Name:
Solving Quadratic Equations by Factoring

Solving Quadratics by Factoring

Do Now:

1. Factor $\mathrm{x}^{2}+3 \mathrm{x}-54$	2. Put $\mathrm{x}^{2}-7 \mathrm{x}=-10$ in standard form.

Steps:

1. Transform the equation into \qquad , if necessary. $\left(a x^{2}+b x+c\right)$
2. the quadratic expression.
3. Set each factor equal to \qquad , if it has a \qquad .
4. Solve for the \qquad .
5. by substituting each answer into the original equation.

Directions: Solve the following equations and check your answers.

1. $\mathrm{x}^{2}-7 \mathrm{x}=-10$	2. $\mathrm{x}^{2}+3 \mathrm{x}-54=0$

$5 . x^{2}-49=0$	$6.3 x^{2}-12=0$
$7 . x^{2}-8 x+16=0$	$8 . x^{2}-\mathrm{x}-12=0$
$11 . \mathrm{y}^{2}-3 \mathrm{y}=28$	

13. $x(x-2)=35$

Name:
HW: Solving Quadratic Equations by Factoring

Date:
Period: \qquad

Solving Quadratics by Factoring HOMEWORK

Directions: Solve each equation and check.

$1 . \mathrm{x}^{2}-8 \mathrm{x}+16=0$	$2 . \mathrm{x}^{2}-4 \mathrm{x}-5=0$
$3 . \mathrm{z}^{2}-4=0$	$4 . \mathrm{y}^{2}-3 \mathrm{y}=28$

