Academic/Career \& Technical Related/Demonstration Lesson Plan

\qquad
Program/Class \qquad

Date Blizzard Bag 2
Period \qquad

State Indicator/Competency:

1. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi 2$). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
2. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational.

Instructional Objective(s):

1.3 Square Roots

1. Students will be able to estimate square roots with 80% accuracy.
2. Students will be able to simplify square roots with 75% accuracy.
3. Students will be able to use the Product Property of Square Roots and the Quotient Property of Square Roots to simplify square roots with 80% accuracy.
4. Students will be able to simplify square roots by rationalizing the denominator with 80% accuracy.

Materials: Blizzard bag 2, calculator
Method of Instruction: Independent

Activities:

COMPLETE BLIZZARD BAG ASSIGNMENT 2 DUE in TWO WEEKS

Radical Symbol - $\sqrt{ }$

Radicand - the number or expression under the radical symbol
Principal Root -the positive square root
Index - in the radical $\sqrt[n]{x}$, which represents the nth root of x, n is the index

Perfect Squares:

$1^{2}=$	1	$2^{2}=$	4
$3^{2}=$	9	$4^{2}=$	16
$5^{2}=$	25	$6^{2}=$	36
$7^{2}=$	49	$8^{2}=$	64
$9^{2}=$	81	$10^{2}=$	100

| $11^{2}=121$ | $12^{2}=144$ |
| :---: | :---: | :---: |

Perfect Square Roots:

$\sqrt{1}=$	1	$\sqrt{4}=$	2
$\sqrt{9}=$	3	$\sqrt{16}=$	4
$\sqrt{25}=$	5	$\sqrt{36}=$	6
$\sqrt{49}=$	7	$\sqrt{64}=$	8
$\sqrt{81}=$	9	$\sqrt{100}=$	10
$\sqrt{121}=11$	$\sqrt{144}=$	12	

Estimating Square Roots

1. Estimate $\sqrt{34}$ to the nearest tenth.

Answer: $\sqrt{25}=5$ and $\sqrt{36}=6$ so the answer would be 5.8 or 5.9

Simplifying Square Roots

2. Simplify each square root.
a. $\sqrt{50} \quad \sqrt{25} \sqrt{2}=5 \sqrt{2}$
b. $\sqrt{216} \quad \sqrt{36} \sqrt{6}=6 \sqrt{6}$
c. $\sqrt{117} \quad \sqrt{9} \sqrt{13}=3 \sqrt{13}$
d. $3 \sqrt{152} \quad \sqrt{4} \sqrt{38}=3 \cdot 2 \sqrt{38} \quad 3=6 \sqrt{38}$
e. $\sqrt{75} \quad \sqrt{25} \sqrt{3}=5 \sqrt{3}$
f. $\sqrt{88} \quad \sqrt{4} \sqrt{22}=2 \sqrt{22}$
g. $6 \sqrt{212} \quad 6 \sqrt{4} \sqrt{53}=6 \cdot 2 \sqrt{53}=12 \sqrt{53}$
h. $\sqrt{32} \quad \sqrt{16} \sqrt{2}=4 \sqrt{2}$

WORDS	NUMEEPS	ALGEBRA
Product Property of Square poots The square root of a product is equal to the product of the square roots of the factors.	$\begin{aligned} & \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3} \\ & \sqrt{8} \cdot \sqrt{2}=\sqrt{16}=4 \end{aligned}$	$\begin{aligned} & \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\ & \sqrt{a} \cdot \sqrt{b}=\sqrt{a b} \end{aligned}$
Quotient property of Square Roots The square root of a quotient is equal to the quotient of the square roots of the dividend and the divisor.	$\begin{gathered} \sqrt{\frac{25}{16}}=\frac{\sqrt{25}}{\sqrt{16}}=\frac{5}{4} \\ \frac{\sqrt{18}}{\sqrt{2}}=\sqrt{\frac{18}{2}}=\sqrt{9}=3 \end{gathered}$	$\begin{aligned} & \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\ & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \end{aligned}$

Simplifying Square-Root Expressions

1. Simplify each expression
a. $-\sqrt{50}=-\sqrt{25} \cdot \sqrt{2}=-5 \sqrt{2}$
b. $\sqrt{\frac{49}{81}}=\frac{\sqrt{49}}{\sqrt{81}}=\frac{7}{9}$
c. $\sqrt{2} \cdot \sqrt{18}=\sqrt{2 \cdot 18}=\sqrt{36}=6$
d. $\frac{\sqrt{96}}{\sqrt{6}}=\sqrt{\frac{96}{6}}=\sqrt{16}=4$
e. $\sqrt{48}=\sqrt{16} \cdot \sqrt{3}=4 \sqrt{3}$
f. $\sqrt{\frac{36}{16}}=\frac{\sqrt{36}}{\sqrt{16}}=\frac{6}{4}=\frac{3}{2}$
g. $\sqrt{5} \cdot \sqrt{20}=\sqrt{5 \cdot 20}=\sqrt{100}=10$
h. $\frac{\sqrt{147}}{\sqrt{3}}=\sqrt{\frac{147}{3}}=\sqrt{49}=7$

Rationalizing the Denominator - A process of removing a radical from the denominator of a fraction.
Multiply both the numerator and denominator by a number that produces a perfect square under the radical sign of the denominator.
2. Simplify by rationalizing each denominator
a. $\frac{2 \sqrt{2}}{\sqrt{3}}=\frac{2 \sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{6}}{\sqrt{9}}=\frac{2 \sqrt{6}}{3}$
b. $\frac{\sqrt{8}}{\sqrt{18}}=\frac{\sqrt{4} \cdot \sqrt{2}}{\sqrt{9} \cdot \sqrt{2}}=\frac{2}{3}$
c. $\frac{3 \sqrt{5}}{\sqrt{7}}=\frac{3 \sqrt{5}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{3 \sqrt{35}}{\sqrt{49}}=\frac{3 \sqrt{35}}{7}$
d. $\frac{5}{\sqrt{10}}=\frac{5}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}=\frac{5 \sqrt{10}}{\sqrt{100}}=\frac{5 \sqrt{10}}{10}=\frac{\sqrt{10}}{2}$

Assessment: Blizzard Bag 2 WS (10 pts)

Math 4: Haldi
Name: \qquad Date: \qquad
Blizzard Bag 2: Due in 2 weeks!!!

Simplify each expression.

1. $\sqrt{20}$
$\sqrt{4 \cdot 5}$
$\sqrt{4}$. \qquad
2. $\sqrt{63}$
$\sqrt{9}$. \qquad
3. $\sqrt{80}$
$\sqrt{16}$. \qquad $\sqrt{16}$. \qquad
4. $\sqrt{3} \cdot \sqrt{12}$
5. $\sqrt{\frac{64}{25}}$
6. $\frac{\sqrt{200}}{\sqrt{8}}$

\qquad
\qquad
7. $\sqrt{6} \cdot \sqrt{24}$
8. $\frac{\sqrt{448}}{\sqrt{7}}$
9. $\sqrt{\frac{49}{100}}$

Simplify by rationalizing each denominator.
10. $\frac{4}{\sqrt{5}}$
11. $\frac{1}{\sqrt{6}}$
12. $\frac{3 \sqrt{2}}{\sqrt{8}}$
$\frac{4}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$

$$
\frac{1}{\sqrt{6}} \cdot
$$

$$
\frac{3 \sqrt{2}}{\sqrt{8}}
$$

