\qquad
\qquad
\qquad

Chapter 9 Test Review

Write the letter for the correct answer in the blank at the right of each question.

1. Consider the equation $y=x^{2}+5 x-6$. Determine whether the function has a maximum or minimum value. State the maximum of minimum value. What are the domain and range of the function?
A min.; $(0,0)$
C min.; (-2.5, -12.25)
D: \{all real numbers \}
D: \{all real numbers\}
R: \{all real numbers \}
R: $\{y \mid y \geq-12.25\}$
B max.; (0,0)
D: \{all real numbers\}
R: $\{y \mid y \leq 0\}$
D max.; (2.5, -12.25)
D: $x \mid x \leq 2.5$
R: \{all real numbers \}
2.

3. Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of $y=2 x^{2}-12 x+6$.
A $x=-3 ;(-3,60)$
C $x=-3 ;(-3,78)$
B $x=3 ;(3,-12)$
D $x=3 ;(3,6)$
4. Find the coordinates of the vertex of the graph of $y=-2 x^{2}-8$. Identify the vertex as a maximum or a minimum.
F $(-2,-16)$; minimum
H (2, -16); maximum

G $(-2,8)$; maximum
J ($0,-8$); maximum
5. What are the root(s) of the quadratic equation whose related function is graphed at the right?
A 2
C 0,4
B 3
D $-4,0$

6. One root of the quadratic equation whose related function is graphed lies between which two consecutive integers?
F-3 and -2
H-2 and -1
G 2 and 3
J 1 and 2

3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. How is the graph of $g(x)=x^{2}-3$ related to the graph of $f(x)=x^{2}$?
A translated down 3 units
C translated right 3 units
B translated up 3 units
D translated left 3 units
8. Find the value of c that makes $x^{2}+10 x+c$ a perfect square trinomial.
F-25
G-5
H 10
J 25
7. \qquad
8. \qquad
\qquad
\qquad
\qquad

Chapter 9 Test Review (continued)

9. What value of c makes $3 x^{2}+24 x+c$ contain a perfect square trinomial?
A 144
B 16
C 64
D 48
10. Which step is not performed in the process of solving $n^{2}-12 n-10=0$ by completing the square?
F Add 10 to each side.
H Factor $n^{2}-12 n-10=0$.
G Add 36 to each side.
J Take the square root of each side.
11.

\qquad
11. Which equation is equivalent to $2 x^{2}-24 x-14=0$?
A $(x-6)^{2}=50$
B $(x-3)^{2}=13$
C $(x-3)^{2}=20$
D $(x-6)^{2}=43$
11. \qquad
12. State the value of the discriminant of $3 x^{2}+8 x=2$.

F $3 \quad$ G $40 \quad$ H 88
J 100

Solve each equation by using the Quadratic Formula. Round to the nearest tenth if necessary.

13. $4 x^{2}+11 x-3=0$
A $-2.4,-0.3$
B $-\frac{1}{4}, 3$
C 0.3, 2.4
D $-3, \frac{1}{4}$
14. $y^{2}+8 y=2$

F-8.2, 0.2
G 8.2, - 0.2
H 0.3, 7.7
$\mathbf{J}-7.7,-0.3$
15. Determine the number of real solutions of $7 x^{2}-18 x+12=0$.
A 2
B infinitely many
C none
D 1
16. Look for a pattern in the table of values to determine which model best describes the data.

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	1	7	49	343

F linear
H exponential
G quadratic
J none of these
16.
17. Which function best models the data in Question 16?
A $y=7 x$
B $y=7 x^{2}$
C $y=7^{x}$
D $y=7^{x}+1$
17.
15. \qquad
\qquad
\qquad
18. If $f(x)=\llbracket x+2 \rrbracket$, find $f(1.5)$.
F 0.5
G 3
H 3.5
J 4
18. \qquad
19. Which is not true about the graph of $f(x)=|3 x+2|$?

A The range includes all real numbers.
B It includes the point $(-3,7)$.
C The domain includes all real numbers.
D The graph is "V-shaped."
19. \qquad
20. Which point is located on the graph of $f(x)=\left\{\begin{array}{l}\frac{1}{3} x+2 \text { if } x \leq 1 \\ \frac{1}{2} x+1 \text { if } x>1\end{array}\right.$?
F $(-3,1)$
G $(0,1)$
H $(2,0)$
J (3, 3)
20. \qquad
Bonus What is the equation of the axis of symmetry of a parabola if its x-intercepts are -3 and 5 ?
B. \qquad

