
 
  

[Page 74] 

Chapter 3. Introduction to Classes and Objects 

You will see something new. Two things. And I call them Thing One and Thing Two. 

Dr. Theodor Seuss Geisel 

Nothing can have value without being an object of utility. 

Karl Marx 

Your public servants serve you right. 

Adlai E. Stevenson 

Knowing how to answer one who speaks, To reply to one who sends a message. 

Amenemope 

OBJECTIVES 

In this chapter you will learn: 

l What classes, objects, member functions and data members are. 

l How to define a class and use it to create an object. 

l How to define member functions in a class to implement the class's behaviors. 

l How to declare data members in a class to implement the class's attributes. 

l How to call a member function of an object to make that member function perform its task. 

l The differences between data members of a class and local variables of a function. 

l How to use a constructor to ensure that an object's data is initialized when the object is 
created. 

l How to engineer a class to separate its interface from its implementation and encourage reuse. 

[Page 75] 

Outline 

3.1 Introduction 

3.2 Classes, Objects, Member Functions and Data Members 

3.3 Overview of the Chapter Examples 

Page 1 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

3.4 Defining a Class with a Member Function 

3.5 Defining a Member Function with a Parameter 

3.6 Data Members, set Functions and get Functions 

3.7 Initializing Objects with Constructors 

3.8 Placing a Class in a Separate File for Reusability 

3.9 Separating Interface from Implementation 

3.10 Validating Data with set Functions 

3.11 (Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements 
Document 

3.12 Wrap-Up 

Summary 

Terminology 

Self-Review Exercises 

Answers to Self-Review Exercises 

Exercises 

  
  

[Page 75 (continued)] 

3.1. Introduction 

In Chapter 2, you created simple programs that displayed messages to the user, obtained information 
from the user, performed calculations and made decisions. In this chapter, you will begin writing 
programs that employ the basic concepts of object-oriented programming that we introduced in 
Section 1.17. One common feature of every program in Chapter 2 was that all the statements that 
performed tasks were located in function main. Typically, the programs you develop in this book 
will consist of function main and one or more classes, each containing data members and member 
functions. If you become part of a development team in industry, you might work on software 
systems that contain hundreds, or even thousands, of classes. In this chapter, we develop a simple, 
well-engineered framework for organizing object-oriented programs in C++. 

First, we motivate the notion of classes with a real-world example. Then we present a carefully 
paced sequence of seven complete working programs to demonstrate creating and using your own 
classes. These examples begin our integrated case study on developing a grade-book class that 
instructors can use to maintain student test scores. This case study is enhanced over the next several 
chapters, culminating with the version presented in Chapter 7, Arrays and Vectors. 

Page 2 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

  
  

[Page 75 (continued)] 

3.2. Classes, Objects, Member Functions and Data Members 

Let's begin with a simple analogy to help you reinforce your understanding from Section 1.17 of 
classes and their contents. Suppose you want to drive a car and make it go faster by pressing down 
on its accelerator pedal. What must happen before you can do this? Well, before you can drive a car, 
someone has to design it and build it. A car typically begins as engineering drawings, similar to the 
blueprints used to design a house. These drawings include the design for an accelerator pedal that the 
driver will use to make the car go faster. In a sense, the pedal "hides" the complex mechanisms that 
actually make the car go faster, just as the brake pedal "hides" the mechanisms that slow the car, the 
steering wheel "hides" the mechanisms that turn the car and so on. This enables people with little or 
no knowledge of how cars are engineered to drive a car easily, simply by using the accelerator pedal, 
the brake pedal, the steering wheel, the transmission shifting mechanism and other such simple and 
user-friendly "interfaces" to the car's complex internal mechanisms. 

[Page 76] 

Unfortunately, you cannot drive the engineering drawings of a carbefore you can drive a car, it must 
be built from the engineering drawings that describe it. A completed car will have an actual 
accelerator pedal to make the car go faster. But even that's not enoughthe car will not accelerate on 
its own, so the driver must press the accelerator pedal to tell the car to go faster. 

Now let's use our car example to introduce the key object-oriented programming concepts of this 
section. Performing a task in a program requires a function (such as main, as described in Chapter 2). 
The function describes the mechanisms that actually perform its tasks. The function hides from its 
user the complex tasks that it performs, just as the accelerator pedal of a car hides from the driver the 
complex mechanisms of making the car go faster. In C++, we begin by creating a program unit 
called a class to house a function, just as a car's engineering drawings house the design of an 
accelerator pedal. Recall from Section 1.17 that a function belonging to a class is called a member 
function. In a class, you provide one or more member functions that are designed to perform the 
class's tasks. For example, a class that represents a bank account might contain one member function 
to deposit money into the account, another to withdraw money from the account and a third to 
inquire what the current account balance is. 

Just as you cannot drive an engineering drawing of a car, you cannot "drive" a class. Just as someone 
has to build a car from its engineering drawings before you can actually drive the car, you must 
create an object of a class before you can get a program to perform the tasks the class describes. That 
is one reason C++ is known as an object-oriented programming language. Note also that just as 
many cars can be built from the same engineering drawing, many objects can be built from the same 
class. 

When you drive a car, pressing its gas pedal sends a message to the car to perform a taskthat is, make 
the car go faster. Similarly, you send messages to an objecteach message is known as a member-
function call and tells a member function of the object to perform its task. This is often called 
requesting a service from an object. 

Thus far, we have used the car analogy to introduce classes, objects and member functions. In 
addition to the capabilities a car provides, it also has many attributes, such as its color, the number of 

Page 3 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

doors, the amount of gas in its tank, its current speed and its total miles driven (i.e., its odometer 
reading). Like the car's capabilities, these attributes are represented as part of a car's design in its 
engineering diagrams. As you drive a car, these attributes are always associated with the car. Every 
car maintains its own attributes. For example, each car knows how much gas is in its own gas tank, 
but not how much is in the tanks of other cars. Similarly, an object has attributes that are carried with 
the object as it is used in a program. These attributes are specified as part of the object's class. For 
example, a bank account object has a balance attribute that represents the amount of money in the 
account. Each bank account object knows the balance in the account it represents, but not the 
balances of the other accounts in the bank. Attributes are specified by the class's data members. 

  
  

[Page 77] 

3.3. Overview of the Chapter Examples 

The remainder of this chapter presents seven simple examples that demonstrate the concepts we 
introduced in the context of the car analogy. These examples, summarized below, incrementally 
build a GradeBook class to demonstrate these concepts: 

1. The first example presents a GradeBook class with one member function that simply displays a 
welcome message when it is called. We then show how to create an object of that class and 
call the member function so that it displays the welcome message. 

2. The second example modifies the first by allowing the member function to receive a course 
name as a so-called argument. Then, the member function displays the course name as part of 
the welcome message. 

3. The third example shows how to store the course name in a GradeBook object. For this version 
of the class, we also show how to use member functions to set the course name in the object 
and get the course name from the object. 

4. The fourth example demonstrates how the data in a GradeBook object can be initialized when 
the object is createdthe initialization is performed by a special member function called the 
class's constructor. This example also demonstrates that each GradeBook object maintains its 
own course name data member. 

5. The fifth example modifies the fourth by demonstrating how to place class GradeBook into a 
separate file to enable software reusability. 

6. The sixth example modifies the fifth by demonstrating the good software-engineering 
principle of separating the interface of the class from its implementation. This makes the class 
easier to modify without affecting any clients of the class's objectsthat is, any classes or 
functions that call the member functions of the class's objects from outside the objects. 

7. The last example enhances class GradeBook by introducing data validation, which ensures that 
data in an object adheres to a particular format or is in a proper value range. For example, a 
Date object would require a month value in the range 112. In this GradeBook example, the 
member function that sets the course name for a GradeBook object ensures that the course 
name is 25 characters or fewer. If not, the member function uses only the first 25 characters of 
the course name and displays a warning message. 

Page 4 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

Note that the GradeBook examples in this chapter do not actually process or store grades. We begin 
processing grades with class GradeBook in Chapter 4 and we store grades in a GradeBook object in 
Chapter 7, Arrays and Vectors. 

  
  

[Page 77 (continued)] 

3.4. Defining a Class with a Member Function 

We begin with an example (Fig. 3.1) that consists of class GradeBook, which represents a grade 
book that an instructor can use to maintain student test scores, and a main function (lines 2025) that 
creates a GradeBook object. This is the first in a series of graduated examples leading up to a fully 
functional GradeBook class in Chapter 7, Arrays and Vectors. Function main uses this object and its 
member function to display a message on the screen welcoming the instructor to the grade-book 
program. 

[Page 78] 

Figure 3.1. Defining class GradeBook with a member function, creating a GradeBook object and calling its member 

function. 

 1  // Fig. 3.1: fig03_01.cpp 
 2  // Define class GradeBook with a member function displayMessage; 
 3  // Create a GradeBook object and call its displayMessage function. 
 4  #include <iostream> 
 5  using std::cout; 
 6  using std::endl; 
 7 
 8  // GradeBook class definition                                        
 9  class GradeBook                                                      
10  {                                                                    
11  public:                                                              
12     // function that displays a welcome message to the GradeBook user 
13     void displayMessage()                                             
14     {                                                                 
15        cout << "Welcome to the Grade Book!" << endl;                  
16     } // end function displayMessage                                  
17  }; // end class GradeBook                                            
18 
19  // function main begins program execution 
20  int main() 
21  { 
22     GradeBook myGradeBook; // create a GradeBook object named myGradeBook  
23     myGradeBook.displayMessage(); // call object's displayMessage function 
24     return 0; // indicate successful termination 
25  } // end main 

 

 

 Welcome to the Grade Book! 

 

Page 5 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



First we describe how to define a class and a member function. Then we explain how an object is 
created and how to call a member function of an object. The first few examples contain function 
main and the GradeBook class it uses in the same file. Later in the chapter, we introduce more 
sophisticated ways to structure your programs to achieve better software engineering. 

Class GradeBook 

Before function main (lines 2025) can create an object of class GradeBook, we must tell the compiler 
what member functions and data members belong to the class. This is known as defining a class. 
The GradeBook class definition (lines 917) contains a member function called displayMessage 
(lines 1316) that displays a message on the screen (line 15). Recall that a class is like a blueprintso 
we need to make an object of class GradeBook (line 22) and call its displayMessage member 
function (line 23) to get line 15 to execute and display the welcome message. We'll soon explain 
lines 2223 in detail. 

The class definition begins at line 9 with the keyword class followed by the class name GradeBook. 
By convention, the name of a user-defined class begins with a capital letter, and for readability, each 
subsequent word in the class name begins with a capital letter. This capitalization style is often 
referred to as camel case, because the pattern of uppercase and lowercase letters resembles the 
silhouette of a camel. 

[Page 79] 

Every class's body is enclosed in a pair of left and right braces ({ and }), as in lines 10 and 17. The 
class definition terminates with a semicolon (line 17). 

Common Programming Error 3.1 

 
Recall that the function main is always called automatically when you execute a program. Most 
functions do not get called automatically. As you will soon see, you must call member function 
displayMessage explicitly to tell it to perform its task. 

Line 11 contains the access-specifier label public:. The keyword public is called an access 

specifier. Lines 1316 define member function displayMessage. This member function appears after 
access specifier public: to indicate that the function is "available to the public"that is, it can be 
called by other functions in the program and by member functions of other classes. Access specifiers 
are always followed by a colon (:). For the remainder of the text, when we refer to the access 
specifier public, we will omit the colon as we did in this sentence. Section 3.6 introduces a second 
access specifier, private (again, we omit the colon in our discussions, but include it in our 
programs). 

Each function in a program performs a task and may return a value when it completes its taskfor 
example, a function might perform a calculation, then return the result of that calculation. When you 
define a function, you must specify a return type to indicate the type of the value returned by the 
function when it completes its task. In line 13, keyword void to the left of the function name 
displayMessage is the function's return type. Return type void indicates that displayMessage will 
perform a task but will not return (i.e., give back) any data to its calling function (in this example, 

Forgetting the semicolon at the end of a class definition is a syntax error. 

Page 6 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



main, as we'll see in a moment) when it completes its task. (In Fig. 3.5, you will see an example of a 
function that returns a value.) 

The name of the member function, displayMessage, follows the return type. By convention, 
function names begin with a lowercase first letter and all subsequent words in the name begin with a 
capital letter. The parentheses after the member function name indicate that this is a function. An 
empty set of parentheses, as shown in line 13, indicates that this member function does not require 
additional data to perform its task. You will see an example of a member function that does require 
additional data in Section 3.5. Line 13 is commonly referred to as the function header. Every 
function's body is delimited by left and right braces ({ and }), as in lines 14 and 16. 

The body of a function contains statements that perform the function's task. In this case, member 
function displayMessage contains one statement (line 15) that displays the message "Welcome to 
the Grade Book!". After this statement executes, the function has completed its task. 

Common Programming Error 3.2 

 
Common Programming Error 3.3 

 

[Page 80] 

Testing Class GradeBook 

Next, we'd like to use class GradeBook in a program. As you learned in Chapter 2, function main 
begins the execution of every program. Lines 2025 of Fig. 3.1 contain the main function that will 
control our program's execution. 

In this program, we'd like to call class GradeBook's displayMessage member function to display the 
welcome message. Typically, you cannot call a member function of a class until you create an object 
of that class. (As you will learn in Section 10.7, static member functions are an exception.) Line 22 
creates an object of class GradeBook called myGradeBook. Note that the variable's type is 
GradeBookthe class we defined in lines 917. When we declare variables of type int, as we did in 
Chapter 2, the compiler knows what int isit's a fundamental type. When we write line 22, however, 
the compiler does not automatically know what type GradeBook isit's a user-defined type. Thus, we 
must tell the compiler what GradeBook is by including the class definition, as we did in lines 917. If 
we omitted these lines, the compiler would issue an error message (such as "'GradeBook': 
undeclared identifier" in Microsoft Visual C++ .NET or "'GradeBook': undeclared" in 
GNU C++). Each new class you create becomes a new type that can be used to create objects. 
Programmers can define new class types as needed; this is one reason why C++ is known as an 
extensible language. 

Returning a value from a function whose return type has been declared void is 
a compilation error. 

Defining a function inside another function is a syntax error. 

Page 7 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

Line 23 calls the member function displayMessage (defined in lines 1316) using variable 
myGradeBook followed by the dot operator (.), the function name displayMessage and an empty 
set of parentheses. This call causes the displayMessage function to perform its task. At the 
beginning of line 23, "myGradeBook." indicates that main should use the GradeBook object that was 
created in line 22. The empty parentheses in line 13 indicate that member function displayMessage 
does not require additional data to perform its task. (In Section 3.5, you'll see how to pass data to a 
function.) When displayMessage completes its task, function main continues executing at line 24, 
which indicates that main performed its tasks successfully. This is the end of main, so the program 
terminates. 

UML Class Diagram for Class GradeBook 

Recall from Section 1.17 that the UML is a graphical language used by programmers to represent 
their object-oriented systems in a standardized manner. In the UML, each class is modeled in a class 
diagram as a rectangle with three compartments. Figure 3.2 presents a UML class diagram for class 
GradeBook of Fig. 3.1. The top compartment contains the name of the class, centered horizontally 
and in boldface type. The middle compartment contains the class's attributes, which correspond to 
data members in C++. In Fig. 3.2 the middle compartment is empty, because the version of class 
GradeBook in Fig. 3.1 does not have any attributes. (Section 3.6 presents a version of the GradeBook 
class that does have an attribute.) The bottom compartment contains the class's operations, which 
correspond to member functions in C++. The UML models operations by listing the operation name 
followed by a set of parentheses. The class GradeBook has only one member function, 
displayMessage, so the bottom compartment of Fig. 3.2 lists one operation with this name. Member 
function displayMessage does not require additional information to perform its tasks, so the 
parentheses following displayMessage in the class diagram are empty, just as they are in the 
member function's header in line 13 of Fig. 3.1. The plus sign (+) in front of the operation name 
indicates that displayMessage is a public operation in the UML (i.e., a public member function in 
C++). We frequently use UML class diagrams to summarize class attributes and operations. 

[Page 81] 

Figure 3.2. UML class diagram indicating that class GradeBook has a public displayMessage operation. 

(This item is displayed on page 80 in the print version)  

[View full size image] 

 

 

  
  

 
[Page 81 (continued)] 

3.5. Defining a Member Function with a Parameter 

In our car analogy from Section 3.2, we mentioned that pressing a car's gas pedal sends a message to 
the car to perform a taskmake the car go faster. But how fast should the car accelerate? As you 

Page 8 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



know, the farther down you press the pedal, the faster the car accelerates. So the message to the car 
includes both the task to perform and additional information that helps the car perform the task. This 
additional information is known as a parameterthe value of the parameter helps the car determine 
how fast to accelerate. Similarly, a member function can require one or more parameters that 
represent additional data it needs to perform its task. A function call supplies valuescalled 
argumentsfor each of the function's parameters. For example, to make a deposit into a bank account, 
suppose a deposit member function of an Account class specifies a parameter that represents the 
deposit amount. When the deposit member function is called, an argument value representing the 
deposit amount is copied to the member function's parameter. The member function then adds that 
amount to the account balance. 

Defining and Testing Class GradeBook 

Our next example (Fig. 3.3) redefines class GradeBook (lines 1423) with a displayMessage 
member function (lines 1822) that displays the course name as part of the welcome message. The 
new displayMessage member function requires a parameter (courseName in line 18) that represents 
the course name to output. 

Figure 3.3. Defining class GradeBook with a member function that takes a parameter. 

(This item is displayed on page 82 in the print version)  

 1  // Fig. 3.3: fig03_03.cpp 
 2  // Define class GradeBook with a member function that takes a parameter; 
 3  // Create a GradeBook object and call its displayMessage function. 
 4  #include <iostream> 
 5  using std::cout; 
 6  using std::cin; 
 7  using std::endl; 
 8 
 9  #include <string> // program uses C++ standard string class 
10  using std::string;                                          
11  using std::getline;                                         
12 
13  // GradeBook class definition 
14  class GradeBook 
15  { 
16  public: 
17     // function that displays a welcome message to the GradeBook user 
18     void displayMessage( string courseName ) 
19     { 
20        cout << "Welcome to the grade book for\n" << courseName << "!" 
21           << endl; 
22     } // end function displayMessage 
23  }; // end class GradeBook 
24 
25  // function main begins program execution 
26  int main() 
27  { 
28     string nameOfCourse; // string of characters to store the course name 
29     GradeBook myGradeBook; // create a GradeBook object named myGradeBook 
30 
31     // prompt for and input course name 
32     cout << "Please enter the course name:" << endl; 
33     getline( cin, nameOfCourse ); // read a course name with blanks 
34     cout << endl; // output a blank line 
35 
36     // call myGradeBook's displayMessage function 
37     // and pass nameOfCourse as an argument 
38     myGradeBook.displayMessage( nameOfCourse ); 
39     return 0; // indicate successful termination 

Page 9 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Before discussing the new features of class GradeBook, let's see how the new class is used in main 
(lines 2640). Line 28 creates a variable of type string called nameOfCourse that will be used to store 
the course name entered by the user. A variable of type string represents a string of characters such 
as "CS101 Introduction to C++ Programming". A string is actually an object of the C++ 
Standard Library class string. This class is defined in header file <string>, and the name string, 
like cout, belongs to namespace std. To enable line 28 to compile, line 9 includes the <string> 
header file. Note that the using declaration in line 10 allows us to simply write string in line 28 
rather than std::string. For now, you can think of string variables like variables of other types 
such as int. You will learn about additional string capabilities in Section 3.10. 

Line 29 creates an object of class GradeBook named myGradeBook. Line 32 prompts the user to enter 
a course name. Line 33 reads the name from the user and assigns it to the nameOfCourse variable, 
using the library function getline to perform the input. Before we explain this line of code, let's 
explain why we cannot simply write 

 cin >> nameOfCourse; 

 

[Page 82] 

to obtain the course name. In our sample program execution, we use the course name "CS101 
Introduction to C++ Programming," which contains multiple words. (Recall that we highlight 
user-supplied input in bold.) When cin is used with the stream extraction operator, it reads 
characters until the first white-space character is reached. Thus, only "CS101" would be read by the 
preceding statement. The rest of the course name would have to be read by subsequent input 
operations. 

[Page 83] 

In this example, we'd like the user to type the complete course name and press Enter to submit it to 
the program, and we'd like to store the entire course name in the string variable nameOfCourse. 
The function call getline( cin, nameOfCourse ) in line 33 reads characters (including the space 
characters that separate the words in the input) from the standard input stream object cin (i.e., the 
keyboard) until the newline character is encountered, places the characters in the string variable 
nameOfCourse and discards the newline character. Note that when you press Enter while typing 
program input, a newline is inserted in the input stream. Also note that the <string> header file 
must be included in the program to use function getline and that the name getline belongs to 
namespace std. 

40  } // end main 

 

 

 Please enter the course name: 
 CS101 Introduction to C++ Programming 
 
 Welcome to the grade book for 
 CS101 Introduction to C++ Programming! 

 

Page 10 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Line 38 calls myGradeBook's displayMessage member function. The nameOfCourse variable in 
parentheses is the argument that is passed to member function displayMessage so that it can 
perform its task. The value of variable nameOfCourse in main becomes the value of member 
function displayMessage's parameter courseName in line 18. When you execute this program, 
notice that member function displayMessage outputs as part of the welcome message the course 
name you type (in our sample execution, CS101 Introduction to C++ Programming). 

More on Arguments and Parameters 

To specify that a function requires data to perform its task, you place additional information in the 
function's parameter list, which is located in the parentheses following the function name. The 
parameter list may contain any number of parameters, including none at all (represented by empty 
parentheses as in Fig. 3.1, line 13) to indicate that a function does not require any parameters. 
Member function displayMessage's parameter list (Fig. 3.3, line 18) declares that the function 
requires one parameter. Each parameter should specify a type and an identifier. In this case, the type 
string and the identifier courseName indicate that member function displayMessage requires a 
string to perform its task. The member function body uses the parameter courseName to access the 
value that is passed to the function in the function call (line 38 in main). Lines 2021 display 
parameter courseName's value as part of the welcome message. Note that the parameter variable's 
name (line 18) can be the same as or different from the argument variable's name (line 38)you'll 
learn why in Chapter 6, Functions and an Introduction to Recursion. 

A function can specify multiple parameters by separating each parameter from the next with a 
comma (we'll see an example in Figs. 6.46.5). The number and order of arguments in a function call 
must match the number and order of parameters in the parameter list of the called member function's 
header. Also, the argument types in the function call must match the types of the corresponding 
parameters in the function header. (As you will learn in subsequent chapters, an argument's type and 
its corresponding parameter's type need not always be identical, but they must be "consistent.") In 
our example, the one string argument in the function call (i.e., nameOfCourse) exactly matches the 
one string parameter in the member-function definition (i.e., courseName). 

Common Programming Error 3.4 

 

[Page 84] 

Common Programming Error 3.5 

 
Good Programming Practice 3.1 

Placing a semicolon after the right parenthesis enclosing the parameter list of a 
function definition is a syntax error. 

Defining a function parameter again as a local variable in the function is a 
compilation error. 

To avoid ambiguity, do not use the same names for the arguments passed to a 
function and the corresponding parameters in the function definition. 

Page 11 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

 

Good Programming Practice 3.2 

 
Updated UML Class Diagram for Class GradeBook 

The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class GradeBook 
defined in Fig. 3.1, this GradeBook class contains public member function displayMessage. 
However, this version of displayMessage has a parameter. The UML models a parameter by listing 
the parameter name, followed by a colon and the parameter type in the parentheses following the 
operation name. The UML has its own data types similar to those of C++. The UML is language-
independentit is used with many different programming languagesso its terminology does not exactly 
match that of C++. For example, the UML type String corresponds to the C++ type string. 
Member function displayMessage of class GradeBook (Fig. 3.3; lines 1822) has a string 
parameter named courseName, so Fig. 3.4 lists courseName : String between the parentheses 
following the operation name displayMessage. Note that this version of the GradeBook class still 
does not have any data members. 

Figure 3.4. UML class diagram indicating that class GradeBook has a displayMessage operation with a courseName 

parameter of UML type String. 

[View full size image] 

 

 

Choosing meaningful function names and meaningful parameter names makes 
programs more readable and helps avoid excessive use of comments. 

  
  

 
[Page 84 (continued)] 

3.6. Data Members, set Functions and get Functions 

In Chapter 2, we declared all of a program's variables in its main function. Variables declared in a 
function definition's body are known as local variables and can be used only from the line of their 
declaration in the function to the immediately following closing right brace (}) of the function 
definition. A local variable must be declared before it can be used in a function. A local variable 
cannot be accessed outside the function in which it is declared. When a function terminates, the 
values of its local variables are lost. (You will see an exception to this in Chapter 6 when we discuss 
static local variables.) Recall from Section 3.2 that an object has attributes that are carried with it 
as it is used in a program. Such attributes exist throughout the life of the object. 

[Page 85] 

Page 12 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



A class normally consists of one or more member functions that manipulate the attributes that belong 
to a particular object of the class. Attributes are represented as variables in a class definition. Such 
variables are called data members and are declared inside a class definition but outside the bodies 
of the class's member-function definitions. Each object of a class maintains its own copy of its 
attributes in memory. The example in this section demonstrates a GradeBook class that contains a 
courseName data member to represent a particular GradeBook object's course name. 

GradeBook Class with a Data Member, a set Function and a get Function 

In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data member so that 
it can be used or modified at any time during a program's execution. The class contains member 
functions setCourseName, getCourseName and displayMessage. Member function 
setCourseName stores a course name in a GradeBook data membermember function 
getCourseName obtains a GradeBook's course name from that data member. Member function 
displayMessagewhich now specifies no parametersstill displays a welcome message that includes 
the course name. However, as you will see, the function now obtains the course name by calling 
another function in the same classgetCourseName. 

Figure 3.5. Defining and testing class GradeBook with a data member and set and get functions. 

(This item is displayed on pages 85 - 86 in the print version)  

 1  // Fig. 3.5: fig03_05.cpp 
 2  // Define class GradeBook that contains a courseName data member 
 3  // and member functions to set and get its value; 
 4  // Create and manipulate a GradeBook object with these functions. 
 5  #include <iostream> 
 6  using std::cout; 
 7  using std::cin; 
 8  using std::endl; 
 9 
10  #include <string> // program uses C++ standard string class 
11  using std::string; 
12  using std::getline; 
13 
14  // GradeBook class definition 
15  class GradeBook 
16  { 
17  public: 
18     // function that sets the course name                        
19     void setCourseName( string name )                            
20     {                                                            
21        courseName = name; // store the course name in the object 
22     } // end function setCourseName                              
23 
24     // function that gets the course name                   
25     string getCourseName()                                  
26     {                                                       
27        return courseName; // return the object's courseName 
28     } // end function getCourseName                         
29 
30     // function that displays a welcome message 
31     void displayMessage() 
32     { 
33        // this statement calls getCourseName to get the 
34        // name of the course this GradeBook represents 
35        cout << "Welcome to the grade book for\n" << getCourseName() << "!" 
36           << endl; 
37     } // end function displayMessage 
38  private:                                                

Page 13 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



[Page 86] 

Good Programming Practice 3.3 

 
A typical instructor teaches more than one course, each with its own course name. Line 39 declares 
that courseName is a variable of type string. Because the variable is declared in the class definition 
(lines 1540) but outside the bodies of the class's member-function definitions (lines 1922, 2528 and 
3137), line 39 is a declaration for a data member. Every instance (i.e., object) of class GradeBook 
contains one copy of each of the class's data members. For example, if there are two GradeBook 
objects, each object has its own copy of courseName (one per object), as we'll see in the example of 
Fig. 3.7. A benefit of making courseName a data member is that all the member functions of the 
class (in this case, GradeBook) can manipulate any data members that appear in the class definition 
(in this case, courseName). 

39     string courseName; // course name for this GradeBook 
40  }; // end class GradeBook 
41 
42  // function main begins program execution 
43  int main() 
44  { 
45     string nameOfCourse; // string of characters to store the course name 
46     GradeBook myGradeBook; // create a GradeBook object named myGradeBook 
47 
48     // display initial value of courseName 
49     cout << "Initial course name is: " << myGradeBook.getCourseName() 
50        << endl; 
51 
52     // prompt for, input and set course name 
53     cout << "\nPlease enter the course name:" << endl; 
54     getline( cin, nameOfCourse ); // read a course name with blanks 
55     myGradeBook.setCourseName( nameOfCourse ); // set the course name 
56 
57     cout << endl; // outputs a blank line 
58     myGradeBook.displayMessage(); // display message with new course name 
59     return 0; // indicate successful termination 
60  } // end main 

 

 

 Initial course name is: 
 
 Please enter the course name: 
 CS101 Introduction to C++ Programming 
 
 Welcome to the grade book for 
 CS101 Introduction to C++ Programming! 

 

Place a blank line between member-function definitions to enhance program 
readability. 

Page 14 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



[Page 87] 

Access Specifiers public and private 

Most data member declarations appear after the access-specifier label private: (line 38). Like 
public, keyword private is an access specifier. Variables or functions declared after access 
specifier private (and before the next access specifier) are accessible only to member functions of 
the class for which they are declared. Thus, data member courseName can be used only in member 
functions setCourseName, getCourseName and displayMessage of (every object of) class 
GradeBook. Data member courseName, because it is private, cannot be accessed by functions 
outside the class (such as main) or by member functions of other classes in the program. Attempting 
to access data member courseName in one of these program locations with an expression such as 
myGradeBook.courseName would result in a compilation error containing a message similar to 

cannot access private member declared in class 'GradeBook' 

 
Software Engineering Observation 3.1 

 
Common Programming Error 3.6 

 
The default access for class members is private so all members after the class header and before the 
first access specifier are private. The access specifiers public and private may be repeated, but 
this is unnecessary and can be confusing. 

Good Programming Practice 3.4 

 
Good Programming Practice 3.5 

As a rule of thumb, data members should be declared private and member 
functions should be declared public. (We will see that it is appropriate to 
declare certain member functions private, if they are to be accessed only by 
other member functions of the class.) 

An attempt by a function, which is not a member of a particular class (or a 
friend of that class, as we will see in Chapter 10), to access a private member 
of that class is a compilation error. 

Despite the fact that the public and private access specifiers may be 
repeated and intermixed, list all the public members of a class first in one 
group and then list all the private members in another group. This focuses the 
client's attention on the class's public interface, rather than on the class's 
implementation. 

If you choose to list the private members first in a class definition, explicitly 
use the private access specifier despite the fact that private is assumed by 
default. This improves program clarity. 

Page 15 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

Declaring data members with access specifier private is known as data hiding. When a program 
creates (instantiates) an object of class GradeBook, data member courseName is encapsulated 
(hidden) in the object and can be accessed only by member functions of the object's class. In class 
GradeBook, member functions setCourseName and getCourseName manipulate the data member 
courseName directly (and displayMessage could do so if necessary). 

[Page 88] 

Software Engineering Observation 3.2 

 
Error-Prevention Tip 3.1 

 
Member Functions setCourseName and getCourseName 

Member function setCourseName (defined in lines 1922) does not return any data when it completes 
its task, so its return type is void. The member function receives one parameternamewhich represents 
the course name that will be passed to it as an argument (as we will see in line 55 of main). Line 21 
assigns name to data member courseName. In this example, setCourseName does not attempt to 
validate the course namei.e., the function does not check that the course name adheres to any 
particular format or follows any other rules regarding what a "valid" course name looks like. 
Suppose, for instance, that a university can print student transcripts containing course names of only 
25 characters or fewer. In this case, we might want class GradeBook to ensure that its data member 
courseName never contains more than 25 characters. We discuss basic validation techniques in 
Section 3.10. 

Member function getCourseName (defined in lines 2528) returns a particular GradeBook object's 
courseName. The member function has an empty parameter list, so it does not require additional data 
to perform its task. The function specifies that it returns a string. When a function that specifies a 
return type other than void is called and completes its task, the function returns a result to its calling 
function. For example, when you go to an automated teller machine (ATM) and request your account 
balance, you expect the ATM to give you back a value that represents your balance. Similarly, when 
a statement calls member function getCourseName on a GradeBook object, the statement expects to 
receive the GradeBook's course name (in this case, a string, as specified by the function's return 
type). If you have a function square that returns the square of its argument, the statement 

int result = square( 2 ); 

 
returns 4 from function square and initializes the variable result with the value 4. If you have a 
function maximum that returns the largest of three integer arguments, the statement 

We will learn in Chapter 10, Classes: A Deeper Look, Part 2, that functions 
and classes declared by a class to be friends can access the private members 
of the class. 

Making the data members of a class private and the member functions of the 
class public facilitates debugging because problems with data manipulations 
are localized to either the class's member functions or the friends of the class. 

Page 16 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



int biggest = maximum( 27, 114, 51 ); 

 
returns 114 from function maximum and initializes variable biggest with the value 114. 

Common Programming Error 3.7 

 
Note that the statements at lines 21 and 27 each use variable courseName (line 39) even though it 
was not declared in any of the member functions. We can use courseName in the member functions 
of class GradeBook because courseName is a data member of the class. Also note that the order in 
which member functions are defined does not determine when they are called at execution time. So 
member function getCourseName could be defined before member function setCourseName. 

[Page 89] 

Member Function displayMessage 

Member function displayMessage (lines 3137) does not return any data when it completes its task, 
so its return type is void. The function does not receive parameters, so its parameter list is empty. 
Lines 3536 output a welcome message that includes the value of data member courseName. Line 35 
calls member function getCourseName to obtain the value of courseName. Note that member 
function displayMessage could also access data member courseName directly, just as member 
functions setCourseName and getCourseName do. We explain shortly why we choose to call 
member function getCourseName to obtain the value of courseName. 

Testing Class GradeBook 

The main function (lines 4360) creates one object of class GradeBook and uses each of its member 
functions. Line 46 creates a GradeBook object named myGradeBook. Lines 4950 display the initial 
course name by calling the object's getCourseName member function. Note that the first line of the 
output does not show a course name, because the object's courseName data member (i.e., a string) 
is initially emptyby default, the initial value of a string is the so-called empty string, i.e., a string 
that does not contain any characters. Nothing appears on the screen when an empty string is 
displayed. 

Line 53 prompts the user to enter a course name. Local string variable nameOfCourse (declared in 
line 45) is set to the course name entered by the user, which is obtained by the call to the getline 
function (line 54). Line 55 calls object myGradeBook's setCourseName member function and 
supplies nameOfCourse as the function's argument. When the function is called, the argument's value 
is copied to parameter name (line 19) of member function setCourseName (lines 1922). Then the 
parameter's value is assigned to data member courseName (line 21). Line 57 skips a line in the 
output; then line 58 calls object myGradeBook's displayMessage member function to display the 
welcome message containing the course name. 

Software Engineering with Set and Get Functions 

A class's private data members can be manipulated only by member functions of that class (and by 

Forgetting to return a value from a function that is supposed to return a value is 
a compilation error. 

Page 17 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



"friends" of the class, as we will see in Chapter 10, Classes: A Deeper Look, Part 2). So a client of an 
objectthat is, any class or function that calls the object's member functions from outside the 
objectcalls the class's public member functions to request the class's services for particular objects 
of the class. This is why the statements in function main (Fig. 3.5, lines 4360) call member functions 
setCourseName, getCourseName and displayMessage on a GradeBook object. Classes often 
provide public member functions to allow clients of the class to set (i.e., assign values to) or get 
(i.e., obtain the values of) private data members. The names of these member functions need not 
begin with set or get, but this naming convention is common. In this example, the member function 
that sets the courseName data member is called setCourseName, and the member function that gets 
the value of the courseName data member is called getCourseName. Note that set functions are also 
sometimes called mutators (because they mutate, or change, values), and get functions are also 
sometimes called accessors (because they access values). 

Recall that declaring data members with access specifier private enforces data hiding. Providing 
public set and get functions allows clients of a class to access the hidden data, but only indirectly. 
The client knows that it is attempting to modify or obtain an object's data, but the client does not 
know how the object performs these operations. In some cases, a class may internally represent a 
piece of data one way, but expose that data to clients in a different way. For example, suppose a 
Clock class represents the time of day as a private int data member time that stores the number 
of seconds since midnight. However, when a client calls a Clock object's getTime member function, 
the object could return the time with hours, minutes and seconds in a string in the format 
"HH:MM:SS". Similarly, suppose the Clock class provides a set function named setTime that takes a 
string parameter in the "HH:MM:SS" format. Using string capabilities presented in Chapter 18, the 
setTime function could convert this string to a number of seconds, which the function stores in its 
private data member. The set function could also check that the value it receives represents a valid 
time (e.g., "12:30:45" is valid but "42:85:70" is not). The set and get functions allow a client to 
interact with an object, but the object's private data remains safely encapsulated (i.e., hidden) in the 
object itself. 

[Page 90] 

The set and get functions of a class also should be used by other member functions within the class 
to manipulate the class's private data, although these member functions can access the private 
data directly. In Fig. 3.5, member functions setCourseName and getCourseName are public 
member functions, so they are accessible to clients of the class, as well as to the class itself. Member 
function displayMessage calls member function getCourseName to obtain the value of data 
member courseName for display purposes, even though displayMessage can access courseName 
directlyaccessing a data member via its get function creates a better, more robust class (i.e., a class 
that is easier to maintain and less likely to stop working). If we decide to change the data member 
courseName in some way, the displayMessage definition will not require modificationonly the 
bodies of the get and set functions that directly manipulate the data member will need to change. For 
example, suppose we decide that we want to represent the course name as two separate data 
memberscourseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ 
Programming"). Member function displayMessage can still issue a single call to member function 
getCourseName to obtain the full course to display as part of the welcome message. In this case, 
getCourseName would need to build and return a string containing the courseNumber followed by 
the courseTitle. Member function displayMessage would continue to display the complete course 
title "CS101 Introduction to C++ Programming," because it is unaffected by the change to the 
class's data members. The benefits of calling a set function from another member function of a class 
will become clear when we discuss validation in Section 3.10. 

Good Programming Practice 3.6 

Page 18 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 
Software Engineering Observation 3.3 

 
Software Engineering Observation 3.4 

 

[Page 91] 

GradeBook's UML Class Diagram with a Data Member and set and get Functions 

Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in Fig. 3.5. 
This diagram models class GradeBook's data member courseName as an attribute in the middle 
compartment of the class. The UML represents data members as attributes by listing the attribute 
name, followed by a colon and the attribute type. The UML type of attribute courseName is String, 
which corresponds to string in C++. Data member courseName is private in C++, so the class 
diagram lists a minus sign (-) in front of the corresponding attribute's name. The minus sign in the 
UML is equivalent to the private access specifier in C++. Class GradeBook contains three public 
member functions, so the class diagram lists three operations in the third compartment. Recall that 
the plus (+) sign before each operation name indicates that the operation is public in C++. 
Operation setCourseName has a String parameter called name. The UML indicates the return type 
of an operation by placing a colon and the return type after the parentheses following the operation 
name. Member function getCourseName of class GradeBook (Fig. 3.5) has a string return type in 
C++, so the class diagram shows a String return type in the UML. Note that operations 
setCourseName and displayMessage do not return values (i.e., they return void), so the UML class 
diagram does not specify a return type after the parentheses of these operations. The UML does not 
use void as C++ does when a function does not return a value. 

Figure 3.6. UML class diagram for class GradeBook with a private courseName attribute and public operations 

setCourseName, getCourseName and displayMessage. 

[View full size image] 

Always try to localize the effects of changes to a class's data members by 
accessing and manipulating the data members through their get and set 
functions. Changes to the name of a data member or the data type used to store 
a data member then affect only the corresponding get and set functions, but not 
the callers of those functions. 

It is important to write programs that are understandable and easy to maintain. 
Change is the rule rather than the exception. Programmers should anticipate 
that their code will be modified. 

The class designer need not provide set or get functions for each private data 
item; these capabilities should be provided only when appropriate. If a service 
is useful to the client code, that service should typically be provided in the 
class's public interface. 

Page 19 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

 

 

  
  

 
[Page 91 (continued)] 

3.7. Initializing Objects with Constructors 

As mentioned in Section 3.6, when an object of class GradeBook (Fig. 3.5) is created, its data 
member courseName is initialized to the empty string by default. What if you want to provide a 
course name when you create a GradeBook object? Each class you declare can provide a 
constructor that can be used to initialize an object of the class when the object is created. A 
constructor is a special member function that must be defined with the same name as the class, so 
that the compiler can distinguish it from the class's other member functions. An important difference 
between constructors and other functions is that constructors cannot return values, so they cannot 
specify a return type (not even void). Normally, constructors are declared public. The term 
"constructor" is often abbreviated as "ctor" in the literaturewe prefer not to use this abbreviation. 

C++ requires a constructor call for each object that is created, which helps ensure that the object is 
initialized properly before it is used in a programthe constructor call occurs implicitly when the 
object is created. In any class that does not explicitly include a constructor, the compiler provides a 
default constructorthat is, a constructor with no parameters. For example, when line 46 of Fig. 3.5 
creates a GradeBook object, the default constructor is called, because the declaration of 
myGradeBook does not specify any constructor arguments. The default constructor provided by the 
compiler creates a GradeBook object without giving any initial values to the object's data members. 
[ Note: For data members that are objects of other classes, the default constructor implicitly calls 
each data member's default constructor to ensure that the data member is initialized properly. In fact, 
this is why the string data member courseName (in Fig. 3.5) was initialized to the empty stringthe 
default constructor for class string sets the string's value to the empty string. In Section 10.3, you 
will learn more about initializing data members that are objects of other classes.] 

[Page 92] 

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the object is 
created (line 49). In this case, the argument "CS101 Introduction to C++ Programming" is 
passed to the GradeBook object's constructor (lines 1720) and used to initialize the courseName. 
Figure 3.7 defines a modified GradeBook class containing a constructor with a string parameter 
that receives the initial course name. 

Figure 3.7. Instantiating multiple objects of the GradeBook class and using the GradeBook constructor to specify the 

course name when each GradeBook object is created. 

(This item is displayed on pages 92 - 93 in the print version)  

Page 20 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 1  // Fig. 3.7: fig03_07.cpp 
 2  // Instantiating multiple objects of the GradeBook class and using 
 3  // the GradeBook constructor to specify the course name 
 4  // when each GradeBook object is created. 
 5  #include <iostream> 
 6  using std::cout; 
 7  using std::endl; 
 8 
 9  #include <string> // program uses C++ standard string class 
10  using std::string; 
11 
12  // GradeBook class definition 
13  class GradeBook 
14  { 
15  public: 
16     // constructor initializes courseName with string supplied as argument  
17     GradeBook( string name )                                                
18     {                                                                       
19        setCourseName( name ); // call set function to initialize courseName 
20     } // end GradeBook constructor                                          
21 
22     // function to set the course name 
23     void setCourseName( string name ) 
24     { 
25        courseName = name; // store the course name in the object 
26     } // end function setCourseName 
27 
28     // function to get the course name 
29     string getCourseName() 
30     { 
31        return courseName; // return object's courseName 
32     } // end function getCourseName 
33 
34     // display a welcome message to the GradeBook user 
35     void displayMessage() 
36     { 
37        // call getCourseName to get the courseName 
38        cout << "Welcome to the grade book for\n" << getCourseName() 
39           << "!" << endl; 
40     } // end function displayMessage 
41  private: 
42     string courseName; // course name for this GradeBook 
43  }; // end class GradeBook 
44 
45  // function main begins program execution 
46  int main() 
47  { 
48     // create two GradeBook objects 
49     GradeBook gradeBook1( "CS101 Introduction to C++ Programming" ); 
50     GradeBook gradeBook2( "CS102 Data Structures in C++" );          
51 
52     // display initial value of courseName for each GradeBook 
53     cout << "gradeBook1 created for course: " << gradeBook1.getCourseName() 
54        << "\ngradeBook2 created for course: " << gradeBook2.getCourseName() 
55        << endl; 
56     return 0; // indicate successful termination 
57  } // end main 

 

 gradeBook1 created for course: CS101 Introduction to C++ Programming 
 gradeBook2 created for course: CS102 Data Structures in C++ 

Page 21 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



[Page 93] 

Defining a Constructor 

Lines 1720 of Fig. 3.7 define a constructor for class GradeBook. Notice that the constructor has the 
same name as its class, GradeBook. A constructor specifies in its parameter list the data it requires to 
perform its task. When you create a new object, you place this data in the parentheses that follow the 
object name (as we did in lines 4950). Line 17 indicates that class GradeBook's constructor has a 
string parameter called name. Note that line 17 does not specify a return type, because constructors 
cannot return values (or even void). 

Line 19 in the constructor's body passes the constructor's parameter name to member function 
setCourseName, which assigns a value to data member courseName. The setCourseName member 
function (lines 2326) simply assigns its parameter name to the data member courseName, so you 
might be wondering why we bother making the call to setCourseName in line 19the constructor 
certainly could perform the assignment courseName = name. In Section 3.10, we modify 
setCourseName to perform validation (ensuring that, in this case, the courseName is 25 or fewer 
characters in length). At that point the benefits of calling setCourseName from the constructor will 
become clear. Note that both the constructor (line 17) and the setCourseName function (line 23) use 
a parameter called name. You can use the same parameter names in different functions because the 
parameters are local to each function; they do not interfere with one another. 

[Page 94] 

Testing Class GradeBook 

Lines 4657 of Fig. 3.7 define the main function that tests class GradeBook and demonstrates 
initializing GradeBook objects using a constructor. Line 49 in function main creates and initializes a 
GradeBook object called gradeBook1. When this line executes, the GradeBook constructor (lines 
1720) is called (implicitly by C++) with the argument "CS101 Introduction to C++ 
Programming" to initialize gradeBook1's course name. Line 50 repeats this process for the 
GradeBook object called gradeBook2, this time passing the argument "CS102 Data Structures 
in C++" to initialize gradeBook2's course name. Lines 5354 use each object's getCourseName 
member function to obtain the course names and show that they were indeed initialized when the 
objects were created. The output confirms that each GradeBook object maintains its own copy of 
data member courseName. 

Two Ways to Provide a Default Constructor for a Class 

Any constructor that takes no arguments is called a default constructor. A class gets a default 
constructor in one of two ways: 

1. The compiler implicitly creates a default constructor in a class that does not define a 
constructor. Such a default constructor does not initialize the class's data members, but does 
call the default constructor for each data member that is an object of another class. [Note: An 
uninitialized variable typically contains a "garbage" value (e.g., an uninitialized int variable 

 

 

Page 22 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

might contain -858993460, which is likely to be an incorrect value for that variable in most 
programs).] 

2. The programmer explicitly defines a constructor that takes no arguments. Such a default 
constructor will perform the initialization specified by the programmer and will call the default 
constructor for each data member that is an object of another class. 

If the programmer defines a constructor with arguments, C++ will not implicitly create a default 
constructor for that class. Note that for each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 
3.5 the compiler implicitly defined a default constructor. 

Error-Prevention Tip 3.2 

 
Software Engineering Observation 3.5 

 
Adding the Constructor to Class GradeBook's UML Class Diagram 

The UML class diagram of Fig. 3.8 models class GradeBook of Fig. 3.7, which has a constructor 
with a name parameter of type string (represented by type String in the UML). Like operations, 
the UML models constructors in the third compartment of a class in a class diagram. To distinguish a 
constructor from a class's operations, the UML places the word "constructor" between guillemets (« 
and ») before the constructor's name. It is customary to list the class's constructor before other 
operations in the third compartment. 

[Page 95] 

Figure 3.8. UML class diagram indicating that class GradeBook has a constructor with a name parameter of UML 

type String. 

[View full size image] 

 

 

Unless no initialization of your class's data members is necessary (almost 
never), provide a constructor to ensure that your class's data members are 
initialized with meaningful values when each new object of your class is 
created. 

Data members can be initialized in a constructor of the class or their values 
may be set later after the object is created. However, it is a good software 
engineering practice to ensure that an object is fully initialized before the client 
code invokes the object's member functions. In general, you should not rely on 
the client code to ensure that an object gets initialized properly. 

  
  

Page 23 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 
 

[Page 95 (continued)] 

3.8. Placing a Class in a Separate File for Reusability 

We have developed class GradeBook as far as we need to for now from a programming perspective, 
so let's consider some software engineering issues. One of the benefits of creating class definitions is 
that, when packaged properly, our classes can be reused by programmerspotentially worldwide. For 
example, we can reuse C++ Standard Library type string in any C++ program by including the 
header file <string> in the program (and, as we will see, by being able to link to the library's object 
code). 

Unfortunately, programmers who wish to use our GradeBook class cannot simply include the file 
from Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the execution 
of every program, and every program must have exactly one main function. If other programmers 
include the code from Fig. 3.7, they get extra baggageour main functionand their programs will then 
have two main functions. When they attempt to compile their programs, the compiler will indicate an 
error because, again, each program can have only one main function. For example, attempting to 
compile a program with two main functions in Microsoft Visual C++ .NET produces the error 

error C2084: function 'int main(void)' already has a body 

 
when the compiler tries to compile the second main function it encounters. Similarly, the GNU C++ 
compiler produces the error 

redefinition of 'int main()' 

 
These errors indicate that a program already has a main function. So, placing main in the same file 
with a class definition prevents that class from being reused by other programs. In this section, we 
demonstrate how to make class GradeBook reusable by separating it into another file from the main 
function. 

Header Files 

Each of the previous examples in the chapter consists of a single .cpp file, also known as a source-

code file, that contains a GradeBook class definition and a main function. When building an object-
oriented C++ program, it is customary to define reusable source code (such as a class) in a file that 
by convention has a .h filename extensionknown as a header file. Programs use #include 
preprocessor directives to include header files and take advantage of reusable software components, 
such as type string provided in the C++ Standard Library and user-defined types like class 
GradeBook. 

[Page 96] 

In our next example, we separate the code from Fig. 3.7 into two filesGradeBook.h (Fig. 3.9) and 
fig03_10.cpp (Fig. 3.10). As you look at the header file in Fig. 3.9, notice that it contains only the 
GradeBook class definition (lines 1141) and lines 38, which allow class GradeBook to use cout, 
endl and type string. The main function that uses class GradeBook is defined in the source-code 
file fig03_10.cpp (Fig. 3.10) at lines 1021. To help you prepare for the larger programs you will 

Page 24 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



encounter later in this book and in industry, we often use a separate source-code file containing 
function main to test our classes (this is called a driver program). You will soon learn how a source-
code file with main can use the class definition found in a header file to create objects of a class. 

Figure 3.9. GradeBook class definition. 

(This item is displayed on pages 96 - 97 in the print version)  

Including a Header File That Contains a User-Defined Class 

A header file such as GradeBook.h (Fig. 3.9) cannot be used to begin program execution, because it 
does not contain a main function. If you try to compile and link GradeBook.h by itself to create an 
executable application, Microsoft Visual C++ .NET will produce the linker error message: 

error LNK2019: unresolved external symbol _main referenced in 
function _mainCRTStartup 

 1  // Fig. 3.9: GradeBook.h 
 2  // GradeBook class definition in a separate file from main. 
 3  #include <iostream> 
 4  using std::cout; 
 5  using std::endl; 
 6 
 7  #include <string> // class GradeBook uses C++ standard string class 
 8  using std::string; 
 9 
10  // GradeBook class definition 
11  class GradeBook 
12  { 
13  public: 
14     // constructor initializes courseName with string supplied as argument 
15     GradeBook( string name ) 
16     { 
17        setCourseName( name ); // call set function to initialize courseName 
18     } // end GradeBook constructor 
19 
20     // function to set the course name 
21     void setCourseName( string name ) 
22     { 
23        courseName = name; // store the course name in the object 
24     } // end function setCourseName 
25 
26     // function to get the course name 
27     string getCourseName() 
28     { 
29        return courseName; // return object's courseName 
30     } // end function getCourseName 
31 
32     // display a welcome message to the GradeBook user 
33     void displayMessage() 
34     { 
35        // call getCourseName to get the courseName 
36        cout << "Welcome to the grade book for\n" << getCourseName() 
37           << "!" << endl; 
38     } // end function displayMessage 
39  private: 
40     string courseName; // course name for this GradeBook 
41  }; // end class GradeBook 

 

Page 25 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

[Page 97] 

Running GNU C++ on Linux produces a linker error message containing: 

undefined reference to 'main' 

 
This error indicates that the linker could not locate the program's main function. To test class 
GradeBook (defined in Fig. 3.9), you must write a separate source-code file containing a main 
function (such as Fig. 3.10) that instantiates and uses objects of the class. 

Figure 3.10. Including class GradeBook from file GradeBook.h for use in main. 

Recall from Section 3.4 that, while the compiler knows what fundamental data types like int are, the 
compiler does not know what a GradeBook is because it is a user-defined type. In fact, the compiler 
does not even know the classes in the C++ Standard Library. To help it understand how to use a 
class, we must explicitly provide the compiler with the class's definitionthat's why, for example, to 
use type string, a program must include the <string> header file. This enables the compiler to 
determine the amount of memory that it must reserve for each object of the class and ensure that a 
program calls the class's member functions correctly. 

[Page 98] 

 1  // Fig. 3.10: fig03_10.cpp 
 2  // Including class GradeBook from file GradeBook.h for use in main. 
 3  #include <iostream> 
 4  using std::cout; 
 5  using std::endl; 
 6 
 7  #include "GradeBook.h" // include definition of class GradeBook 
 8 
 9  // function main begins program execution 
10  int main() 
11  { 
12     // create two GradeBook objects 
13     GradeBook gradeBook1( "CS101 Introduction to C++ Programming" ); 
14     GradeBook gradeBook2( "CS102 Data Structures in C++" ); 
15 
16     // display initial value of courseName for each GradeBook 
17     cout << "gradeBook1 created for course: " << gradeBook1.getCourseName() 
18        << "\ngradeBook2 created for course: " << gradeBook2.getCourseName() 
19        << endl; 
20     return 0; // indicate successful termination 
21  } // end main 

 

 

 gradeBook1 created for course: CS101 Introduction to C++ Programming 
 gradeBook2 created for course: CS102 Data Structures in C++ 

 

Page 26 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



To create GradeBook objects gradeBook1 and gradeBook2 in lines 1314 of Fig. 3.10, the compiler 
must know the size of a GradeBook object. While objects conceptually contain data members and 
member functions, C++ objects typically contain only data. The compiler creates only one copy of 
the class's member functions and shares that copy among all the class's objects. Each object, of 
course, needs its own copy of the class's data members, because their contents can vary among 
objects (such as two different BankAccount objects having two different balance data members). 
The member function code, however, is not modifiable, so it can be shared among all objects of the 
class. Therefore, the size of an object depends on the amount of memory required to store the class's 
data members. By including GradeBook.h in line 7, we give the compiler access to the information it 
needs (Fig. 3.9, line 40) to determine the size of a GradeBook object and to determine whether 
objects of the class are used correctly (in lines 1314 and 1718 of Fig. 3.10). 

Line 7 instructs the C++ preprocessor to replace the directive with a copy of the contents of 
GradeBook.h (i.e., the GradeBook class definition) before the program is compiled. When the 
source-code file fig03_10.cpp is compiled, it now contains the GradeBook class definition (because 
of the #include), and the compiler is able to determine how to create GradeBook objects and see 
that their member functions are called correctly. Now that the class definition is in a header file 
(without a main function), we can include that header in any program that needs to reuse our 
GradeBook class. 

How Header Files Are Located 

Notice that the name of the GradeBook.h header file in line 7 of Fig. 3.10 is enclosed in quotes (" ") 
rather than angle brackets (< >). Normally, a program's source-code files and user-defined header 
files are placed in the same directory. When the preprocessor encounters a header file name in quotes 
(e.g., "GradeBook.h"), the preprocessor attempts to locate the header file in the same directory as 
the file in which the #include directive appears. If the preprocessor cannot find the header file in 
that directory, it searches for it in the same location(s) as the C++ Standard Library header files. 
When the preprocessor encounters a header file name in angle brackets (e.g., <iostream>), it 
assumes that the header is part of the C++ Standard Library and does not look in the directory of the 
program that is being preprocessed. 

Error-Prevention Tip 3.3 

 
Additional Software Engineering Issues 

Now that class GradeBook is defined in a header file, the class is reusable. Unfortunately, placing a 
class definition in a header file as in Fig. 3.9 still reveals the entire implementation of the class to the 
class's clientsGradeBook.h is simply a text file that anyone can open and read. Conventional 
software engineering wisdom says that to use an object of a class, the client code needs to know only 
what member functions to call, what arguments to provide to each member function and what return 
type to expect from each member function. The client code does not need to know how those 
functions are implemented. 

[Page 99] 

To ensure that the preprocessor can locate header files correctly, #include 
preprocessor directives should place the names of user-defined header files in 
quotes (e.g., "GradeBook.h") and place the names of C++ Standard Library 
header files in angle brackets (e.g., <iostream>). 

Page 27 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

If client code does know how a class is implemented, the client code programmer might write client 
code based on the class's implementation details. Ideally, if that implementation changes, the class's 
clients should not have to change. Hiding the class's implementation details makes it easier to change 
the class's implementation while minimizing, and hopefully eliminating, changes to client code. 

In Section 3.9, we show how to break up the GradeBook class into two files so that 

1. the class is reusable 

2. the clients of the class know what member functions the class provides, how to call them and 
what return types to expect 

3. the clients do not know how the class's member functions are implemented. 

  
  

[Page 99 (continued)] 

3.9. Separating Interface from Implementation 

In the preceding section, we showed how to promote software reusability by separating a class 
definition from the client code (e.g., function main) that uses the class. We now introduce another 
fundamental principle of good software engineeringseparating interface from implementation. 

Interface of a Class 

Interfaces define and standardize the ways in which things such as people and systems interact with 
one another. For example, a radio's controls serve as an interface between the radio's users and its 
internal components. The controls allow users to perform a limited set of operations (such as 
changing the station, adjusting the volume, and choosing between AM and FM stations). Various 
radios may implement these operations differentlysome provide push buttons, some provide dials 
and some support voice commands. The interface specifies what operations a radio permits users to 
perform but does not specify how the operations are implemented inside the radio. 

Similarly, the interface of a class describes what services a class's clients can use and how to 
request those services, but not how the class carries out the services. A class's interface consists of 
the class's public member functions (also known as the class's public services). For example, class 
GradeBook's interface (Fig. 3.9) contains a constructor and member functions setCourseName, 
getCourseName and displayMessage. GradeBook's clients (e.g., main in Fig. 3.10) use these 
functions to request the class's services. As you will soon see, you can specify a class's interface by 
writing a class definition that lists only the member function names, return types and parameter 
types. 

Separating the Interface from the Implementation 

In our prior examples, each class definition contained the complete definitions of the class's public 
member functions and the declarations of its private data members. However, it is better software 
engineering to define member functions outside the class definition, so that their implementation 
details can be hidden from the client code. This practice ensures that programmers do not write client 
code that depends on the class's implementation details. If they were to do so, the client code would 
be more likely to "break" if the class's implementation changed. 

Page 28 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



The program of Figs. 3.113.13 separates class GradeBook's interface from its implementation by 
splitting the class definition of Fig. 3.9 into two filesthe header file GradeBook.h (Fig. 3.11) in 
which class GradeBook is defined, and the source-code file GradeBook.cpp (Fig. 3.12) in which 
GradeBook's member functions are defined. By convention, member-function definitions are placed 
in a source-code file of the same base name (e.g., GradeBook) as the class's header file but with 
a .cpp filename extension. The source-code file fig03_13.cpp (Fig. 3.13) defines function main 
(the client code). The code and output of Fig. 3.13 are identical to that of Fig. 3.10. Figure 3.14 
shows how this three-file program is compiled from the perspectives of the GradeBook class 
programmer and the client-code programmerwe will explain this figure in detail. 

[Page 100] 

GradeBook.h: Defining a Class's Interface with Function Prototypes 

Header file GradeBook.h (Fig. 3.11) contains another version of GradeBook's class definition (lines 
918). This version is similar to the one in Fig. 3.9, but the function definitions in Fig. 3.9 are 
replaced here with function prototypes (lines 1215) that describe the class's public interface 
without revealing the class's member function implementations. A function prototype is a declaration 
of a function that tells the compiler the function's name, its return type and the types of its 
parameters. Note that the header file still specifies the class's private data member (line 17) as well. 
Again, the compiler must know the data members of the class to determine how much memory to 
reserve for each object of the class. Including the header file GradeBook.h in the client code (line 8 
of Fig. 3.13) provides the compiler with the information it needs to ensure that the client code calls 
the member functions of class GradeBook correctly. 

The function prototype in line 12 (Fig. 3.12) indicates that the constructor requires one string 
parameter. Recall that constructors do not have return types, so no return type appears in the function 
prototype. Member function setCourseName's function prototype (line 13) indicates that 
setCourseName requires a string parameter and does not return a value (i.e., its return type is 
void). Member function getCourseName's function prototype (line 14) indicates that the function 
does not require parameters and returns a string. Finally, member function displayMessage's 
function prototype (line 15) specifies that displayMessage does not require parameters and does not 
return a value. These function prototypes are the same as the corresponding function headers in Fig. 
3.9, except that the parameter names (which are optional in prototypes) are not included and each 
function prototype must end with a semicolon. 

[Page 101] 

Figure 3.11. GradeBook class definition containing function prototypes that specify the interface of the class. 

(This item is displayed on page 100 in the print version)  

 1  // Fig. 3.11: GradeBook.h 
 2  // GradeBook class definition. This file presents GradeBook's public 
 3  // interface without revealing the implementations of GradeBook's member 
 4  // functions, which are defined in GradeBook.cpp. 
 5  #include <string> // class GradeBook uses C++ standard string class 
 6  using std::string; 
 7 
 8  // GradeBook class definition 
 9  class GradeBook 
10  { 
11  public: 
12     GradeBook( string ); // constructor that initializes courseName     

Page 29 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Common Programming Error 3.8 

 
Good Programming Practice 3.7 

 
Error-Prevention Tip 3.4 

 
GradeBook.cpp: Defining Member Functions in a Separate Source-Code File 

Source-code file GradeBook.cpp (Fig. 3.12) defines class GradeBook's member functions, which 
were declared in lines 1215 of Fig. 3.11. The member-function definitions appear in lines 1134 and 
are nearly identical to the member-function definitions in lines 1538 of Fig. 3.9. 

Notice that each member function name in the function headers (lines 11, 17, 23 and 29) is preceded 
by the class name and ::, which is known as the binary scope resolution operator. This "ties" each 
member function to the (now separate) GradeBook class definition, which declares the class's 
member functions and data members. Without "GradeBook::" preceding each function name, these 
functions would not be recognized by the compiler as member functions of class GradeBookthe 
compiler would consider them "free" or "loose" functions, like main. Such functions cannot access 
GradeBook's private data or call the class's member functions, without specifying an object. So, the 
compiler would not be able to compile these functions. For example, lines 19 and 25 that access 
variable courseName would cause compilation errors because courseName is not declared as a local 
variable in each functionthe compiler would not know that courseName is already declared as a data 
member of class GradeBook. 

Common Programming Error 3.9 

13     void setCourseName( string ); // function that sets the course name 
14     string getCourseName(); // function that gets the course name       
15     void displayMessage(); // function that displays a welcome message  
16  private: 
17     string courseName; // course name for this GradeBook 
18  }; // end class GradeBook 

 

Forgetting the semicolon at the end of a function prototype is a syntax error. 

Although parameter names in function prototypes are optional (they are 
ignored by the compiler), many programmers use these names for 
documentation purposes. 

Parameter names in a function prototype (which, again, are ignored by the 
compiler) can be misleading if wrong or confusing names are used. For this 
reason, many programmers create function prototypes by copying the first line 
of the corresponding function definitions (when the source code for the 
functions is available), then appending a semicolon to the end of each 
prototype. 

Page 30 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 
To indicate that the member functions in GradeBook.cpp are part of class GradeBook, we must first 
include the GradeBook.h header file (line 8 of Fig. 3.12). This allows us to access the class name 
GradeBook in the GradeBook.cpp file. When compiling GradeBook.cpp, the compiler uses the 
information in GradeBook.h to ensure that 

[Page 102] 
1. the first line of each member function (lines 11, 17, 23 and 29) matches its prototype in the 

GradeBook.h filefor example, the compiler ensures that getCourseName accepts no 
parameters and returns a string. 

2. each member function knows about the class's data members and other member functionsfor 
example, lines 19 and 25 can access variable courseName because it is declared in 
GradeBook.h as a data member of class GradeBook, and lines 13 and 32 can call functions 
setCourseName and getCourseName, respectively, because each is declared as a member 
function of the class in GradeBook.h (and because these calls conform with the corresponding 
prototypes). 

Figure 3.12. GradeBook member-function definitions represent the implementation of class GradeBook. 

When defining a class's member functions outside that class, omitting the class 
name and binary scope resolution operator (::) preceding the function names 
causes compilation errors. 

 1  // Fig. 3.12: GradeBook.cpp 
 2  // GradeBook member-function definitions. This file contains 
 3  // implementations of the member functions prototyped in GradeBook.h. 
 4  #include <iostream> 
 5  using std::cout; 
 6  using std::endl; 
 7 
 8  #include "GradeBook.h" // include definition of class GradeBook 
 9 
10  // constructor initializes courseName with string supplied as argument 
11  GradeBook::GradeBook( string name ) 
12  { 
13     setCourseName( name ); // call set function to initialize courseName 
14  } // end GradeBook constructor 
15 
16  // function to set the course name 
17  void GradeBook::setCourseName( string name ) 
18  { 
19     courseName = name; // store the course name in the object 
20  } // end function setCourseName 
21 
22  // function to get the course name 
23  string GradeBook::getCourseName() 
24  { 
25     return courseName; // return object's courseName 
26  } // end function getCourseName 
27 
28  // display a welcome message to the GradeBook user 
29  void GradeBook::displayMessage() 
30  { 
31     // call getCourseName to get the courseName 
32     cout << "Welcome to the grade book for\n" << getCourseName() 
33        << "!" << endl; 

Page 31 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Testing Class GradeBook 

Figure 3.13 performs the same GradeBook object manipulations as Fig. 3.10. Separating 
GradeBook's interface from the implementation of its member functions does not affect the way that 
this client code uses the class. It affects only how the program is compiled and linked, which we 
discuss in detail shortly. 

[Page 103] 

Figure 3.13. GradeBook class demonstration after separating its interface from its implementation. 

As in Fig. 3.10, line 8 of Fig. 3.13 includes the GradeBook.h header file so that the compiler can 
ensure that GradeBook objects are created and manipulated correctly in the client code. Before 
executing this program, the source-code files in Fig. 3.12 and Fig. 3.13 must both be compiled, then 
linked togetherthat is, the member-function calls in the client code need to be tied to the 
implementations of the class's member functionsa job performed by the linker. 

The Compilation and Linking Process 

34  } // end function displayMessage 

 

 1  // Fig. 3.13: fig03_13.cpp 
 2  // GradeBook class demonstration after separating 
 3  // its interface from its implementation. 
 4  #include <iostream> 
 5  using std::cout; 
 6  using std::endl; 
 7 
 8  #include "GradeBook.h" // include definition of class GradeBook 
 9 
10  // function main begins program execution 
11  int main() 
12  { 
13     // create two GradeBook objects 
14     GradeBook gradeBook1( "CS101 Introduction to C++ Programming" ); 
15     GradeBook gradeBook2( "CS102 Data Structures in C++" ); 
16 
17     // display initial value of courseName for each GradeBook 
18     cout << "gradeBook1 created for course: " << gradeBook1.getCourseName() 
19        << "\ngradeBook2 created for course: " << gradeBook2.getCourseName() 
20        << endl; 
21     return 0; // indicate successful termination 
22  } // end main 

 

 

 gradeBook1 created for course: CS101 Introduction to C++ Programming 
 gradeBook2 created for course: CS102 Data Structures in C++ 

 

Page 32 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



The diagram in Fig. 3.14 shows the compilation and linking process that results in an executable 
GradeBook application that can be used by instructors. Often a class's interface and implementation 
will be created and compiled by one programmer and used by a separate programmer who 
implements the class's client code. So, the diagram shows what is required by both the class-
implementation programmer and the client-code programmer. The dashed lines in the diagram show 
the pieces required by the class-implementation programmer, the client-code programmer and the 
GradeBook application user, respectively. [Note: Figure 3.14 is not a UML diagram.] 

Figure 3.14. Compilation and linking process that produces an executable application. 

(This item is displayed on page 104 in the print version)  

[View full size image] 

 

 
A class-implementation programmer responsible for creating a reusable GradeBook class creates the 
header file GradeBook.h and source-code file GradeBook.cpp that #includes the header file, then 
compiles the source-code file to create GradeBook's object code. To hide the implementation details 
of GradeBook's member functions, the class-implementation programmer would provide the client-
code programmer with the header file GradeBook.h (which specifies the class's interface and data 
members) and the object code for class GradeBook which contains the machine-language 
instructions that represent GradeBook's member functions. The client-code programmer is not given 

Page 33 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

GradeBook's source-code file, so the client remains unaware of how GradeBook's member functions 
are implemented. 

[Page 104] 

[Page 105] 

The client code needs to know only GradeBook's interface to use the class and must be able to link 
its object code. Since the interface of the class is part of the class definition in the GradeBook.h 
header file, the client-code programmer must have access to this file and #include it in the client's 
source-code file. When the client code is compiled, the compiler uses the class definition in 
GradeBook.h to ensure that the main function creates and manipulates objects of class GradeBook 
correctly. 

To create the executable GradeBook application to be used by instructors, the last step is to link 

1. the object code for the main function (i.e., the client code) 

2. the object code for class GradeBook's member function implementations 

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by the class 
implementation programmer and the client-code programmer. 

The linker's output is the executable GradeBook application that instructors can use to manage their 
students' grades. 

For further information on compiling multiple-source-file programs, see your compiler's 
documentation or study the Dive-Into™ publications that we provide for various C++ compilers at 
www.deitel.com/books/cpphtp5. 

  
  

[Page 105 (continued)] 

3.10. Validating Data with set Functions 

In Section 3.6, we introduced set functions for allowing clients of a class to modify the value of a 
private data member. In Fig. 3.5, class GradeBook defines member function setCourseName to 
simply assign a value received in its parameter name to data member courseName. This member 
function does not ensure that the course name adheres to any particular format or follows any other 
rules regarding what a "valid" course name looks like. As we stated earlier, suppose that a university 
can print student transcripts containing course names of only 25 characters or less. If the university 
uses a system containing GradeBook objects to generate the transcripts, we might want class 
GradeBook to ensure that its data member courseName never contains more than 25 characters. The 
program of Figs. 3.153.17 enhances class GradeBook's member function setCourseName to perform 
this validation (also known as validity checking). 

GradeBook Class Definition 

Notice that GradeBook's class definition (Fig. 3.15)and hence, its interfaceis identical to that of Fig. 
3.11. Since the interface remains unchanged, clients of this class need not be changed when the 

Page 34 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



definition of member function setCourseName is modified. This enables clients to take advantage of 
the improved GradeBook class simply by linking the client code to the updated GradeBook's object 
code. 

Validating the Course Name with GradeBook Member Function setCourseName 

The enhancement to class GradeBook is in the definition of setCourseName (Fig. 3.16, lines 1831). 
The if statement in lines 2021 determines whether parameter name contains a valid course name 
(i.e., a string of 25 or fewer characters). If the course name is valid, line 21 stores the course name 
in data member courseName. Note the expression name.length() in line 20. This is a member-
function call just like myGradeBook.displayMessage(). The C++ Standard Library's string class 
defines a member function length that returns the number of characters in a string object. 
Parameter name is a string object, so the call name.length() returns the number of characters in 
name. If this value is less than or equal to 25, name is valid and line 21 executes. 

[Page 107] 

Figure 3.15. GradeBook class definition. 

(This item is displayed on page 106 in the print version)  

Figure 3.16. Member-function definitions for class GradeBook with a set function that validates the length of data 

member courseName. 

(This item is displayed on pages 106 - 107 in the print version)  

 1  // Fig. 3.15: GradeBook.h 
 2  // GradeBook class definition presents the public interface of 
 3  // the class. Member-function definitions appear in GradeBook.cpp. 
 4  #include <string> // program uses C++ standard string class 
 5  using std::string; 
 6 
 7  // GradeBook class definition 
 8  class GradeBook 
 9  { 
10  public: 
11     GradeBook( string ); // constructor that initializes a GradeBook object 
12     void setCourseName( string ); // function that sets the course name 
13     string getCourseName(); // function that gets the course name 
14     void displayMessage(); // function that displays a welcome message 
15  private: 
16     string courseName; // course name for this GradeBook 
17  }; // end class GradeBook 

 

 1  // Fig. 3.16: GradeBook.cpp 
 2  // Implementations of the GradeBook member-function definitions. 
 3  // The setCourseName function performs validation. 
 4  #include <iostream> 
 5  using std::cout; 
 6  using std::endl; 
 7 
 8  #include "GradeBook.h" // include definition of class GradeBook 
 9 
10  // constructor initializes courseName with string supplied as argument 
11  GradeBook::GradeBook( string name ) 
12  { 
13     setCourseName( name ); // validate and store courseName 

Page 35 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



The if statement in lines 2330 handles the case in which setCourseName receives an invalid course 
name (i.e., a name that is more than 25 characters long). Even if parameter name is too long, we still 
want to leave the GradeBook object in a consistent statethat is, a state in which the object's data 
member courseName contains a valid value (i.e., a string of 25 characters or less). Thus, we 
truncate (i.e., shorten) the specified course name and assign the first 25 characters of name to the 
courseName data member (unfortunately, this could truncate the course name awkwardly). Standard 
class string provides member function substr (short for "substring") that returns a new string 
object created by copying part of an existing string object. The call in line 26 (i.e., name.substr
( 0, 25 )) passes two integers (0 and 25) to name's member function substr. These arguments 
indicate the portion of the string name that substr should return. The first argument specifies the 
starting position in the original string from which characters are copiedthe first character in every 
string is considered to be at position 0. The second argument specifies the number of characters to 
copy. Therefore, the call in line 26 returns a 25-character substring of name starting at position 0 (i.e., 
the first 25 characters in name). For example, if name holds the value "CS101 Introduction to 
Programming in C++", substr returns "CS101 Introduction to Pro". After the call to substr, 
line 26 assigns the substring returned by substr to data member courseName. In this way, member 
function setCourseName ensures that courseName is always assigned a string containing 25 or fewer 
characters. If the member function has to truncate the course name to make it valid, lines 2829 
display a warning message. 

Note that the if statement in lines 2330 contains two body statementsone to set the courseName to 
the first 25 characters of parameter name and one to print an accompanying message to the user. We 
want both of these statements to execute when name is too long, so we place them in a pair of braces, 

14  } // end GradeBook constructor 
15 
16  // function that sets the course name;                                 
17  // ensures that the course name has at most 25 characters              
18  void GradeBook::setCourseName( string name )                           
19  {                                                                      
20     if ( name.length() <= 25 ) // if name has 25 or fewer characters    
21        courseName = name; // store the course name in the object        
22                                                                         
23     if ( name.length() > 25 ) // if name has more than 25 characters    
24     {                                                                   
25        // set courseName to first 25 characters of parameter name       
26        courseName = name.substr( 0, 25 ); // start at 0, length of 25   
27                                                                         
28        cout << "Name \"" << name << "\" exceeds maximum length (25).\n" 
29           << "Limiting courseName to first 25 characters.\n" << endl;   
30     } // end if                                                         
31  } // end function setCourseName                                        
32 
33  // function to get the course name 
34  string GradeBook::getCourseName() 
35  { 
36     return courseName; // return object's courseName 
37  } // end function getCourseName 
38 
39  // display a welcome message to the GradeBook user 
40  void GradeBook::displayMessage() 
41  { 
42     // call getCourseName to get the courseName 
43     cout << "Welcome to the grade book for\n" << getCourseName() 
44        << "!" << endl; 
45  } // end function displayMessage 

 

Page 36 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



{ }. Recall from Chapter 2 that this creates a block. You will learn more about placing multiple 
statements in the body of a control statement in Chapter 4. 

[Page 108] 

Note that the cout statement in lines 2829 could also appear without a stream insertion operator at 
the start of the second line of the statement, as in: 

cout << "Name \"" << name << "\" exceeds maximum length (25).\n" 
   "Limiting courseName to first 25 characters.\n" << endl; 

 
The C++ compiler combines adjacent string literals, even if they appear on separate lines of a 
program. Thus, in the statement above, the C++ compiler would combine the string literals "\" 
exceeds maximum length (25).\n" and "Limiting courseName to first 25 
characters.\n" into a single string literal that produces output identical to that of lines 2829 in Fig. 
3.16. This behavior allows you to print lengthy strings by breaking them across lines in your 
program without including additional stream insertion operations. 

Testing Class GradeBook 

Figure 3.17 demonstrates the modified version of class GradeBook (Figs. 3.153.16) featuring 
validation. Line 14 creates a GradeBook object named gradeBook1. Recall that the GradeBook 
constructor calls member function setCourseName to initialize data member courseName. In 
previous versions of the class, the benefit of calling setCourseName in the constructor was not 
evident. Now, however, the constructor takes advantage of the validation provided by 
setCourseName. The constructor simply calls setCourseName, rather than duplicating its validation 
code. When line 14 of Fig. 3.17 passes an initial course name of "CS101 Introduction to 
Programming in C++" to the GradeBook constructor, the constructor passes this value to 
setCourseName, where the actual initialization occurs. Because this course name contains more than 
25 characters, the body of the second if statement executes, causing courseName to be initialized to 
the truncated 25-character course name "CS101 Introduction to Pro" (the truncated part is 
highlighted in red in line 14). Notice that the output in Fig. 3.17 contains the warning message output 
by lines 2829 of Fig. 3.16 in member function setCourseName. Line 15 creates another GradeBook 
object called gradeBook2the valid course name passed to the constructor is exactly 25 characters. 

[Page 109] 

Figure 3.17. Creating and manipulating a GradeBook object in which the course name is limited to 25 characters in 

length. 

(This item is displayed on pages 108 - 109 in the print version)  

 1  // Fig. 3.17: fig03_17.cpp 
 2  // Create and manipulate a GradeBook object; illustrate validation. 
 3  #include <iostream> 
 4  using std::cout; 
 5  using std::endl; 
 6 
 7  #include "GradeBook.h" // include definition of class GradeBook 
 8 
 9  // function main begins program execution 
10  int main() 
11  { 

Page 37 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Lines 1821 of Fig. 3.17 display the truncated course name for gradeBook1 (we highlight this in red 
in the program output) and the course name for gradeBook2. Line 24 calls gradeBook1's 
setCourseName member function directly, to change the course name in the GradeBook object to a 
shorter name that does not need to be truncated. Then, lines 2730 output the course names for the 
GradeBook objects again. 

Additional Notes on Set Functions 

A public set function such as setCourseName should carefully scrutinize any attempt to modify the 
value of a data member (e.g., courseName) to ensure that the new value is appropriate for that data 
item. For example, an attempt to set the day of the month to 37 should be rejected, an attempt to set a 
person's weight to zero or a negative value should be rejected, an attempt to set a grade on an exam 
to 185 (when the proper range is zero to 100) should be rejected, etc. 

Software Engineering Observation 3.6 

12     // create two GradeBook objects; 
13     // initial course name of gradeBook1 is too long 
14     GradeBook gradeBook1( "CS101 Introduction to Programming in C++" ); 
15     GradeBook gradeBook2( "CS102 C++ Data Structures" ); 
16 
17     // display each GradeBook's courseName 
18     cout << "gradeBook1's initial course name is: " 
19        << gradeBook1.getCourseName() 
20        << "\ngradeBook2's initial course name is: " 
21        << gradeBook2.getCourseName() << endl; 
22 
23     // modify myGradeBook's courseName (with a valid-length string) 
24     gradeBook1.setCourseName( "CS101 C++ Programming" ); 
25 
26     // display each GradeBook's courseName 
27     cout << "\ngradeBook1's course name is: " 
28        << gradeBook1.getCourseName() 
29        << "\ngradeBook2's course name is: " 
30        << gradeBook2.getCourseName() << endl; 
31     return 0; // indicate successful termination 
32  } // end main 

 

 

 Name "CS101 Introduction to Programming in C++" exceeds maximum length (25). 
 Limiting courseName to first 25 characters. 
 
 gradeBook1's initial course name is: CS101 Introduction to Pro 
 gradeBook2's initial course name is: CS102 C++ Data Structures 
 
 gradeBook1's course name is: CS101 C++ Programming 
 gradeBook2's course name is: CS102 C++ Data Structures 

 

Making data members private and controlling access, especially write access, 
to those data members through public member functions helps ensure data 
integrity. 

Page 38 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

 

Error-Prevention Tip 3.5 

 

[Page 110] 

Software Engineering Observation 3.7 

 
A class's set functions can return values to the class's clients indicating that attempts were made to 
assign invalid data to objects of the class. A client of the class can test the return value of a set 
function to determine whether the client's attempt to modify the object was successful and to take 
appropriate action. In Chapter 16, we demonstrate how clients of a class can be notified via the 
exception-handling mechanism when an attempt is made to modify an object with an inappropriate 
value. To keep the program of Figs. 3.153.17 simple at this early point in the book, setCourseName 
in Fig. 3.16 just prints an appropriate message on the screen. 

The benefits of data integrity are not automatic simply because data members 
are made privatethe programmer must provide appropriate validity checking 
and report the errors. 

Member functions that set the values of private data should verify that the 
intended new values are proper; if they are not, the set functions should place 
the private data members into an appropriate state. 

  
  

[Page 110 (continued)] 

3.11. (Optional) Software Engineering Case Study: Identifying the Classes in the 

ATM Requirements Document 

Now we begin designing the ATM system that we introduced in Chapter 2. In this section, we 
identify the classes that are needed to build the ATM system by analyzing the nouns and noun 
phrases that appear in the requirements document. We introduce UML class diagrams to model the 
relationships between these classes. This is an important first step in defining the structure of our 
system. 

Identifying the Classes in a System 

We begin our OOD process by identifying the classes required to build the ATM system. We will 
eventually describe these classes using UML class diagrams and implement these classes in C++. 
First, we review the requirements document of Section 2.8 and find key nouns and noun phrases to 
help us identify classes that comprise the ATM system. We may decide that some of these nouns and 
noun phrases are attributes of other classes in the system. We may also conclude that some of the 
nouns do not correspond to parts of the system and thus should not be modeled at all. Additional 
classes may become apparent to us as we proceed through the design process. 

Figure 3.18 lists the nouns and noun phrases in the requirements document. We list them from left to 
right in the order in which they appear in the requirements document. We list only the singular form 

Page 39 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



of each noun or noun phrase. 

We create classes only for the nouns and noun phrases that have significance in the ATM system. 
We do not need to model "bank" as a class, because the bank is not a part of the ATM systemthe 
bank simply wants us to build the ATM. "Customer" and "user" also represent entities outside of the 
systemthey are important because they interact with our ATM system, but we do not need to model 
them as classes in the ATM software. Recall that we modeled an ATM user (i.e., a bank customer) as 
the actor in the use case diagram of Fig. 2.18. 

We do not model "$20 bill" or "deposit envelope" as classes. These are physical objects in the real 
world, but they are not part of what is being automated. We can adequately represent the presence of 
bills in the system using an attribute of the class that models the cash dispenser. (We assign attributes 
to classes in Section 4.13.) For example, the cash dispenser maintains a count of the number of bills 
it contains. The requirements document does not say anything about what the system should do with 
deposit envelopes after it receives them. We can assume that simply acknowledging the receipt of an 
envelopean operation performed by the class that models the deposit slotis sufficient to represent the 
presence of an envelope in the system. (We assign operations to classes in Section 6.22.) 

[Page 111] 

 
In our simplified ATM system, representing various amounts of "money," including the "balance" of 
an account, as attributes of other classes seems most appropriate. Likewise, the nouns "account 
number" and "PIN" represent significant pieces of information in the ATM system. They are 
important attributes of a bank account. They do not, however, exhibit behaviors. Thus, we can most 
appropriately model them as attributes of an account class. 

Though the requirements document frequently describes a "transaction" in a general sense, we do not 
model the broad notion of a financial transaction at this time. Instead, we model the three types of 
transactions (i.e., "balance inquiry," "withdrawal" and "deposit") as individual classes. These classes 
possess specific attributes needed for executing the transactions they represent. For example, a 
withdrawal needs to know the amount of money the user wants to withdraw. A balance inquiry, 
however, does not require any additional data. Furthermore, the three transaction classes exhibit 
unique behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit involves 
receiving deposit envelopes from the user. [Note: In Section 13.10, we "factor out" common features 
of all transactions into a general "transaction" class using the object-oriented concepts of abstract 
classes and inheritance.] 

Figure 3.18. Nouns and noun phrases in the requirements document. 

Nouns and noun phrases in the requirements document 

bank money / fund account number 

ATM screen PIN 

user keypad bank database 

customer cash dispenser balance inquiry 

transaction $20 bill / cash withdrawal 

account deposit slot deposit 

balance deposit envelope  

Page 40 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



We determine the classes for our system based on the remaining nouns and noun phrases from Fig. 
3.18. Each of these refers to one or more of the following: 

l ATM 

l screen 

l keypad 

l cash dispenser 

l deposit slot 

l account 

l bank database 

l balance inquiry 

[Page 112] 
l withdrawal 

l deposit 

The elements of this list are likely to be classes we will need to implement our system. 

We can now model the classes in our system based on the list we have created. We capitalize class 
names in the design processa UML conventionas we will do when we write the actual C++ code that 
implements our design. If the name of a class contains more than one word, we run the words 
together and capitalize each word (e.g., MultipleWordName). Using this convention, we create 
classes ATM, Screen, Keypad, CashDispenser, DepositSlot, Account, BankDatabase, 
BalanceInquiry, Withdrawal and Deposit. We construct our system using all of these classes as 
building blocks. Before we begin building the system, however, we must gain a better understanding 
of how the classes relate to one another. 

Modeling Classes 

The UML enables us to model, via class diagrams, the classes in the ATM system and their 
interrelationships. Figure 3.19 represents class ATM. In the UML, each class is modeled as a rectangle 
with three compartments. The top compartment contains the name of the class, centered horizontally 
and in boldface. The middle compartment contains the class's attributes. (We discuss attributes in 
Section 4.13 and Section 5.11.) The bottom compartment contains the class's operations (discussed 
in Section 6.22). In Fig. 3.19 the middle and bottom compartments are empty, because we have not 
yet determined this class's attributes and operations. 

Figure 3.19. Representing a class in the UML using a class diagram. 

 

Page 41 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

Class diagrams also show the relationships between the classes of the system. Figure 3.20 shows 
how our classes ATM and Withdrawal relate to one another. For the moment, we choose to model 
only this subset of classes for simplicity. We present a more complete class diagram later in this 
section. Notice that the rectangles representing classes in this diagram are not subdivided into 
compartments. The UML allows the suppression of class attributes and operations in this manner, 
when appropriate, to create more readable diagrams. Such a diagram is said to be an elided 
diagramone in which some information, such as the contents of the second and third compartments, 
is not modeled. We will place information in these compartments in Section 4.13 and Section 6.22 

Figure 3.20. Class diagram showing an association among classes. 

[View full size image] 

 

 
In Fig. 3.20, the solid line that connects the two classes represents an associationa relationship 
between classes. The numbers near each end of the line are multiplicity values, which indicate how 
many objects of each class participate in the association. In this case, following the line from one end 
to the other reveals that, at any given moment, one ATM object participates in an association with 
either zero or one Withdrawal objectszero if the current user is not currently performing a 
transaction or has requested a different type of transaction, and one if the user has requested a 
withdrawal. The UML can model many types of multiplicity. Figure 3.21 lists and explains the 
multiplicity types. 

[Page 113] 

An association can be named. For example, the word Executes above the line connecting classes 
ATM and Withdrawal in Fig. 3.20 indicates the name of that association. This part of the diagram 
reads "one object of class ATM executes zero or one objects of class Withdrawal." Note that 
association names are directional, as indicated by the filled arrow-headso it would be improper, for 
example, to read the preceding association from right to left as "zero or one objects of class 
Withdrawal execute one object of class ATM." 

The word currentTransaction at the Withdrawal end of the association line in Fig. 3.20 is a role 
name, which identifies the role the Withdrawal object plays in its relationship with the ATM. A role 
name adds meaning to an association between classes by identifying the role a class plays in the 
context of an association. A class can play several roles in the same system. For example, in a school 
personnel system, a person may play the role of "professor" when relating to students. The same 
person may take on the role of "colleague" when participating in a relationship with another 
professor, and "coach" when coaching student athletes. In Fig. 3.20, the role name 
currentTransaction indicates that the Withdrawal object participating in the Executes 
association with an object of class ATM represents the transaction currently being processed by the 
ATM. In other contexts, a Withdrawal object may take on other roles (e.g., the previous 
transaction). Notice that we do not specify a role name for the ATM end of the Executes association. 
Role names in class diagrams are often omitted when the meaning of an association is clear without 
them. 

In addition to indicating simple relationships, associations can specify more complex relationships, 
such as objects of one class being composed of objects of other classes. Consider a real-world 
automated teller machine. What "pieces" does a manufacturer put together to build a working ATM? 

Page 42 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



Our requirements document tells us that the ATM is composed of a screen, a keypad, a cash 
dispenser and a deposit slot. 

 

[Page 114] 

In Fig. 3.22, the solid diamonds attached to the association lines of class ATM indicate that class ATM 
has a composition relationship with classes Screen, Keypad, CashDispenser and DepositSlot. 
Composition implies a whole/part relationship. The class that has the composition symbol (the solid 
diamond) on its end of the association line is the whole (in this case, ATM), and the classes on the 
other end of the association lines are the partsin this case, classes Screen, Keypad, CashDispenser 
and DepositSlot. The compositions in Fig. 3.22 indicate that an object of class ATM is formed from 
one object of class Screen, one object of class CashDispenser, one object of class Keypad and one 
object of class DepositSlot. The ATM "has a" screen, a keypad, a cash dispenser and a deposit slot. 
The "has-a" relationship defines composition. (We will see in the "Software Engineering Case 
Study" section in Chapter 13 that the "is-a" relationship defines inheritance.) 

Figure 3.22. Class diagram showing composition relationships. 

[View full size image] 

 

 
According to the UML specification, composition relationships have the following properties: 

Figure 3.21. Multiplicity types. 

Symbol Meaning 

0 None 

1 One 

m An integer value 

0..1 Zero or one 

m, n m or n  

m..n At least m, but not more than n  

* Any nonnegative integer (zero or more) 

0..* Zero or more (identical to *) 

1..* One or more 

Page 43 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



1. Only one class in the relationship can represent the whole (i.e., the diamond can be placed on 
only one end of the association line). For example, either the screen is part of the ATM or the 
ATM is part of the screen, but the screen and the ATM cannot both represent the whole in the 
relationship. 

2. The parts in the composition relationship exist only as long as the whole, and the whole is 
responsible for the creation and destruction of its parts. For example, the act of constructing an 
ATM includes manufacturing its parts. Furthermore, if the ATM is destroyed, its screen, 
keypad, cash dispenser and deposit slot are also destroyed. 

3. A part may belong to only one whole at a time, although the part may be removed and 
attached to another whole, which then assumes responsibility for the part. 

The solid diamonds in our class diagrams indicate composition relationships that fulfill these three 
properties. If a "has-a" relationship does not satisfy one or more of these criteria, the UML specifies 
that hollow diamonds be attached to the ends of association lines to indicate aggregationa weaker 
form of composition. For example, a personal computer and a computer monitor participate in an 
aggregation relationshipthe computer "has a" monitor, but the two parts can exist independently, and 
the same monitor can be attached to multiple computers at once, thus violating the second and third 
properties of composition. 

[Page 115] 

Figure 3.23 shows a class diagram for the ATM system. This diagram models most of the classes 
that we identified earlier in this section, as well as the associations between them that we can infer 
from the requirements document. [Note: Classes BalanceInquiry and Deposit participate in 
associations similar to those of class Withdrawal, so we have chosen to omit them from this diagram 
to keep it simple. In Chapter 13, we expand our class diagram to include all the classes in the ATM 
system.] 

Figure 3.23. Class diagram for the ATM system model. 

[View full size image] 

Page 44 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 
Figure 3.23 presents a graphical model of the structure of the ATM system. This class diagram 
includes classes BankDatabase and Account, and several associations that were not present in either 
Fig. 3.20 or Fig. 3.22. The class diagram shows that class ATM has a one-to-one relationship with 
class BankDatabaseone ATM object authenticates users against one BankDatabase object. In Fig. 
3.23, we also model the fact that the bank's database contains information about many accountsone 
object of class BankDatabase participates in a composition relationship with zero or more objects of 
class Account. Recall from Fig. 3.21 that the multiplicity value 0..* at the Account end of the 
association between class BankDatabase and class Account indicates that zero or more objects of 
class Account take part in the association. Class BankDatabase has a one-to-many relationship with 
class Accountthe BankDatabase stores many Accounts. Similarly, class Account has a many-to-one 
relationship with class BankDatabasethere can be many Accounts stored in the BankDatabase. 
[Note: Recall from Fig. 3.21 that the multiplicity value * is identical to 0..*. We include 0..* in our 
class diagrams for clarity.] 

[Page 116] 

Figure 3.23 also indicates that if the user is performing a withdrawal, "one object of class 
Withdrawal accesses/modifies an account balance through one object of class BankDatabase." We 
could have created an association directly between class Withdrawal and class Account. The 
requirements document, however, states that the "ATM must interact with the bank's account 
information database" to perform transactions. A bank account contains sensitive information, and 
systems engineers must always consider the security of personal data when designing a system. 
Thus, only the BankDatabase can access and manipulate an account directly. All other parts of the 
system must interact with the database to retrieve or update account information (e.g., an account 
balance). 

The class diagram in Fig. 3.23 also models associations between class Withdrawal and classes 
Screen, CashDispenser and Keypad. A withdrawal transaction includes prompting the user to 
choose a withdrawal amount and receiving numeric input. These actions require the use of the screen 
and the keypad, respectively. Furthermore, dispensing cash to the user requires access to the cash 

Page 45 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



dispenser. 

Classes BalanceInquiry and Deposit, though not shown in Fig. 3.23, take part in several 
associations with the other classes of the ATM system. Like class Withdrawal, each of these classes 
associates with classes ATM and BankDatabase. An object of class BalanceInquiry also associates 
with an object of class Screen to display the balance of an account to the user. Class Deposit 
associates with classes Screen, Keypad and DepositSlot. Like withdrawals, deposit transactions 
require use of the screen and the keypad to display prompts and receive input, respectively. To 
receive deposit envelopes, an object of class Deposit accesses the deposit slot. 

We have now identified the classes in our ATM system (although we may discover others as we 
proceed with the design and implementation). In Section 4.13, we determine the attributes for each 
of these classes, and in Section 5.11, we use these attributes to examine how the system changes over 
time. In Section 6.22, we determine the operations of the classes in our system. 

Software Engineering Case Study Self-Review Exercises 

Answers to Software Engineering Case Study Self-Review Exercises 

3.1 Suppose we have a class Car that represents a car. Think of some of the different 
pieces that a manufacturer would put together to produce a whole car. Create a class 
diagram (similar to Fig. 3.22) that models some of the composition relationships of 
class Car. 

3.2 Suppose we have a class File that represents an electronic document in a stand-
alone, non-networked computer represented by class Computer. What sort of 
association exists between class Computer and class File? 

a. Class Computer has a one-to-one relationship with class File. 

b. Class Computer has a many-to-one relationship with class File. 

c. Class Computer has a one-to-many relationship with class File. 

d. Class Computer has a many-to-many relationship with class File. 

3.3 State whether the following statement is true or false, and if false, explain why: A 
UML diagram in which a class's second and third compartments are not modeled is 
said to be an elided diagram. 

3.4 Modify the class diagram of Fig. 3.23 to include class Deposit instead of class 
Withdrawal. 

3.1 [Note: Student answers may vary.] Figure 3.24 presents a class diagram that shows 
some of the composition relationships of a class Car. 

Figure 3.24. Class diagram showing composition relationships of a class Car. 

(This item is displayed on page 117 in the print version)  

[View full size image] 

Page 46 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

3.2 c. [Note: In a computer network, this relationship could be many-to-many.] 

[Page 117] 

3.3 True. 

3.4 Figure 3.25 presents a class diagram for the ATM including class Deposit instead of 
class Withdrawal (as in Fig. 3.23). Note that Deposit does not access 
CashDispenser, but does access DepositSlot. 

Figure 3.25. Class diagram for the ATM system model including class Deposit. 

[View full size image] 

 

 

Page 47 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

 

 

  
  

[Page 118] 

3.12. Wrap-Up 

In this chapter, you learned how to create user-defined classes, and how to create and use objects of 
those classes. In particular, we declared data members of a class to maintain data for each object of 
the class. We also defined member functions that operate on that data. You learned how to call an 
object's member functions to request the services it provides and how to pass data to those member 
functions as arguments. We discussed the difference between a local variable of a member function 
and a data member of a class. We also showed how to use a constructor to specify the initial values 
for an object's data members. You learned how to separate the interface of a class from its 
implementation to promote good software engineering. We also presented a diagram that shows the 
files that class-implementation programmers and client-code programmers need to compile the code 
they write. We demonstrated how set functions can be used to validate an object's data and ensure 
that objects are maintained in a consistent state. In addition, UML class diagrams were used to model 
classes and their constructors, member functions and data members. In the next chapter, we begin 
our introduction to control statements, which specify the order in which a function's actions are 
performed. 

  
  

[Page 118 (continued)] 

Summary 

l Performing a task in a program requires a function. The function hides from its user the 
complex tasks that it performs. 

l A function in a class is known as a member function and performs one of the class's tasks. 

l You must create an object of a class before a program can perform the tasks the class 
describes. That is one reason C++ is known as an object-oriented programming language. 

l Each message sent to an object is a member-function call that tells the object to perform a task.

l An object has attributes that are carried with the object as it is used in a program. These 
attributes are specified as data members in the object's class. 

l A class definition contains the data members and member functions that define the class's 
attributes and behaviors, respectively. 

l A class definition begins with the keyword class followed immediately by the class name. 

l By convention, the name of a user-defined class begins with a capital letter and, for 
readability, each subsequent word in the class name begins with a capital letter. 

l Every class's body is enclosed in a pair of braces ({ and }) and ends with a semicolon. 

Page 48 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



l Member functions that appear after access specifier public can be called by other functions in 
a program and by member functions of other classes. 

l Access specifiers are always followed by a colon (:). 

l Keyword void is a special return type which indicates that a function will perform a task but 
will not return any data to its calling function when it completes its task. 

l By convention, function names begin with a lowercase first letter and all subsequent words in 
the name begin with a capital letter. 

l An empty set of parentheses after a function name indicates that the function does not require 
additional data to perform its task. 

l Every function's body is delimited by left and right braces ({ and }). 

l Typically, you cannot call a member function until you create an object of its class. 

[Page 119] 
l Each new class you create becomes a new type in C++ that can be used to declare variables 

and create objects. This is one reason why C++ is known as an extensible language. 

l A member function can require one or more parameters that represent additional data it needs 
to perform its task. A function call supplies arguments for each of the function's parameters. 

l A member function is called by following the object name with a dot operator (.), the function 
name and a set of parentheses containing the function's arguments. 

l A variable of C++ Standard Library class string represents a string of characters. This class 
is defined in header file <string>, and the name string belongs to namespace std. 

l Function getline (from header <string>) reads characters from its first argument until a 
newline character is encountered, then places the characters (not including the newline) in the 
string variable specified as its second argument. The newline character is discarded. 

l A parameter list may contain any number of parameters, including none at all (represented by 
empty parentheses) to indicate that a function does not require any parameters. 

l The number of arguments in a function call must match the number of parameters in the 
parameter list of the called member function's header. Also, the argument types in the function 
call must be consistent with the types of the corresponding parameters in the function header. 

l Variables declared in a function's body are local variables and can be used only from the point 
of their declaration in the function to the immediately following closing right brace (}). When 
a function terminates, the values of its local variables are lost. 

l A local variable must be declared before it can be used in a function. A local variable cannot 
be accessed outside the function in which it is declared. 

l Data members normally are private. Variables or functions declared private are accessible 
only to member functions of the class in which they are declared. 

Page 49 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



l When a program creates (instantiates) an object of a class, its private data members are 
encapsulated (hidden) in the object and can be accessed only by member functions of the 
object's class. 

l When a function that specifies a return type other than void is called and completes its task, 
the function returns a result to its calling function. 

l By default, the initial value of a string is the empty stringi.e., a string that does not contain 
any characters. Nothing appears on the screen when an empty string is displayed. 

l Classes often provide public member functions to allow clients of the class to set or get 
private data members. The names of these member functions normally begin with set or get. 

l Providing public set and get functions allows clients of a class to indirectly access the hidden 
data. The client knows that it is attempting to modify or obtain an object's data, but the client 
does not know how the object performs these operations. 

l The set and get functions of a class also should be used by other member functions within the 
class to manipulate the class's private data, although these member functions can access the 
private data directly. If the class's data representation is changed, member functions that 
access the data only via the set and get functions will not require modificationonly the bodies 
of the set and get functions that directly manipulate the data member will need to change. 

l A public set function should carefully scrutinize any attempt to modify the value of a data 
member to ensure that the new value is appropriate for that data item. 

l Each class you declare should provide a constructor to initialize an object of the class when the 
object is created. A constructor is a special member function that must be defined with the 
same name as the class, so that the compiler can distinguish it from the class's other member 
functions. 

l A difference between constructors and functions is that constructors cannot return values, so 
they cannot specify a return type (not even void). Normally, constructors are declared public. 

[Page 120] 
l C++ requires a constructor call at the time each object is created, which helps ensure that 

every object is initialized before it is used in a program. 

l A constructor that takes no arguments is a default constructor. In any class that does not 
include a constructor, the compiler provides a default constructor. The class programmer can 
also define a default constructor explicitly. If the programmer defines a constructor for a class, 
C++ will not create a default constructor. 

l Class definitions, when packaged properly, can be reused by programmers worldwide. 

l It is customary to define a class in a header file that has a .h filename extension. 

l If the class's implementation changes, the class's clients should not be required to change. 

l Interfaces define and standardize the ways in which things such as people and systems 
interact. 

Page 50 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



l The interface of a class describes the public member functions (also known as public 
services) that are made available to the class's clients. The interface describes what services 
clients can use and how to request those services, but does not specify how the class carries 
out the services. 

l A fundamental principle of good software engineering is to separate interface from 
implementation. This makes programs easier to modify. Changes in the class's implementation 
do not affect the client as long as the class's interface originally provided to the client remains 
unchanged. 

l A function prototype contains a function's name, its return type and the number, types and 
order of the parameters the function expects to receive. 

l Once a class is defined and its member functions are declared (via function prototypes), the 
member functions should be defined in a separate source-code file 

l For each member function defined outside of its corresponding class definition, the function 
name must be preceded by the class name and the binary scope resolution operator (::). 

l Class string's length member function returns the number of characters in a string object. 

l Class string's member function substr (short for "substring") returns a new string object 
created by copying part of an existing string object. The function's first argument specifies 
the starting position in the original string from which characters are copied. Its second 
argument specifies the number of characters to copy. 

l In the UML, each class is modeled in a class diagram as a rectangle with three compartments. 
The top compartment contains the class name, centered horizontally in boldface. The middle 
compartment contains the class's attributes (data members in C++). The bottom compartment 
contains the class's operations (member functions and constructors in C++). 

l The UML models operations by listing the operation name followed by a set of parentheses. A 
plus sign (+) preceding the operation name indicates a public operation in the UML (i.e., a 
public member function in C++). 

l The UML models a parameter of an operation by listing the parameter name, followed by a 
colon and the parameter type between the parentheses following the operation name. 

l The UML has its own data types. Not all the UML data types have the same names as the 
corresponding C++ types. The UML type String corresponds to the C++ type string. 

l The UML represents data members as attributes by listing the attribute name, followed by a 
colon and the attribute type. Private attributes are preceded by a minus sign () in the UML. 

l The UML indicates the return type of an operation by placing a colon and the return type after 
the parentheses following the operation name. 

l UML class diagrams do not specify return types for operations that do not return values. 

l The UML models constructors as operations in a class diagram's third compartment. To 
distinguish a constructor from a class's operations, the UML places the word "constructor" 
between guillemets (« and ») before the constructor's name. 

Page 51 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

  
  

[Page 121] 

Terminology 

access specifier 

accessor 

argument 

attribute (UML) 

binary scope resolution operator (::) 

body of a class definition 

calling function (caller) 

camel case 

class definition 

class diagram (UML) 

class-implementation programmer 

client-code programmer 

client of an object or class 

compartment in a class diagram (UML) 

consistent state 

constructor 

data hiding 

data member 

default constructor 

default precision 

defining a class 

dot operator (.) 

empty string 

Page 52 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



extensible language 

function call 

function header 

function prototype 

get function 

getline function of <string> library 

guillemets, « and » (UML) 

header file 

implementation of a class 

instance of a class 

interface of a class 

invoke a member function 

length member function of class string 

local variable 

member function 

member-function call 

message (send to an object) 

minus (-) sign (UML) 

mutator 

object code 

operation (UML) 

operation parameter (UML) 

parameter 

parameter list 

plus (+) sign (UML) 

precision 

private access specifier 

Page 53 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

public access specifier 

public services of a class 

return type 

separate interface from implementation 

set function 

software engineering 

source-code file 

string class 

<string> header file 

substr member function of class string 

UML class diagram 

validation 

validity checking 

void return type 

  
  

[Page 121 (continued)] 

Self-Review Exercises 

3.1 Fill in the blanks in each of the following: 

a. A house is to a blueprint as a(n) _________ is to a class. 

b. Every class definition contains keyword _________ followed immediately by 
the class's name. 

c. A class definition is typically stored in a file with the _________ filename 
extension. 

d. Each parameter in a function header should specify both a(n) _________ and a
(n) _________. 

e. When each object of a class maintains its own copy of an attribute, the variable 

Page 54 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

that represents the attribute is also known as a(n) _________. 

f. Keyword public is a(n) _________. 

g. Return type _________ indicates that a function will perform a task but will 
not return any information when it completes its task. 

h. Function _________ from the <string> library reads characters until a 
newline character is encountered, then copies those characters into the 
specified string. 

[Page 122] 
i. When a member function is defined outside the class definition, the function 

header must include the class name and the _________, followed by the 
function name to "tie" the member function to the class definition. 

j. The source-code file and any other files that use a class can include the class's 
header file via an _________ preprocessor directive. 

3.2 State whether each of the following is true or false. If false, explain why. 

a. By convention, function names begin with a capital letter and all subsequent 
words in the name begin with a capital letter. 

b. Empty parentheses following a function name in a function prototype indicate 
that the function does not require any parameters to perform its task. 

c. Data members or member functions declared with access specifier private are 
accessible to member functions of the class in which they are declared. 

d. Variables declared in the body of a particular member function are known as 
data members and can be used in all member functions of the class. 

e. Every function's body is delimited by left and right braces ({ and }). 

f. Any source-code file that contains int main() can be used to execute a 
program. 

g. The types of arguments in a function call must match the types of the 
corresponding parameters in the function prototype's parameter list. 

3.3 What is the difference between a local variable and a data member? 

3.4 Explain the purpose of a function parameter. What is the difference between a 
parameter and an argument? 

  
  

[Page 122 (continued)] 

Page 55 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

 

Answers to Self-Review Exercises 

3.1 a) object. b) class. c) .h d) type, name. e) data member. f) access specifier. g) void. 
h) getline. i) binary scope resolution operator (::). j) #include. 

3.2 a) False. By convention, function names begin with a lowercase letter and all 
subsequent words in the name begin with a capital letter. b) True. c) True. d) False. 
Such variables are called local variables and can be used only in the member function 
in which they are declared. e) True. f) True. g) True. 

3.3 A local variable is declared in the body of a function and can be used only from the 
point at which it is declared to the immediately following closing brace. A data 
member is declared in a class definition, but not in the body of any of the class's 
member functions. Every object (instance) of a class has a separate copy of the class's 
data members. Also, data members are accessible to all member functions of the 
class. 

3.4 A parameter represents additional information that a function requires to perform its 
task. Each parameter required by a function is specified in the function header. An 
argument is the value supplied in the function call. When the function is called, the 
argument value is passed into the function parameter so that the function can perform 
its task. 

  
  

[Page 122 (continued)] 

Exercises 

3.5 Explain the difference between a function prototype and a function definition. 

3.6 What is a default constructor? How are an object's data members initialized if a class 
has only an implicitly defined default constructor? 

3.7 Explain the purpose of a data member. 

3.8 What is a header file? What is a source-code file? Discuss the purpose of each. 

3.9 Explain how a program could use class string without inserting a using declaration. 

[Page 123] 

3.10 Explain why a class might provide a set function and a get function for a data 
member. 

3.11 (Modifying Class GradeBook) Modify class GradeBook (Figs. 3.113.12) as follows: 

a. Include a second string data member that represents the course instructor's 
name. 

Page 56 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



b. Provide a set function to change the instructor's name and a get function to 
retrieve it. 

c. Modify the constructor to specify two parametersone for the course name and 
one for the instructor's name. 

d. Modify member function displayMessage such that it first outputs the 
welcome message and course name, then outputs "This course is 
presented by: " followed by the instructor's name. 

Use your modified class in a test program that demonstrates the class's new 
capabilities. 

3.12 (Account Class) Create a class called Account that a bank might use to represent 
customers' bank accounts. Your class should include one data member of type int to 
represent the account balance. [Note: In subsequent chapters, we'll use numbers that 
contain decimal points (e.g., 2.75)called floating-point valuesto represent dollar 
amounts.] Your class should provide a constructor that receives an initial balance and 
uses it to initialize the data member. The constructor should validate the initial 
balance to ensure that it is greater than or equal to 0. If not, the balance should be set 
to 0 and the constructor should display an error message, indicating that the initial 
balance was invalid. The class should provide three member functions. Member 
function credit should add an amount to the current balance. Member function 
debit should withdraw money from the Account and should ensure that the debit 
amount does not exceed the Account's balance. If it does, the balance should be left 
unchanged and the function should print a message indicating "Debit amount 
exceeded account balance." Member function getBalance should return the 
current balance. Create a program that creates two Account objects and tests the 
member functions of class Account. 

3.13 (Invoice Class) Create a class called Invoice that a hardware store might use to 
represent an invoice for an item sold at the store. An Invoice should include four 
pieces of information as data membersa part number (type string), a part description 
(type string), a quantity of the item being purchased (type int) and a price per item 
(type int). [Note: In subsequent chapters, we'll use numbers that contain decimal 
points (e.g., 2.75)called floating-point valuesto represent dollar amounts.] Your class 
should have a constructor that initializes the four data members. Provide a set and a 
get function for each data member. In addition, provide a member function named 
getInvoiceAmount that calculates the invoice amount (i.e., multiplies the quantity by 
the price per item), then returns the amount as an int value. If the quantity is not 
positive, it should be set to 0. If the price per item is not positive, it should be set to 0. 
Write a test program that demonstrates class Invoice's capabilities. 

3.14 (Employee Class) Create a class called Employee that includes three pieces of 
information as data membersa first name (type string), a last name (type string) 
and a monthly salary (type int). [Note: In subsequent chapters, we'll use numbers 
that contain decimal points (e.g., 2.75)called floating-point valuesto represent dollar 
amounts.] Your class should have a constructor that initializes the three data 
members. Provide a set and a get function for each data member. If the monthly 
salary is not positive, set it to 0. Write a test program that demonstrates class 
Employee's capabilities. Create two Employee objects and display each object's 
yearly salary. Then give each Employee a 10 percent raise and display each 

Page 57 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm



 

Employee's yearly salary again. 

3.15 (Date Class) Create a class called Date that includes three pieces of information as 
data membersa month (type int), a day (type int) and a year (type int). Your class 
should have a constructor with three parameters that uses the parameters to initialize 
the three data members. For the purpose of this exercise, assume that the values 
provided for the year and day are correct, but ensure that the month value is in the 
range 112; if it is not, set the month to 1. Provide a set and a get function for each 
data member. Provide a member function displayDate that displays the month, day 
and year separated by forward slashes (/). Write a test program that demonstrates 
class Date's capabilities. 

  

Page 58 of 58Chapter 3.  Introduction to Classes and Objects

2011-5-11file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm


