Academic/Career & Technical Related/Demonstration Lesson Plan

Instructor 9	ara Haldi	Date Blizzard Bag 2
Program/Class	Math 4	Period 2, 3

State Indicator/Competency:

- 1. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π 2). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
- 2. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational.

Instructional Objective(s):

1.3 Square Roots

- 1. Students will be able to estimate square roots with 80% accuracy.
- 2. Students will be able to simplify square roots with 75% accuracy.
- 3. Students will be able to use the Product Property of Square Roots and the Quotient Property of Square Roots to simplify square roots with 80% accuracy.
- 4. Students will be able to simplify square roots by rationalizing the denominator with 80% accuracy.

Materials: Blizzard bag 2, calculator

Method of Instruction: Independent

Activities:

COMPLETE BLIZZARD BAG ASSIGNMENT 2 DUE in TWO WEEKS

<u>Radical Symbol</u> – $\sqrt{}$

<u>Radicand</u> – the number or expression under the radical symbol

Principal Root -the positive square root

Index – in the radical $\sqrt[n]{x}$, which represents the nth root of x, n is the index

Perfect Squares:

1 ² =	1	$2^2 =$	4
$3^2 =$	9	4 ² =	16
$5^2 =$	25	6 ² =	36
$7^2 =$	49	8 ² =	64
9 ² =	81	$10^2 =$	100

|--|

Perfect Square Roots:

$\sqrt{1} =$	1	$\sqrt{4} =$	2
$\sqrt{9} =$	3	$\sqrt{16} =$	4
$\sqrt{25} =$	5	$\sqrt{36} =$	6
$\sqrt{49} =$	7	$\sqrt{64} =$	8
$\sqrt{81} =$	9	$\sqrt{100} =$	10
$\sqrt{121} =$	11	$\sqrt{144} =$	12

Estimating Square Roots

1. Estimate $\sqrt{34}$ to the nearest tenth. Answer: $\sqrt{25} = 5$ and $\sqrt{36} = 6$ so the answer would be 5.8 or 5.9

Simplifying Square Roots

- 2. Simplify each square root.
 - a. $\sqrt{50}$ $\sqrt{25}\sqrt{2} = 5\sqrt{2}$ b. $\sqrt{216}$ $\sqrt{36}\sqrt{6} = 6\sqrt{6}$ c. $\sqrt{117}$ $\sqrt{9}\sqrt{13} = 3\sqrt{13}$ d. $3\sqrt{152}$ $\sqrt{4}\sqrt{38} = 3 \cdot 2\sqrt{38}$ $3 = 6\sqrt{38}$ e. $\sqrt{75}$ $\sqrt{25}\sqrt{3} = 5\sqrt{3}$ f. $\sqrt{88}$ $\sqrt{4}\sqrt{22} = 2\sqrt{22}$ g. $6\sqrt{212}$ $6\sqrt{4}\sqrt{53} = 6 \cdot 2\sqrt{53} = 12\sqrt{53}$ h. $\sqrt{32}$ $\sqrt{16}\sqrt{2} = 4\sqrt{2}$

WORDS	NUMBERS	ALGEBRA
Product Property of Square Roots	$\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}$	$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$
The square root of a product is equal to		
the product of the square roots of the	$\sqrt{8} \cdot \sqrt{2} = \sqrt{16} = 4$	$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$
factors.		
Quotient Property of Square Roots	$\frac{1}{25} = \sqrt{25} = \frac{5}{5}$	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
The square root of a quotient is equal to	$\sqrt{16}^{-}\sqrt{16}^{-}4$	
the quotient of the square roots of the divisor	$\frac{\sqrt{18}}{\sqrt{18}} = \sqrt{\frac{18}{3}} = \sqrt{9} = 3$	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
	$\sqrt{2}$ $\sqrt{2}$	

Simplifying Square-Root Expressions

1. Simplify each expression

a.
$$-\sqrt{50} = -\sqrt{25} \cdot \sqrt{2} = -5\sqrt{2}$$

b. $\sqrt{\frac{49}{81}} = \frac{\sqrt{49}}{\sqrt{81}} = \frac{7}{9}$
c. $\sqrt{2} \cdot \sqrt{18} = \sqrt{2 \cdot 18} = \sqrt{36} = 6$
d. $\frac{\sqrt{96}}{\sqrt{6}} = \sqrt{\frac{96}{6}} = \sqrt{16} = 4$
e. $\sqrt{48} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}$
f. $\sqrt{\frac{36}{16}} = \frac{\sqrt{36}}{\sqrt{16}} = \frac{6}{4} = \frac{3}{2}$
g. $\sqrt{5} \cdot \sqrt{20} = \sqrt{5 \cdot 20} = \sqrt{100} = 10$
h. $\frac{\sqrt{147}}{\sqrt{3}} = \sqrt{\frac{147}{3}} = \sqrt{49} = 7$

<u>Rationalizing the Denominator</u> – A process of removing a radical from the denominator of a fraction.

Multiply both the numerator and denominator by a number that produces a perfect square under the radical sign of the denominator.

2. Simplify by rationalizing each denominator

a.
$$\frac{2\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{6}}{\sqrt{9}} = \frac{2\sqrt{6}}{3}$$

b.
$$\frac{\sqrt{8}}{\sqrt{18}} = \frac{\sqrt{4} \cdot \sqrt{2}}{\sqrt{9} \cdot \sqrt{2}} = \frac{2}{3}$$

c.
$$\frac{3\sqrt{5}}{\sqrt{7}} = \frac{3\sqrt{5}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{35}}{\sqrt{49}} = \frac{3\sqrt{35}}{7}$$

d.
$$\frac{5}{\sqrt{10}} = \frac{5}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{5\sqrt{10}}{2}$$

Assessment: Blizzard Bag 2 WS (10 pts)

Math 4: Haldi	Name:	Date:
Blizzard Bag 2: Due in 2 weeks!!!		
Simplify each expression.		
1. √20	2. √63	3. √80
$\sqrt{4 \cdot 5}$	√9•	√16 ·
√4 ·	√9 ·	√16 ·
4. √3 • √12	5. $\sqrt{\frac{64}{25}}$	$6. \frac{\sqrt{200}}{\sqrt{8}}$
√·	<u>\</u> \	$\frac{}{}$
7. √6 • √24	$8. \ \frac{\sqrt{448}}{\sqrt{7}}$	9. $\sqrt{\frac{49}{100}}$
Simplify by rationalizing eac	ch denominator.	
4	1	3.2

 10. $\frac{4}{\sqrt{5}}$ 11. $\frac{1}{\sqrt{6}}$ 12. $\frac{3\sqrt{2}}{\sqrt{8}}$
 $\frac{4}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$ $\frac{1}{\sqrt{6}} \cdot \frac{3\sqrt{2}}{\sqrt{8}} \cdot \frac$