Chemistry	Name	
Lab: Periodic Trends Computer Activity	Date	
	Block	

Periodic Table Trend Activities:

Purpose: The Periodic Table is a useful tool that helps us predict properties of various elements. In this activity, we will look at 3 properties:

- 1. Atomic radius: The distance from the atomic nucleus to the outmost occupied orbital in a atom
- 2. **Electronegativity**: The ability of an atom to attract a bonded pair of electrons from another atom
- 3. **Ionization Energy**: The energy needed to remove an electron from a neutral gaseous atom
- 4. Electron Affinity: The energy released when an electron in added to a neutral gaseous atom

Procedure: Click on the <u>Cool Periodic Table link</u> (click on the element symbol). Record the atomic radius, electronegativity, and first ionization energy for each element in the table below:

http://www.lynchburg.net/hhs/chemistry/trends/

Data:

Element	Atomic Radius	Electronegativity	1st Ionization Energy
Li			
Be			
В			
Na			
Mg			
Al			
С			
Si			
N			
P			

Discussion:

- 1. What appears to be the trend in atomic radius as you move from left to right in a row?
- 2. What appears to be the trend in atomic radius as you move down a column?

- 3. Predict the change in atomic radius of the next elements in a row (C, Si), then check those properties. Do they match your predictions?
- 4. Check the atomic radius of the next elements in the series (N,P). How do they fit the predicted pattern?
- 5. Is the pattern of atomic radius absolute or general (always true or generally true)?
- 6. Consider all three of the properties that you have examined.
 - a. State the general trend for each property if you move from left to right on the Periodic Table. Now, state the general trend from top to bottom.
 - b. How do these properties show periodicity (periodic trends)?
- 7. Use the links given below to examine the same three properties graphically. View the line graph of <u>atomic radius</u>. (http://www.webelements.com/periodicity/atomic radius/graph.html)
 - a. What do the different colors show?
 - b. Describe the pattern in the second period that is repeated in the third period.
 - c. How does this graph agree with your observations of atomic radius made earlier?
 - d. Why do the fourth and fifth periods have more dots and different patterns?
- 8. Find the same type of graph for 1st ionization energy and electronegativity. Answer the same questions for these graphs as you did for the atomic radii graph.
- 9. Use the color-coded tables, <u>atomic radius</u>, <u>ionization energy</u>, (http://www.webelements.com/periodicity/ionisation_energy_1/) and <u>electronegativity</u> (http://www.webelements.com/periodicity/electronegativity_pauling/)to answer the questions below a. How does this show periodic trends of the selected property?
 - b. Which method did you find most informative?
 - c. Which method was easiest to see the general pattern and not get confused by exceptions in that pattern?