it might be associated. These are implemented as
dynamic lists in two ways. Both lists are arranged
hierarchically, so that subsections can be expanded and
contracted to display only those parts of the lists that are of
current interest. In addition, whenever a disease or finding
name appears in a list, double clicking on it will bring up the
appropriate profile or differential in its own window. The
Macintosh implementation of QMR was initially a standalone
application, but we were able to create an Explorer-2 KB that
would provide the same functionality.

In our design, the QMR KVFs are generally ‘
implemented as windows that contain QMR type lists where
double clicking will do either list expansion or contraction.
The QMR KR is responsible for the details of storage. The
QMR database is stored in a custom storage format that
consists of tens of files. The QMR KR contains code that
extracts data from these files to build Disease Profiles or
Differential Diagnoses or perform other functions, on
demand. At present the QMR KB contains the single QMR KR
and makes it selectable via the Open KB command of
Explorer-2.

Our architecture also allows the QMR KR to be a part of
other Knowledge Bases (see figure 2). Thus another KB,
such as CASPER, might include the QMR KR in order to
reference specific Disease Profiles. Once these profiles
appear as Knowledge ViewFrames on the desk, the user can
access the full functionality of QMR KVFs.

11. Future Directions: Explorer-n ?

We have presented the Object-Oriented software
architecture that is being used in the implementation of
Explorer-2. While this architecture has been chosen for the
immediate task at hand, we have kept the future in mind. We
believe that the abstractions of Knowledge ViewFrames,
Knowledge Resources and Knowledge Bases have a more
general applicability. Explorer-2 has been inspired by a
history of visions of Computer Science such as Vannevar
Bush's Memex and Alan Kay's Dynabook and has many of
the features envisioned by the "Knowledge Navigator”
propounded by Apple Computer.

In the near term, as we add more KR and KVF types to
the repertoire of Explorer-2, we will be faced with a single
application that will grow huge. At present this is necessary
due to the lack of robust multiprocessing and interprocess
communication in the Macintosh operating system. This
situation is clearly undesirable and we would hope to see
Explorer-2 evolve into several cooperating modular
applications. Most of these applications would manage
individual KB types, while others will provide the navigational
aids that are found in our meta-knowledge utilities.

Eventually we would hope that the desktop metaphor
would be extended to provide knowledge management as an
expected service. Alongside the disks, folders and
documents on ones desk, would be Knowledge Bases and
Knowledge ViewFrames. It should be no more difficult to
reference personal knowledge bases than to scan filenames.
You would expect to find elaborate desk-level scripting
mechanisms that would link together KBs and applications.

97

Acknowledgement

This work was partially supported by Grants LM 03707
and LM 04572 and Contract LM 635234 from the National
Library of Medicine, by Grant CA 45574 from the National
Cancer Institute, and by the CAMDAT Foundation, Inc.

We gratefully acknowledge our co-workers: Larry Cope,
Stephan Deibel, William Hersh, MD and Jan Snydr-Michal for
their assistance in the development and implementation of
Explorer-2.

References

[1] Apple Computer, Inc.; Macintosh Programmer's Workshop
Pascal, Version 3.0; (APDA #M0021LL/A); Cupertino, CA;
1988

[2] Cox B.; Object-Oriented Programming: An Evolutionary
Approach; Addison-Wesley; 1986

[3] Greenes R.A.; Knowledge Management as an Aid to
Medical Decision Making: The Explorer-1 System; Proc
MEDINFO 86, North-Holland: Elsevier Publishers B.V.,
1986: 895-899

[4] Greenes R.A., Tarabar D.B., Krauss M., Anderson G.,
Wolnick W.J., Cope L., Slosser E., Hersh W.; Knowledge
Management as a Decision Support Method: A
Diagnostic Workup Strategy Application; Comput
Biomed Res, 22, 113-135 (Apr 1989)

[5] Greenes R.A.; “Desktop Knowledge”: A New Focus for
Medical Education and Decision Support; Proc Medical
Informatics and Education International Symposium, May
1989, 89-96; also in Meth Inf Med, 1989 (in press)

[6] Greenes R.A., Tarabar D.B., Cope L., Slosser E., Hersh
W., Pattison-Gordon E., Abendroth T., Rathe R., Snydr-
Michal J.; Explorer-2: An Object-Oriented Framework for
Knowledge Management; Proc MEDINFO '89 (in press)

[7] McNeil B.J. and Abrams H.L., eds.; Brigham and Woman's
Handbook of Diagnostic Imaging; Little, Brown, and Co.,
1986

[8] Miller R.A., McNeil M.A., Challinor S.M., Masarie F.E.,
Myers J.D; The INTERNIST-1/QUICK MEDICAL
REFERENCE Project — Status Report; WestJ Med, 145,
816-822 (Dec 1986)

[9] Thomas D.; What's in an Object?; Byte, 14:3, 231-240 (Mar
1989)

