Chapter 3. Introduction to Classes and Objects Page 1 of 58

e prey NEXT

[Page 74]

Chapter 3. Introduction to Classes and Objects

You will see something new. Two things. And I call them Thing One and Thing Two.
Dr. Theodor Seuss Geisel

Nothing can have value without being an object of utility.

Karl Marx

Your public servants serve you right.

Adlai E. Stevenson

Knowing how to answer one who speaks, To reply to one who sends a message.

Amenemope

OBJECTIVES

In this chapter you will learn:

What classes, objects, member functions and data members are.

How to define a class and use it to create an object.

How to define member functions in a class to implement the class's behaviors.

How to declare data members in a class to implement the class's attributes.

How to call a member function of an object to make that member function perform its task.
The differences between data members of a class and local variables of a function.

How to use a constructor to ensure that an object's data is initialized when the object is
created.

How to engineer a class to separate its interface from its implementation and encourage reuse.

[Page 75]

Outline

3.1 Introduction

3.2 Classes, Objects, Member Functions and Data Members

3.3 Overview of the Chapter Examples

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 2 of 58

3.4 Defining a Class with a Member Function
e

[98)

S

fining a Member Function with a Parameter
3.6 Data Members, set Functions and get Functions
3.7 Initializing Objects with Constructors

3.8 Placing a Class in a Separate File for Reusability
3.9 Separating Interface from Implementation

3.10 Validating Data with set Functions

3.11 (Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements
Document

3.12 Wrap-Up

Summary

Terminology

Self-Review Exercises

Answers to Self-Review Exercises

Exercises

@ prey NEXT
Ceprey NEXT

[Page 75 (continued)]
3.1. Introduction

In Chapter 2, you created simple programs that displayed messages to the user, obtained information
from the user, performed calculations and made decisions. In this chapter, you will begin writing
programs that employ the basic concepts of object-oriented programming that we introduced in
Section 1.17. One common feature of every program in Chapter 2 was that all the statements that
performed tasks were located in function main. Typically, the programs you develop in this book
will consist of function main and one or more classes, each containing data members and member
functions. If you become part of a development team in industry, you might work on software
systems that contain hundreds, or even thousands, of classes. In this chapter, we develop a simple,
well-engineered framework for organizing object-oriented programs in C++.

First, we motivate the notion of classes with a real-world example. Then we present a carefully
paced sequence of seven complete working programs to demonstrate creating and using your own
classes. These examples begin our integrated case study on developing a grade-book class that
instructors can use to maintain student test scores. This case study is enhanced over the next several
chapters, culminating with the version presented in Chapter 7, Arrays and Vectors.

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 3 of 58

@ prey NEXT
Ceprey NEXT

[Page 75 (continued)]
3.2. Classes, Objects, Member Functions and Data Members

Let's begin with a simple analogy to help you reinforce your understanding from Section 1.17 of
classes and their contents. Suppose you want to drive a car and make it go faster by pressing down
on its accelerator pedal. What must happen before you can do this? Well, before you can drive a car,
someone has to design it and build it. A car typically begins as engineering drawings, similar to the
blueprints used to design a house. These drawings include the design for an accelerator pedal that the
driver will use to make the car go faster. In a sense, the pedal "hides" the complex mechanisms that
actually make the car go faster, just as the brake pedal "hides" the mechanisms that slow the car, the
steering wheel "hides" the mechanisms that turn the car and so on. This enables people with little or
no knowledge of how cars are engineered to drive a car easily, simply by using the accelerator pedal,
the brake pedal, the steering wheel, the transmission shifting mechanism and other such simple and
user-friendly "interfaces" to the car's complex internal mechanisms.

[Page 76]

Unfortunately, you cannot drive the engineering drawings of a carbefore you can drive a car, it must
be built from the engineering drawings that describe it. A completed car will have an actual
accelerator pedal to make the car go faster. But even that's not enoughthe car will not accelerate on
its own, so the driver must press the accelerator pedal to tell the car to go faster.

Now let's use our car example to introduce the key object-oriented programming concepts of this
section. Performing a task in a program requires a function (such as main, as described in Chapter 2).
The function describes the mechanisms that actually perform its tasks. The function hides from its
user the complex tasks that it performs, just as the accelerator pedal of a car hides from the driver the
complex mechanisms of making the car go faster. In C++, we begin by creating a program unit
called a class to house a function, just as a car's engineering drawings house the design of an
accelerator pedal. Recall from Section 1.17 that a function belonging to a class is called a member
function. In a class, you provide one or more member functions that are designed to perform the
class's tasks. For example, a class that represents a bank account might contain one member function
to deposit money into the account, another to withdraw money from the account and a third to
inquire what the current account balance is.

Just as you cannot drive an engineering drawing of a car, you cannot "drive" a class. Just as someone
has to build a car from its engineering drawings before you can actually drive the car, you must
create an object of a class before you can get a program to perform the tasks the class describes. That
is one reason C++ is known as an object-oriented programming language. Note also that just as
many cars can be built from the same engineering drawing, many objects can be built from the same
class.

When you drive a car, pressing its gas pedal sends a message to the car to perform a taskthat is, make
the car go faster. Similarly, you send messages to an objecteach message is known as a member-
function call and tells a member function of the object to perform its task. This is often called
requesting a service from an object.

Thus far, we have used the car analogy to introduce classes, objects and member functions. In
addition to the capabilities a car provides, it also has many attributes, such as its color, the number of

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 4 of 58

doors, the amount of gas in its tank, its current speed and its total miles driven (i.e., its odometer
reading). Like the car's capabilities, these attributes are represented as part of a car's design in its
engineering diagrams. As you drive a car, these attributes are always associated with the car. Every
car maintains its own attributes. For example, each car knows how much gas is in its own gas tank,
but not how much is in the tanks of other cars. Similarly, an object has attributes that are carried with
the object as it is used in a program. These attributes are specified as part of the object's class. For
example, a bank account object has a balance attribute that represents the amount of money in the
account. Each bank account object knows the balance in the account it represents, but not the
balances of the other accounts in the bank. Attributes are specified by the class's data members.

@ prey NEXT
Ceprey NEXT

[Page 77]
3.3. Overview of the Chapter Examples

The remainder of this chapter presents seven simple examples that demonstrate the concepts we
introduced in the context of the car analogy. These examples, summarized below, incrementally
build a GradeBook class to demonstrate these concepts:

1. The first example presents a GradeBook class with one member function that simply displays a
welcome message when it is called. We then show how to create an object of that class and
call the member function so that it displays the welcome message.

2. The second example modifies the first by allowing the member function to receive a course
name as a so-called argument. Then, the member function displays the course name as part of
the welcome message.

3. The third example shows how to store the course name in a GradeBook object. For this version
of the class, we also show how to use member functions to set the course name in the object
and get the course name from the object.

4. The fourth example demonstrates how the data in a GradeBook object can be initialized when
the object is createdthe initialization i1s performed by a special member function called the
class's constructor. This example also demonstrates that each GradeBook object maintains its
own course name data member.

5. The fifth example modifies the fourth by demonstrating how to place class GradeBook into a
separate file to enable software reusability.

6. The sixth example modifies the fifth by demonstrating the good software-engineering
principle of separating the interface of the class from its implementation. This makes the class
easier to modify without affecting any clients of the class's objectsthat is, any classes or
functions that call the member functions of the class's objects from outside the objects.

7. The last example enhances class GradeBook by introducing data validation, which ensures that
data in an object adheres to a particular format or is in a proper value range. For example, a
Date object would require a month value in the range 112. In this GradeBook example, the
member function that sets the course name for a GradeBook object ensures that the course
name is 25 characters or fewer. If not, the member function uses only the first 25 characters of
the course name and displays a warning message.

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 5 of 58

Note that the GradeBook examples in this chapter do not actually process or store grades. We begin
processing grades with class GradeBook in Chapter 4 and we store grades in a GradeBook object in
Chapter 7, Arrays and Vectors.

@ prey NEXT
Ceprey NEXT

[Page 77 (continued)]
3.4. Defining a Class with a Member Function

We begin with an example (Fig. 3.1) that consists of class GradeBook, which represents a grade
book that an instructor can use to maintain student test scores, and a main function (lines 2025) that
creates a GradeBook object. This is the first in a series of graduated examples leading up to a fully
functional GradeBook class in Chapter 7, Arrays and Vectors. Function main uses this object and its
member function to display a message on the screen welcoming the instructor to the grade-book
program.

[Page 78]

Figure 3.1. Defining class cradeBook with a member function, creating a cradeBook object and calling its member
function.

1 // Fig. 3.1: £ig03 0l.cpp
2 // Define class GradeBook with a member function displayMessage;
3 // Create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5 using std::cout;
6 using std::endl;
-
8 // GradeBook class definition
9 <class GradeBook
10 |
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage ()
14 {
15 cout << "Welcome to the Grade Book!" << endl;
16 } // end function displayMessage
17 }; // end class GradeBook
18
19 // function main begins program execution
20 int main ()
21 |
22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
23 myGradeBook.displayMessage(); // call object's displayMessage function
24 return 0; // indicate successful termination
25 '} // end main
Welcome to the Grade Book!

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 6 of 58

First we describe how to define a class and a member function. Then we explain how an object is
created and how to call a member function of an object. The first few examples contain function
main and the GradeBook class it uses in the same file. Later in the chapter, we introduce more
sophisticated ways to structure your programs to achieve better software engineering.

Class GradeBook

Before function main (lines 2025) can create an object of class GradeBook, we must tell the compiler
what member functions and data members belong to the class. This is known as defining a class.
The GradeBook class definition (lines 917) contains a member function called displayMessage
(lines 1316) that displays a message on the screen (line 15). Recall that a class is like a blueprintso
we need to make an object of class GradeBook (line 22) and call its displayMessage member
function (line 23) to get line 15 to execute and display the welcome message. We'll soon explain
lines 2223 in detail.

The class definition begins at line 9 with the keyword c1ass followed by the class name GradeBook.
By convention, the name of a user-defined class begins with a capital letter, and for readability, each
subsequent word in the class name begins with a capital letter. This capitalization style is often
referred to as camel case, because the pattern of uppercase and lowercase letters resembles the
silhouette of a camel.

[Page 79]

Every class's body is enclosed in a pair of left and right braces ({ and }), as in lines 10 and 17. The
class definition terminates with a semicolon (line 17).

Common Programming Error 3.1

Forgetting the semicolon at the end of a class definition is a syntax error.

Recall that the function main is always called automatically when you execute a program. Most
functions do not get called automatically. As you will soon see, you must call member function
displayMessage explicitly to tell it to perform its task.

Line 11 contains the access-specifier label pub1ic:. The keyword public is called an access
specifier. Lines 1316 define member function displayMessage. This member function appears after
access specifier public: to indicate that the function is "available to the public"that is, it can be
called by other functions in the program and by member functions of other classes. Access specifiers
are always followed by a colon (:). For the remainder of the text, when we refer to the access
specifier public, we will omit the colon as we did in this sentence. Section 3.6 introduces a second
access specifier, private (again, we omit the colon in our discussions, but include it in our
programs).

Each function in a program performs a task and may return a value when it completes its taskfor
example, a function might perform a calculation, then return the result of that calculation. When you
define a function, you must specify a return type to indicate the type of the value returned by the
function when it completes its task. In line 13, keyword void to the left of the function name
displayMessage is the function's return type. Return type void indicates that displayMessage will
perform a task but will not return (i.e., give back) any data to its calling function (in this example,

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 7 of 58

main, as we'll see in a moment) when it completes its task. (In Fig. 3.5, you will see an example of a
function that returns a value.)

The name of the member function, displayMessage, follows the return type. By convention,
function names begin with a lowercase first letter and all subsequent words in the name begin with a
capital letter. The parentheses after the member function name indicate that this is a function. An
empty set of parentheses, as shown in line 13, indicates that this member function does not require
additional data to perform its task. You will see an example of a member function that does require
additional data in Section 3.5. Line 13 is commonly referred to as the function header. Every
function's body is delimited by left and right braces ({ and }), as in lines 14 and 16.

The body of a function contains statements that perform the function's task. In this case, member
function displayMessage contains one statement (line 15) that displays the message "welcome to
the Grade Book!". After this statement executes, the function has completed its task.

Common Programming Error 3.2

Returning a value from a function whose return type has been declared void is
a compilation error.

Common Programming Error 3.3

Defining a function inside another function is a syntax error.

[Page 80]
Testing Class GradeBook

Next, we'd like to use class GradeBook in a program. As you learned in Chapter 2, function main
begins the execution of every program. Lines 2025 of Fig. 3.1 contain the main function that will
control our program's execution.

In this program, we'd like to call class GradeBook's displayMessage member function to display the
welcome message. Typically, you cannot call a member function of a class until you create an object
of that class. (As you will learn in Section 10.7, static member functions are an exception.) Line 22
creates an object of class GradeBook called myGradeBook. Note that the variable's type is
GradeBookthe class we defined in lines 917. When we declare variables of type int, as we did in
Chapter 2, the compiler knows what int isit's a fundamental type. When we write line 22, however,
the compiler does not automatically know what type GradeBook isit's a user-defined type. Thus, we
must tell the compiler what GradeBook is by including the class definition, as we did in lines 917. If
we omitted these lines, the compiler would issue an error message (such as "'GradeBook' :
undeclared identifier" in Microsoft Visual C++ NET or "'GradeBook': undeclared" in
GNU C++). Each new class you create becomes a new type that can be used to create objects.
Programmers can define new class types as needed; this is one reason why C++ is known as an
extensible language.

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 8 of 58

Line 23 calls the member function displayMessage (defined in lines 1316) using variable
myGradeBook followed by the dot operator (.), the function name displayMessage and an empty
set of parentheses. This call causes the displayMessage function to perform its task. At the
beginning of line 23, "myGradeBook." indicates that main should use the GradeBook object that was
created in line 22. The empty parentheses in line 13 indicate that member function displayMessage
does not require additional data to perform its task. (In Section 3.5, you'll see how to pass data to a
function.) When displayMessage completes its task, function main continues executing at line 24,
which indicates that main performed its tasks successfully. This is the end of main, so the program
terminates.

UML Class Diagram for Class GradeBook

Recall from Section 1.17 that the UML is a graphical language used by programmers to represent
their object-oriented systems in a standardized manner. In the UML, each class is modeled in a class
diagram as a rectangle with three compartments. Figure 3.2 presents a UML class diagram for class
GradeBook of Fig. 3.1. The top compartment contains the name of the class, centered horizontally
and in boldface type. The middle compartment contains the class's attributes, which correspond to
data members in C++. In Fig. 3.2 the middle compartment is empty, because the version of class
GradeBook in Fig. 3.1 does not have any attributes. (Section 3.6 presents a version of the GradeBook
class that does have an attribute.) The bottom compartment contains the class's operations, which
correspond to member functions in C++. The UML models operations by listing the operation name
followed by a set of parentheses. The class GradeBook has only one member function,
displayMessage, s0 the bottom compartment of Fig. 3.2 lists one operation with this name. Member
function displayMessage does not require additional information to perform its tasks, so the
parentheses following displayMessage in the class diagram are empty, just as they are in the
member function's header in line 13 of Fig. 3.1. The plus sign (+) in front of the operation name
indicates that displayMessage is a public operation in the UML (i.e., a pub1ic member function in
C++). We frequently use UML class diagrams to summarize class attributes and operations.

[Page 81]

Figure 3.2. UML class diagram indicating that class cradeBook has a public displayMessage Operation.
(This item is displayed on page 80 in the print version)

[View full size image]

GradeBook

+ dizplayMessage]

@ prey NEXT
Ceprey NEXT

[Page 81 (continued)]
3.5. Defining a Member Function with a Parameter
In our car analogy from Section 3.2, we mentioned that pressing a car's gas pedal sends a message to

the car to perform a taskmake the car go faster. But how fast should the car accelerate? As you

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 9 of 58

know, the farther down you press the pedal, the faster the car accelerates. So the message to the car
includes both the task to perform and additional information that helps the car perform the task. This
additional information is known as a parameterthe value of the parameter helps the car determine
how fast to accelerate. Similarly, a member function can require one or more parameters that
represent additional data it needs to perform its task. A function call supplies valuescalled
argumentsfor each of the function's parameters. For example, to make a deposit into a bank account,
suppose a deposit member function of an Account class specifies a parameter that represents the
deposit amount. When the deposit member function is called, an argument value representing the
deposit amount is copied to the member function's parameter. The member function then adds that
amount to the account balance.

Defining and Testing Class GradeBook

Our next example (Fig. 3.3) redefines class GradeBook (lines 1423) with a displayMessage
member function (lines 1822) that displays the course name as part of the welcome message. The
new displayMessage member function requires a parameter (courseName in line 18) that represents
the course name to output.

Figure 3.3. Defining class cradeBook with a member function that takes a parameter.
(This item is displayed on page 82 in the print version)

1 // Fig. 3.3: £ig03 03.cpp
2 // Define class GradeBook with a member function that takes a parameter;
3 // Create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 #include <string> // program uses C++ standard string class
10 using std::string;
11 using std::getline;
12
13 // GradeBook class definition
14 class GradeBook
15 {
16 public:
17 // function that displays a welcome message to the GradeBook user
18 void displayMessage (string courseName)
19 {
20 cout << "Welcome to the grade book for\n" << courseName << "!I"
21 << endl;
22 } // end function displayMessage
23 }; // end class GradeBook
24
25 // function main begins program execution
26 int main ()
27 |
28 string nameOfCourse; // string of characters to store the course name
29 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
30
31 // prompt for and input course name
32 cout << "Please enter the course name:" << endl;
33 getline(cin, nameOfCourse); // read a course name with blanks
34 cout << endl; // output a blank line
35
36 // call myGradeBook's displayMessage function
37 // and pass nameOfCourse as an argument
38 myGradeBook.displayMessage (nameOfCourse);
39 return 0; // indicate successful termination

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 10 of 58

40 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Before discussing the new features of class GradeBook, let's see how the new class is used in main
(lines 2640). Line 28 creates a variable of type string called nameofcourse that will be used to store
the course name entered by the user. A variable of type string represents a string of characters such
as "CS101 Introduction to C++ Programming". A string is actually an object of the C++
Standard Library class string. This class is defined in header file <string>, and the name string,
like cout, belongs to namespace std. To enable line 28 to compile, line 9 includes the <string>
header file. Note that the using declaration in line 10 allows us to simply write string in line 28
rather than std: :string. For now, you can think of string variables like variables of other types
such as int. You will learn about additional string capabilities in Section 3.10.

Line 29 creates an object of class GradeBook named myGradeBook. Line 32 prompts the user to enter
a course name. Line 33 reads the name from the user and assigns it to the nameofCourse variable,
using the library function getline to perform the input. Before we explain this line of code, let's
explain why we cannot simply write

cin >> nameOfCourse;

[Page 82]

to obtain the course name. In our sample program execution, we use the course name "cs101
Introduction to C++ Programming,”" which contains multiple words. (Recall that we highlight
user-supplied input in bold.) When cin is used with the stream extraction operator, it reads
characters until the first white-space character is reached. Thus, only "cs101" would be read by the
preceding statement. The rest of the course name would have to be read by subsequent input
operations.

[Page 83]

In this example, we'd like the user to type the complete course name and press Enter to submit it to
the program, and we'd like to store the entire course name in the string variable nameofCourse.
The function call getline (cin, nameOfCourse) in line 33 reads characters (including the space
characters that separate the words in the input) from the standard input stream object cin (i.e., the
keyboard) until the newline character is encountered, places the characters in the st ring variable
nameOfCourse and discards the newline character. Note that when you press Enter while typing
program input, a newline is inserted in the input stream. Also note that the <string> header file
must be included in the program to use function getline and that the name get1ine belongs to
namespace std.

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 11 of 58

Line 38 calls myGradeBook's displayMessage member function. The name0fCourse variable in
parentheses is the argument that is passed to member function displayMessage so that it can
perform its task. The value of variable nameOfCourse in main becomes the value of member
function displayMessage's parameter courseName 1n line 18. When you execute this program,
notice that member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, C5101 Introduction to C++ Programming).

More on Arguments and Parameters

To specify that a function requires data to perform its task, you place additional information in the
function's parameter list, which is located in the parentheses following the function name. The
parameter list may contain any number of parameters, including none at all (represented by empty
parentheses as in Fig. 3.1, line 13) to indicate that a function does not require any parameters.
Member function displayMessage's parameter list (Fig. 3.3, line 18) declares that the function
requires one parameter. Each parameter should specify a type and an identifier. In this case, the type
string and the identifier courseName indicate that member function displayMessage requires a
string to perform its task. The member function body uses the parameter courseName to access the
value that is passed to the function in the function call (line 38 in main). Lines 2021 display
parameter courseName's value as part of the welcome message. Note that the parameter variable's
name (line 18) can be the same as or different from the argument variable's name (line 38)you'll
learn why in Chapter 6, Functions and an Introduction to Recursion.

A function can specify multiple parameters by separating each parameter from the next with a
comma (we'll see an example in Figs. 6.46.5). The number and order of arguments in a function call
must match the number and order of parameters in the parameter list of the called member function's
header. Also, the argument types in the function call must match the types of the corresponding
parameters in the function header. (As you will learn in subsequent chapters, an argument's type and
its corresponding parameter's type need not always be identical, but they must be "consistent.") In
our example, the one string argument in the function call (i.e., name0fCourse) exactly matches the
one string parameter in the member-function definition (i.e., courseName).

Common Programming Error 3.4

Placing a semicolon after the right parenthesis enclosing the parameter list of a
function definition is a syntax error.

[Page 84]
Common Programming Error 3.5

Defining a function parameter again as a local variable in the function is a
compilation error.

Good Programming Practice 3.1

To avoid ambiguity, do not use the same names for the arguments passed to a
function and the corresponding parameters in the function definition.

file://C:\Documents and Settings\Administrator\Local Settings\Temp\~hhEE79.htm 2011-5-11

Chapter 3. Introduction to Classes and Objects Page 12 of 58

Good Programming Practice 3.2

% 7 1. Choosing meaningful function names and meaningful parameter names makes

M programs more readable and helps avoid excessive use of comments.

Updated UML Class Diagram for Class GradeBook

The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class GradeBook
defined in Fig. 3.1, this GradeBook class contains public member function displayMessage.
However, this version of displayMessage has a parameter. The UML models a parameter by listing
the parameter name, followed by a colon and the parameter type in the parentheses following the
operation name. The UML has its own data types similar to those of C++. The UML is language-
independentit is used with many different programming languagesso its terminology does not exactly
match that of C++. For example, the UML type string corresponds to the C++ type string.
Member function displayMessage of class GradeBook (Fig. 3.3; lines 1822) has a string
parameter named courseName, so Fig. 3.4 lists courseName : String between the parentheses
following the operation name displayMessage. Note that this version of the GradeBook class still
does not have any data members.

Figure 3.4. UML class diagram indicating that class cradeBook has a displayMessage operation with a courseName
parameter of UML type string.

[View full size image]

GradeBock

+deplaybesmegel couseName ; Sing)

@ prey NEXT
Ceprey NEXT

[Page 84 (continued)]
3.6. Data Members, set Functions and get Functions

In Chapter 2, we declared all of a program's variables in its main function. Variables declared in a
function definition's body are known as local variables and can be used only from the line of their
declaration in the function to the immediately following closing right brace (}) of the function
definition. A local variable must be declared before it can be used in a function. A local variable
cannot be accessed outside the function in which it is declared. When a function terminates, the
values of its local variables are lost. (You will s