4-7 Study Guide and Intervention *Inverse Linear Functions*

Inverse Relations An **inverse relation** is the set of ordered pairs obtained by exchanging the *x*-coordinates with the *y*-coordinates of each ordered pair. The domain of a relation becomes the range of its inverse, and the range of the relation becomes the domain of its inverse

Example: Find and graph the inverse of the relation represented by line *a*.

The graph of the relation passes through (-2, -10), (-1, -7), (0, -4), (1, -1), (2, 2), (3, 5), and (4, 8).

To find the inverse, exchange the coordinates of the ordered pairs.

The graph of the inverse passes through the points (-10, -2), (-7, -1), (-4, 0), (-1, 1), (2, 2), (5, 3), and (8, 4).Graph these points and then draw the line that passes through them.

Exercises

3.

X

-8

-2

1

5

11

У

-15

-11

-8

1

8

Find the inverse of each relation.

1. {(4, 7), (6, 2), (9, -1), (11, 3)}

x	У
-8	3
-2	9
2	13
6	18
8	19

4.

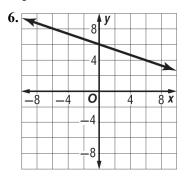
2. $\{(-5, -9), (-4, -6), (-2, -4), (0, -3)\}$	2.	{(-	-5,	-9),	(-4,	-6),	(-2,	-4),	(0,	-3)}
---	----	-----	-----	------	------	------	------	------	-----	------

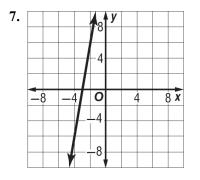
5.

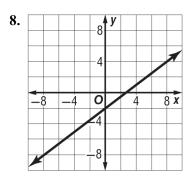
-4 0

(-10, -2)

0


x	у
-6	14
-5	11
-4	8
-3	5
-2	2


(8 4


(2 2)

8 x

Graph the inverse of each relation.

4-7 Study Guide and Intervention (continued) Inverse Linear Functions

Inverse Functions A linear relation that is described by a function has an **inverse function** that can generate ordered pairs of the inverse relation. The inverse of the linear function f(x) can be written as $f^{-1}(x)$ and is read *f* of *x* inverse or the inverse of f of *x*.

Example: Find the inverse of $f(x) = \frac{3}{4}x + 6$. Step 1 $f(x) = \frac{3}{4}x + 6$ Original equation $y = \frac{3}{4}x + 6$ Replace f(x) with y. Step 2 $x = \frac{3}{4}y + 6$ Interchange y and x. Step 3 $x - 6 = \frac{3}{4}y$ Subtract 6 from each side. $\frac{4}{3}(x - 6) = y$ Multiply each side by $\frac{4}{3}$. Step 4 $\frac{4}{3}(x - 6) = f^{-1}(x)$ Replace y with $f^{-1}(x)$. The inverse of $f(x) = \frac{3}{4}x + 6$ is $f^{-1}(x) = \frac{4}{3}(x - 6)$ or $f^{-1}(x) = \frac{4}{3}x - 8$.

Exercises

Find the inverse of each function.

1.
$$f(x) = 4x - 3$$
 2. $f(x) = -3x + 7$ **3.** $f(x) = \frac{3}{2}x - 8$

4.
$$f(x) = 16 - \frac{1}{2}x$$

5. $f(x) = 3(x-5)$
6. $f(x) = -15 - \frac{2}{5}x$