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Abstract

Hierarchical models are extensively studied and widely used in statistics and many other
scientific areas. They provide an effective tool for combining information from similar resources
and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and
Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the
homoscedastic normal model, it is well known that shrinkage estimators, especially the James-
Stein estimator, have good risk properties. The heteroscedastic model, though more appropriate
for practical applications, is less well studied, and it is unclear what types of shrinkage estima-
tors are superior in terms of the risk. We propose in this paper a class of shrinkage estimators
based on Stein’s unbiased estimate of risk (SURE). We study asymptotic properties of various
common estimators as the number of means to be estimated grows (p → ∞). We establish the
asymptotic optimality property for the SURE estimators. We then extend our construction to
create a class of semi-parametric shrinkage estimators and establish corresponding asymptotic
optimality results. We emphasize that though the form of our SURE estimators is partially ob-
tained through a normal model at the sampling level, their optimality properties do not heavily
depend on such distributional assumptions. We apply the methods to two real data sets and
obtain encouraging results.

Key words and phrases. Heteroscedasticity, hierarchical model, shrinkage estimator, Stein’s
unbiased risk estimate (SURE), asymptotic optimality.

1 Introduction

Hierarchical modeling has become an increasingly important statistical method in many scientific

and engineering applications. It provides an effective tool to combine information and achieve

partial pooling of inference. The application of hierarchical models usually involves simultaneous

inference of some quantities of interest for different yet similar groups of populations. The earli-

est study of such problems in statistics is perhaps the simultaneous estimation of several normal
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Brown’s research is supported in part by NSF grant DMS-1007657. The authors thank Professor Philippe Rigollet at
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means. Since the seminal work by James and Stein (1961), shrinkage estimation has been influential

in the development of hierarchical normal models. Stein (1962) described a hierarchical, empirical

Bayes interpretation for this estimator. See also Lindley (1962). Efron and Morris (1973) further de-

veloped this empirical Bayes interpretation and proposed several competing parametric empirical

Bayes estimators. A full Bayesian treatment of this problem can be found in Berger and Strawder-

man (1996). Recently, Brown and Greenshtein (2009) proposed a nonparametric empirical Bayes

method.

There has been substantial research toward understanding the risk properties of shrinkage es-

timators for the homoscedastic hierarchical normal models (i.e., all the variances in the subpopu-

lations are equal). Baranchik (1971) gave a general form of admissible minimax estimators. Straw-

derman (1971) studied a class of proper Bayes minimax estimators. Brown (1971) gave a sufficient

condition for admissibility of generalized Bayes estimators. The use of loss other than the usual

quadratic one is discussed in Brown (1975) and Berger (1976). The heteroscedastic case (i.e., the un-

equal variance case), on the other hand, is less well addressed, though it is more practical for real

applications. Typical minimax estimators, like the one given in Hudson (1974) and Berger (1976),

usually shrink the coordinates with lower variances more than those with higher ones, as opposed

to the common intuition that more shrinkage should be applied to components with higher vari-

ance. The estimators considered in this paper do not exhibit this counter-intuitive behavior.

For real-world applications, parametric empirical Bayes estimators (Efron and Morris, 1975;

Morris, 1983) are widely adopted. The application of parametric empirical Bayes models usually

involves the specification of a second-level model and the estimation of the corresponding hyper-

parameters. For example, for the normal case, the common practice is to choose the normal-normal

hierarchical structure and estimate the hyper-parameters through maximum marginal likelihood

(EBMLE) or method of moments (EBMM). There has also been substantial study on the application

of hierarchical Bayes models and nonparametric empirical Bayes methods. Brown (2008) evalu-

ated the performance of various shrinkage estimators using the data on batting average for Major

League Baseball players over a single season. It was noted that the parametric empirical Bayes

maximum likelihood and the hierarchical Bayes method tend to have a poor performance due to

their heavy reliance on the parametric assumptions of the second-level model. Other methods like

the empirical Bayes method of moments and nonparametric empirical Bayes method were shown

to achieve a better performance. Motivated from such an empirical study, it is hence interesting to

know whether it is possible to formally compare those different shrinkage estimators and identify

the “optimal” shrinkage estimator.
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For this purpose, we propose a class of shrinkage estimators that can be readily applied in

the heteroscedastic hierarchical normal models. We name our shrinkage estimators SURE shrink-

age estimators, since the method is inspired by Stein’s unbiased estimate of risk (SURE) (Stein,

1973; Stein 1981). We first focus on shrinkage estimators whose forms are derived from the classic

normal-normal hierarchical model and show that our SURE shrinkage estimators possess asymp-

totic optimality properties within this (sub)class. The results are then generalized to a class of

semi-parametric shrinkage estimators that only require the shrinkage factors to satisfy a certain

monotone relationship. It is emphasized that this asymptotic optimality property neither depends

on the specific distribution assumptions nor requires that the sequence of group means be indepen-

dent of the group variance, an assumption that is implicit in many of the classical empirical Bayes

methods like EBMLE and EBMM. Therefore, there are scenarios where the SURE estimators strictly

dominate the classical methods. Simulation studies are presented to compare the performance of the

proposed estimators with several other shrinkage estimators. We apply our method to the baseball

data analyzed in Brown (2008) and report encouraging results. We also use our method to analyze

a housing data set and note some interesting phenomena when applying these methods.

The remainder of the paper is organized as follows: In Section 2, we introduce the basic setup

and define the parametric SURE estimators along with a brief discussion of some other competing

shrinkage estimators. The case of shrinking toward the origin and toward the grand mean is dis-

cussed in detail in Section 3 and Section 4. Section 5 considers general parametric SURE estimators,

where in addition to the shrinkage factor, the shrinkage location is also determined by the data.

Section 6 introduces a class of semi-parametric shrinkage estimators and discusses their optimality

properties. We conduct a comprehensive simulation study in Section 7 and apply our method to

analyzing two real datasets in Section 8. A brief summary is given in Section 9. The technical proofs

are relegated to the appendix.

2 Basic setup

Consider the estimation problem

Xi|θi ∼ N(θi, Ai), i = 1, 2, . . . , p, (2.1)

where the Xi are independently distributed with known (potentially) distinct variances Ai. The

classical conjugate hierarchical model puts a prior on θi

θi ∼ N(µ, λ), independently for i = 1, 2, . . . , p,
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where λ is an unknown hyper-parameter.

In this section and Section 3, we first assume the value of the prior mean as µ = 0. The case of

unknown prior mean will be the focus of later sections.

Application of Bayes formula (when µ = 0) gives us

θi|Xi ∼ N

(

λ

λ + Ai
Xi,

λAi

λ + Ai

)

, Xi ∼ N(0, λ + Ai),

which leads to the Bayes shrinkage estimator

θ̂λ
i =

λ

λ + Ai
Xi.

The empirical Bayes method tries to estimate the unknown hyper-parameter λ using the marginal

distribution of X

f(X|λ,A) ∝
∏

i

(λ + Ai)
−1/2 exp{−X2

i /(2(λ + Ai))}. (2.2)

The empirical Bayes (EB) MLE λ̂ML, which uniquely maximizes the above marginal MLE, can be

obtained as the solution of
∑

i

[

X2
i

(λ + Ai)2
− 1

λ + Ai

]

= 0, (2.3)

whenever this equation has a solution. If (2.3) does not have a solution, i.e., it is negative when

λ = 0 , λ̂ML is then zero. The corresponding empirical Bayes MLE for θ is

θ̂ML
i := θ̂λ̂ML

i =
λ̂ML

λ̂ML + Ai

Xi.

Another estimate based on the marginal distribution (2.2) is the moment estimate

λ̂MM =
1

p

p
∑

i=1

(X2
i − Ai),

or its positive part

λ̂+
MM =

(

1

p

p
∑

i=1

(X2
i − Ai)

)+

.

In the homoscedastic case, where Ai = A for i = 1, · · · , p, we have λ̂ML = λ̂+
MM and

θ̂
ML = θ̂

MM+ =

(

1 − pA
∑p

i=1 X2
i

)+

X .

Hence in this case these two estimators are closely related to the positive-part James-Stein estimator

θ̂JS+
i =

(

1 − (p − 2)A
∑p

i=1 X2
i

)+

Xi .
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In this paper, instead of relying on the marginal distribution of X to estimate λ, we consider an

alternative perspective. The motivation of our methods comes from Stein’s unbiased risk estimate

(SURE): under the sum of squared-error loss lp(θ, θ̂) = 1
p

∑

i(θ̂i − θi)
2, if one uses the shrinkage

estimator θ̂λ
i = λ

λ+Ai
Xi to estimate θ with a fixed λ, then an unbiased estimate for its risk

Rp(θ, θ̂λ) = E[lp(θ, θ̂λ)] =
1

p

∑

i

Ai

(Ai + λ)2
(Aiθ

2
i + λ2) (2.4)

is

SURE(λ) =
1

p

∑

i

[

(

Ai

Ai + λ

)2

X2
i +

Ai(λ − Ai)

Ai + λ

]

. (2.5)

Note that equation (2.4) is just the usual bias-squared plus variance description of the risk; equation

(2.5) can be derived from Stein’s unbiased estimate of the risk or directly from (2.4) since θ2
i =

E(X2
i ) − Ai. This relationship suggests that we can estimate λ from the data as the minimizer of

SURE(λ):

λ̂SURE = arg min
λ≥0

SURE(λ) = arg min
λ≥0

∑

i

[

(

Ai

Ai + λ

)2

X2
i +

Ai(λ − Ai)

Ai + λ

]

. (2.6)

Setting SURE′(λ) = 0 yields an easily solved expression for λ̂SURE as the solution to

∑

i

[

A2
i

(Ai + λ)3
X2

i − A2
i

(Ai + λ)2

]

= 0. (2.7)

If (2.7) does not have a solution, λ̂SURE is then zero. The corresponding SURE estimate for θ is

θ̂SURE
i := θ̂λ̂SURE

i =
λ̂SURE

λ̂SURE + Ai

Xi.

Again, it is worth pointing out that in the homoscedastic case, the three estimators λ̂ML, λ̂+
MM

and λ̂SURE are identical and are closely related to the famous positive-part James-Stein estimator.

But once the Ai are not all equal, λ̂ML, λ̂+
MM and λ̂SURE give distinct results.

The idea of minimizing the unbiased estimate of risk to obtain the estimate of tuning parame-

ters has a considerable history in statistics. Li (1985, 1986, 1987) discussed the asymptotic properties

of the SURE method and its connection to generalized cross validation in various scenarios. From

a slightly different perspective, Johnstone (1987) discussed the admissibility properties of SURE

and some alternative estimates of the risk. Kneip (1994) studied the property of SURE in a class

of ordered linear smoothers. Donoho and Johnstone (1995) applied SURE to choose the threshold

in their SureShrink method. Cavalier et al. (2002) established a nonasymptotic oracle inequality
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and used it to study the minimax adaptive results of SURE in some inverse problems. We em-

phasize that our results differ from the previous ones in that the model under consideration is

heteroscedastic and our asymptotic results allow us to directly compare our SURE estimators with

other shrinkage estimators. Numerical comparisons in Sections 7 and 8 indicate that our estimators

have desirable risk properties relative to a number of other shrinkage estimators.

3 Risk properties of the SURE estimator

In this section, we consider the risk properties of the SURE estimator. We show that in the het-

eroscedastic case the SURE estimator θ̂
SURE is optimal in an asymptotic sense, whereas it is not

necessarily so for the other estimators, including the empirical Bayes ML and MM estimators.

Our first result concerns how well SURE(λ) approximates lp(θ, θ̂λ).

Theorem 3.1. Assuming two conditions

(A) lim sup
p→∞

1
p

p
∑

i=1
A2

i < ∞,

(B) lim sup
p→∞

1
p

p
∑

i=1
Aiθ

2
i < ∞,

we have

sup
0≤λ≤∞

∣

∣

∣SURE(λ) − lp(θ, θ̂λ)
∣

∣

∣ → 0 in L2 and in probability, as p → ∞.

Conditions (A) and (B) are required mainly to facilitate a short proof of the above result. Though

it is likely that conditions (A) and (B) can be further relaxed, they do not seem to be particularly

restrictive and we thus do not seek the full generality here. Theorem 3.1 shows that the risk estimate

SURE(λ) is not only unbiased for Rp(θ, θ̂λ), but, more importantly, is uniformly close to the actual

loss lp(θ, θ̂λ). We thus expect that minimizing SURE(λ) would lead to an estimate with competitive

performance. To facilitate our discussion of the risk properties of our SURE shrinkage estimator,

we next introduce the oracle loss (OL) hyper-parameter:

λ̃OL = λ̃OL(θ;X1, . . . , Xp) = arg min
λ≥0

lp(θ, θ̂
λ) = arg min

λ≥0

1

p

p
∑

i=1

(

λ

λ + Ai
Xi − θi

)2

.

Correspondingly, we define the oracle loss “estimator” θ̃
OL as

θ̃
OL =

λ̃OL

λ̃OL + A
X.

Of course, θ̃
OL is not really an estimator since it depends on the unknown θ. (Hence we use the

notation θ̃
OL rather than θ̂

OL.) Although not obtainable in practice, θ̃
OL lays down the theoretical
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limit that one can ever hope to reach: no estimator within the class of estimators of the form θ̂
λ̂ =

λ̂
λ̂+A

X can have smaller achieved loss or risk. The performance of the SURE estimator, interestingly,

comes close to the oracle one. The following theorem shows under very mild assumptions that our

SURE estimator is asymptotically nearly as good as the oracle loss estimator.

Theorem 3.2. Assume conditions (A) and (B). Then

lim
p→∞

P
(

lp(θ, θ̂SURE) ≥ lp(θ, θ̃OL) + ε
)

= 0 for any fixed ε > 0.

The results in the above theorem and all subsequence ones are for given Ai’s and θi’s; that

is, the probabilities and expectations are evaluated given the sequence of (θi, Ai). We require in

Theorem 3.2 that ε is fixed. As one referee kindly pointed out, the result can be enhanced by letting

ε approaches zero at some rate that depends on the sequence of Ai’s and θi’s. A direct consequence

of the preceding theorem is that the SURE estimator has a loss that is asymptotically no larger than

that of any other estimator in the general class.

Corollary 3.3. Assume conditions (A) and (B). Then for any estimator λ̂p ≥ 0 and the corresponding

θ̂
λ̂p =

λ̂p

λ̂p+A
X, we always have

lim
p→∞

P
(

lp(θ, θ̂SURE) ≥ lp(θ, θ̂λ̂p) + ε
)

= 0 for any fixed ε > 0.

Theorem 3.2 shows that the loss of θ̂
SURE converges in probability to the optimum oracle value

lp(θ, θ̃OL). We can actually show that under the same conditions θ̂
SURE is asymptotically as good

as θ̃
OL in terms of expected loss.

Theorem 3.4. Assume conditions (A) and (B). Then

lim
p→∞

[

Rp(θ, θ̂SURE) − E
(

lp(θ, θ̃OL)
)]

= 0.

It follows from this theorem that θ̂
SURE has an asymptotically oracle risk: its risk is asymptoti-

cally smaller than (at least no larger than) any other estimator in the general class.

Corollary 3.5. Assume conditions (A) and (B). Then for any estimator λ̂p ≥ 0 and the corresponding

θ̂
λ̂p =

λ̂p

λ̂p+A
X, we always have

lim sup
p→∞

[

Rp(θ, θ̂SURE) − Rp(θ, θ̂λ̂p)
]

≤ 0.

7



Corollaries 3.3 and 3.5 suggest why θ̂
SURE is generally better than either θ̂

ML or θ̂
MM+ for het-

eroscedastic problems. Note that θ̂
SURE is asymptotically as good as the oracle loss estimator. Any

other asymptotically optimal estimator must have this same property. Theorem 3.1 indicates that

this requires such an oracle estimator to asymptotically agree with θ̂
SURE. But in the heteroscedas-

tic case θ̂
ML and θ̂

MM+ satisfy different estimating equations from that of θ̂
SURE, as described in

Section 2. Hence, for heteroscedastic problems neither θ̂
ML nor θ̂

MM+ can generally be asymptot-

ically optimal in the class of estimators of the form θ̂
λ̂ = λ̂

λ̂+A
X. Sections 7 and 8 will illustrate this

point through numerical examples.

4 Shrinkage toward the grand mean

The results in the previous section focus on the shrinkage estimators that shrink toward a pre-set

value (taken to be zero above). In practice, it is often the case that, instead of a pre-set value, we

want to shrink toward the grand mean X̄ . To utilize the previous result in this case, one might

first center the data by subtracting the grand mean from each sample Xi, and then pretend that the

resulting Xi − X̄ are “independent” with “variance” Ai, and, following (2.6), one could minimize

∑

i

[

(

Ai

Ai + λ

)2

(Xi − X̄)2 +
Ai(λ − Ai)

Ai + λ

]

to obtain the estimate λ̂′. The estimate of θi then becomes

θ̂′i =
λ̂′

Ai + λ̂′
Xi +

Ai

Ai + λ̂′
X̄, (4.1)

which can be used in practice. However, our previous theoretical results are no longer directly

applicable. In particular, the optimality property of the resulting estimator is no longer established,

since neither Xi − X̄ are independent nor the variances are exactly Ai.

Fortunately, similar ideas of using the unbiased risk estimate can still be applied. Consider the

shrinkage estimator in the following form

θ̂λ,X̄
i =

λ

Ai + λ
Xi +

Ai

Ai + λ
X̄.

Its risk is given by

R(θ, θ̂λ,X̄) = E[lp(θ, θ̂λ,X̄)]

=
1

p

p
∑

i=1

A2
i

(Ai + λ)2
(

θi − θ̄p

)2
+

1

p

p
∑

i=1

1

(Ai + λ)2

(

λ2Ai +
1

p
A2

i

(

Āp + 2λ
)

)

,
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where

Āp =
1

p

p
∑

i=1

Ai, θ̄p =
1

p

p
∑

i=1

θi.

An unbiased risk estimate is

SUREG(λ) =
1

p

p
∑

i=1

A2
i

(Ai + λ)2
(Xi − X̄)2 +

1

p

p
∑

i=1

Ai

Ai + λ

(

λ − Ai +
2

p
Ai

)

,

that is,

E[SUREG(λ)] = R(θ, θ̂λ,X̄).

Minimizing SUREG(λ) then leads to the grand-mean shrinkage estimator

θ̂G
i =

λ̂G

Ai + λ̂G

Xi +
Ai

Ai + λ̂G

X̄, (4.2)

where

λ̂G = arg min
λ≥0

SUREG(λ).

Since this estimate is inspired by the Stein’s risk identity, we still call it the SURE estimate. Parallel

to the results in the previous section, the grand-mean SURE estimator also possesses asymptotic

optimality properties. First, we have the following theorem, which tells us that SUREG(λ) is uni-

formly close to the achieved loss lp(θ, θ̂λ,X̄). Thus, one expects that minimizing SUREG(λ) would

lead to a competitive estimate.

Theorem 4.1. Assume conditions (A), (B) and

(C) lim sup
p→∞

1
p

p
∑

i=1
θi < ∞.

Then

sup
0≤λ≤∞

∣

∣

∣
SUREG(λ) − lp(θ, θ̂λ,X̄)

∣

∣

∣ → 0 in L1 and in probability, as p → ∞.

To establish the asymptotic optimality of our SURE estimator, similar to Section 3, we define the

grand-mean oracle loss “estimator” θ̃
GOL as

θ̃
GOL =

λ̃GOL

λ̃GOL + A
X +

A

λ̃GOL + A
X̄,

where

λ̃GOL = arg min
λ≥0

lp(θ, θ̂
λ,X̄) = arg min

λ≥0

1

p

p
∑

i=1

(

λ

λ + Ai
Xi +

Ai

λ + Ai
X̄ − θi

)2

.

No estimator within the class of estimators of the form θ̂
λ̂,X̄ , λ̂ = λ̂(X1, . . . , Xp), can have smaller

achieved loss or risk than θ̃
GOL. However, the performance of the SURE estimator comes close:

under very mild assumptions our SURE estimator θ̂
G is asymptotically nearly as good as the grand-

mean oracle loss estimator, as shown in the next theorem.

9



Theorem 4.2. Assume conditions (A)-(C). Then

lim
p→∞

P
(

lp(θ, θ̂G) ≥ lp(θ, θ̃GOL) + ε
)

= 0 for any fixed ε > 0 .

Theorem 4.2 implies that the SURE estimator is asymptotically optimal:

Corollary 4.3. Assume conditions (A)-(C). Then for any estimator λ̂p ≥ 0 and the corresponding θ̂
λ̂p,X̄ =

λ̂p

λ̂p+A
X+ A

λ̂p+A
X̄ , we always have

lim
p→∞

P
(

lp(θ, θ̂G) ≥ lp(θ, θ̂λ̂p,X̄) + ε
)

= 0 for any fixed ε > 0 .

Theorem 4.2 and corollary 4.3 compare the estimators in term of the loss. Under the same mild

assumptions we can show that the comparison can be extended to the expected loss.

Theorem 4.4. Assume conditions (A)-(C). Then

lim
p→∞

[

Rp(θ, θ̂G) − E
(

lp(θ, θ̃GOL)
)]

= 0.

Corollary 4.5. Assume conditions (A)-(C). Then for any estimator λ̂p ≥ 0 and the corresponding θ̂
λ̂p,X̄ =

λ̂p

λ̂p+A
X+ A

λ̂p+A
X̄ , we always have

lim sup
p→∞

[

Rp(θ, θ̂G) − Rp(θ, θ̂λ̂p,X̄)
]

≤ 0.

Therefore, in general the SURE estimator is asymptotically better than (or at least as good as)

any estimator, including the empirical Bayes ones, for heteroscedastic problems.

5 Shrinkage toward a general data driven location

Instead of shrinking toward the origin or the grand mean, one might let the data determine where

to shrink to. Specifically, we can consider the estimator in the form of

θ̂λ,µ
i =

λ

Ai + λ
Xi +

Ai

Ai + λ
µ.

Its risk is

R(θ, θ̂λ,µ) =
1

p

∑

i

Ai

(Ai + λ)2
(

Ai(θi − µ)2 + λ2
)

,

for which an unbiased estimate is

SUREM (λ, µ) =
1

p

∑

i

Ai

(Ai + λ)2
(

Ai(Xi − µ)2 + λ2 − A2
i

)

.
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We can then estimate both µ and λ by minimizing SUREM (λ, µ) to obtain

θ̂M
i =

λ̂M

Ai + λ̂M

Xi +
Ai

Ai + λ̂M

µ̂M , (5.1)

where

(λ̂M , µ̂M ) = arg min
λ≥0, µ

SUREM (λ, µ).

As before, we expect the SURE estimator θ̂
M to possess asymptotic optimality properties. The fol-

lowing theorem, parallel to Theorems 3.1 and 4.1, tells us that SUREM (λ, µ) closely approximates

lp(θ, θ̂λ,µ) in a uniform fashion. Thus, one expects that minimizing SUREM (λ, µ) would again lead

to a competitive estimate.

Theorem 5.1. Assume conditions (A), (B) and

(C′) lim sup
p→∞

1
p

p
∑

i=1
|θi|2+δ < ∞ for some δ > 0.

Then we have

sup
0≤λ≤∞, |µ|≤maxi|Xi|

∣

∣

∣SUREM (λ, µ) − lp(θ, θ̂λ,µ)
∣

∣

∣ → 0 in L1 and in probability, as p → ∞.

Note that condition (C′) assumes that the 2+ δ th moment of θ is bounded; it is slightly stronger

than condition (C). Note also that Theorem 5.1 restricts the shrinkage location µ to be within

[−maxi |Xi| ,maxi |Xi|]. This assumption is included for technical reasons to ease the proof in the

Appendix. In practice it is harmless since no sensible shrinkage estimator would attempt to shrink

toward a location that lies beyond the range of the data.

Next, parallel to the development of Sections 3 and 4, we define the general-mean oracle loss

“estimator” θ̃
MOL as

θ̃
MOL =

λ̃MOL

λ̃MOL + A
X +

A

λ̃MOL + A
µ̃MOL

where

[

λ̃MOL, µ̃MOL
]

= arg min
λ≥0, |µ|≤maxi|Xi|

lp(θ, θ̂
λ,µ) = arg min

λ≥0, |µ|≤maxi|Xi|

∥

∥

∥

∥

λ

λ + A
X +

A

λ + A
µ − θ

∥

∥

∥

∥

2

.

The next theorem and corollary show that the SURE estimator θ̂
M is asymptotically nearly as

good as the general-mean oracle loss estimator, and, consequently, it is asymptotically better than

(or at least as good as) any other shrinkage estimator in terms of the achieved loss.

Theorem 5.2. Assume conditions (A), (B) and (C′). Then

lim
p→∞

P
(

lp(θ, θ̂M ) ≥ lp(θ, θ̃MOL) + ε
)

= 0 for any fixed ε > 0 .
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Corollary 5.3. Assume conditions (A), (B) and (C′). Then for any estimator θ̂
λ̂p,µ̂p =

λ̂p

λ̂p+A
X + A

λ̂p+A
µ̂p

with λ̂p ≥ 0 and |µ̂p| ≤ maxi |Xi|, we have

lim
p→∞

P
(

lp(θ, θ̂M ) ≥ lp(θ, θ̂λ̂p,µ̂p) + ε
)

= 0 for any fixed ε > 0.

Under the same mild assumptions, the comparison of the estimators can be extended to the

expected loss as well.

Theorem 5.4. Assume conditions (A), (B) and (C′). Then

lim
p→∞

[

R(θ, θ̂M ) − E
(

lp(θ, θ̃MOL)
)]

= 0.

Corollary 5.5. Assume conditions (A), (B) and (C′). Then for any estimator θ̂
λ̂p,µ̂p =

λ̂p

λ̂p+A
X + A

λ̂p+A
µ̂p

with λ̂p ≥ 0 and |µ̂p| ≤ maxi |Xi|, we have

lim sup
p→∞

[

R(θ, θ̂M ) − R(θ, θ̂λ̂p,µ̂p)
]

≤ 0.

Theorem 5.2 and Theorem 5.4 tells us that the SURE estimator is asymptotically optimal: it has

the smallest loss and risk among all shrinkage estimators of the form θ̂
λ̂,µ̂ = λ̂

λ̂+A
X + A

λ̂+A
µ̂. A

special case is the comparison between the general-mean SURE estimator θ̂
M and the grand-mean

shrinkage estimator θ̂
G.

Corollary 5.6. Assume conditions (A), (B) and (C′). Then

lim sup
p→∞

[

R(θ, θ̂M ) − R(θ, θ̂G)
]

≤ 0.

In other words, θ̂
M asymptotically outperforms θ̂

G. This result provides a theoretical under-

pinning of the empirical result of Section 7, where we shall see that θ̂
M encountered a smaller loss

than θ̂
G.

Another possible variation of the SURE estimate is to consider the weighted loss function

lw(θ, θ̂) =
∑

i wi(θ̂i − θi)
2. An unbiased risk estimate for θ̂

λ,µ in this case is

SUREW (µ, λ) =
1

p

∑

i

wiAi

(Ai + λ)2
(

Ai(Xi − µ)2 + λ2 − A2
i

)

.

The theoretical properties (such as the optimality) of the resulting estimator would be an interesting

question worth further investigation.
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Note that when we take wi ∝ 1/Ai, the SUREW (µ, λ) can be re-written as

SUREW (µ, λ) =
1

p

p
∑

i=1

(
(θ̂µ,λ

i − Xi)
2

Ai
+ 2 · dfi − 1)

=
1

p

p
∑

i=1

[

(θ̂µ,λ
i − Xi)

2/Ai +
2

Ai

ˆCov(θ̂µ,λ
i , Xi) − 1

]

,

where

ˆCov(θ̂µ,λ
i , Xi) =

λAi

Ai + λ

is the unbiased estimate of the covariance penalty (Efron, 1986; Efron, 2004). The SURE criterion

in this case coincides with Mallow’s Cp (Mallow, 1973), or equivalently the AIC (Akaike, 1973),

where the number of parameters is taken to be the generalized degree of freedom (Ye, 1998). The

above results thus serve as a rigorous confirmation of the belief that AIC-type criteria usually lead

to models that enjoy good risk properties.

Remark. In the discussion above we have assumed that at the sampling level, the model is normal:

Xi|θi ∼ N(θi, Ai). It is noted here that such a distributional assumption is actually not necessary.

With some minimum regularity conditions (such as the tail of the distribution does not decay too

slowly) all the theorems and corollaries will remain valid. One assumption that we do make is that

the variances are known or can be estimated independently.

6 Semi-parametric SURE shrinkage estimation

As we noted in the previous sections, the optimality properties of the SURE estimators do not de-

pend on the hypothetical normal prior. However, the general form θ̂i = λ
Ai+λXi + Ai

Ai+λµ of the

shrinkage estimators studied in the preceding section is indeed motivated from the normal prior.

In this section, we consider a larger class of shrinkage estimators, generalize the SURE estimator

in this larger setting and study its asymptotic optimality properties. This new class of shrinkage

estimators enjoys a more flexible form. We shall see that the generalized SURE estimator is optimal

among this larger class of shrinkage estimators. Because it is optimal within a larger class of esti-

mators it automatically performs asymptotically at least as well as the SURE estimators in previous

sections. There are circumstances in which it can strictly outperform those estimators, as explored

in Sections 7 and 8.
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To motivate this larger class of shrinkage estimators, let us consider the hierarchical setting of

λ ∼ π(λ)

θi|λ;µ
i.i.d.∼ N(µ, λ)

Xi|θi;Ai
ind.∼ N(θi, Ai),

where π is an unspecified hyper-prior on λ. The posterior mean of θi (assuming existence) is

E(θi|X) = E

(

λ

Ai + λ
|X

)

Xi + E

(

Ai

Ai + λ
|X

)

µ. (6.1)

We can interpret E
(

λ
Ai+λ |X

)

, which is monotonically decreasing in Ai, as the shrinkage factor for

the i-th component. This suggests us to consider general shrinkage estimators of the form

θ̂bi,µ
i = (1 − bi) · Xi + bi · µ,

where bi ∈ [0, 1], and in this general form we no longer require bi to assume any parametric form:

there is no hyperparameter λ. Clearly, without putting any constraint on the bi’s, one expects that

the resulting SURE shrinkage estimator may suffer from problems such as overfitting. One natural

way to prevent this from happening is to require the following condition on the shrinkage factors

Requirement (MON) : bi ≤ bj for any i and j such that Ai ≤ Aj ,

or equivalently bi is non-decreasing in Ai. In other words, the larger the variance is, the stronger is

the shrinkage. This requirement is quite intuitive, especially in light of expression (6.1). Note that

this requirement is satisfied by all the previous parametric SURE estimators.

To derive our semi-parametric shrinkage estimator, we first observe that an unbiased risk esti-

mate of θ̂
b,µ is

SUREM (b, µ) =
1

p

p
∑

i=1

[

b2
i (Xi − µ)2 + (1 − 2bi)Ai

]

.

Minimizing the SURE with respect to (b, µ) then leads to our semi-parametric SURE shrinkage

estimator

θ̂SM
i = (1 − b̂SM

i ) · Xi + b̂SM
i · µ̂SM , (6.2)

where

(b̂SM , µ̂SM ) = minimizer of SUREM (b, µ)

subject to bi ∈ [0, 1] and Requirement (MON).

14



Parallel to the parametric case, we can also consider the estimator that shrinks toward the grand

mean, that is,

θ̂bi,X̄
i = (1 − bi) · Xi + bi · X̄ .

An unbiased estimate of its risk is

SUREG(b) =
1

p

p
∑

i=1

[

b2
i (Xi − X̄)2 +

(

1 − 2(1 − 1

p
)bi

)

Ai

]

.

Minimizing the SUREG with respect to b then leads to our semi-parametric SURE grand-mean

shrinkage estimator

θ̂SG
i = (1 − b̂SG

i ) · Xi + b̂SG
i · X̄, (6.3)

where

b̂
SG = minimizer of SUREG(b)

subject to bi ∈ [0, 1] and Requirement (MON).

It is emphasized that even though we used (6.1) to motivate our methods, we do not actually im-

pose any particular parametric form on our estimates of the shrinkage factor bi other than the range

and the monotonicity requirement. This is the reason we term our methods “semi-parametric”.

The theoretical properties of the semi-parametric SURE shrinkage estimators are summarized as

follows. To save space, we only discuss the asymptotic optimality of the general-mean SURE esti-

mator θ̂SM
i below; the asymptotic property of θ̂SG

i can be similarly studied.

Theorem 6.1. Assuming conditions (A), (B) and (C′), we have

sup
∣

∣

∣
SUREM (b, µ) − lp(θ, θ̂b,µ)

∣

∣

∣
→ 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0, 1], |µ| ≤ maxi |Xi| and Requirement (MON).

Theorem 6.2. Assume conditions (A), (B) and (C′). Then for any shrinkage estimator θ̂
b̂p,µ̂p = (1 − b̂p) ·

X + b̂p · µ̂p, where b̂p ∈ [0, 1] satisfies Requirement (MON) and |µ̂p| ≤ maxi |Xi|, we have

lim
p→∞

P
(

lp(θ, θ̂SM ) ≥ lp(θ, θ̂b̂p,µ̂p) + ε
)

= 0 for any fixed ε > 0,

and

lim sup
p→∞

[

R(θ, θ̂SM ) − R(θ, θ̂b̂p,µ̂p)
]

≤ 0.

Theorem 6.2 shows that our semi-parametric SURE shrinkage estimator is optimal among the

class of shrinkage estimators whose shrinkage factor is a non-decreasing function of the variance.

In particular, the semi-parametric SURE shrinkage estimator is asymptotically superior than (at

least no worse than) any hierarchical empirical Bayes estimator.
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7 Simulation study

In this section, we conduct a number of simulations to study the performance of the SURE esti-

mators. We consider θ̂
G, θ̂

M (see equations (4.2) and (5.1)) and the two semi-parametric shrinkage

estimators θ̂
SG, θ̂

SM (equations (6.3) and (6.2)) and compare their performance with that of the

empirical Bayes maximum likelihood estimator θ̂
ML, the empirical Bayes method-of-moment es-

timator θ̂
MM and an extension of the James-Stein estimator θ̂JS+

i . The empirical Bayes maximum

likelihood estimator used here is given by

θ̂ML
i := θ̂λ̂ML

i =
λ̂ML

λ̂ML + Ai

Xi +
Ai

λ̂ML + Ai

µ̂ML. (7.1)

where λ̂ML and µ̂ML are obtained by maximizing the marginal density

f(X|λ,A) ∝
∏

i

(λ + Ai)
−1/2 exp{−(Xi − µ)2/(2(λ + Ai))},

and the empirical Bayes method-of-moment estimator is given by

θ̂MM
i := θ̂λ̂MM

i =
λ̂MM

λ̂MM + Ai

Xi +
Ai

λ̂MM + Ai

µ̂MM , (7.2)

where λ̂MM and µ̂MM are obtained as the root of the following equations

µ =

∑

i Xi/(Ai + λ)
∑

i 1/(Ai + λ)
, λ =

1

p − 1

(

∑

i

(Xi − µ)2 − (p − 1)/p
∑

i

Ai

)+

.

The extended James-Stein estimator is

θ̂JS+
i := µ̂JS+ +

(

1 − p − 3
∑

i(Xi − µ̂JS)2/Ai

)+

(Xi − µ̂JS+), µ̂JS+ =

∑

i Xi/Ai
∑

i 1/Ai
, (7.3)

which has been discussed in Brown (2008).

For each simulation, we first draw (Ai, θi) (i = 1, · · · , p) independently from a distribution

π(A, θ) and then draw Xi given (Ai, θi). The shrinkage estimators are then found via the formulae

described above. This process is repeated a large number of times (N = 100, 000) to obtain an

accurate estimate of the average risk for each estimator. The sample size p is chosen to vary from

20 to 500 at an interval of length 20.

In each example, we also calculate the oracle risk “estimator” θ̃
OR, defined as

θ̃
OR =

λ̃OR

λ̃OR + A
X +

A

λ̃OR + A
µ̃OR
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where

(λ̃OR, µ̃OR) = arg min
λ≥0, µ

Rp(θ, θ̂λ,µ) = arg min
λ≥0, µ

p
∑

i=1

1

p
E

[

(

λ

λ + Ai
Xi +

Ai

λ + Ai
µ − θi

)2
]

.

Similar to the oracle loss estimators, the oracle risk estimator θ̃
OR cannot be used without the

knowledge of θ, but it does provide a sensible lower bound of the risk achievable by any shrinkage

estimator with the given parametric form. An alternative oracle estimator, which we do not pursue

here, is the hierarchical Bayes estimator where the correct hyperprior is used.

Note that since we have a large number (N = 100, 000) of repetitions in our simulation, the

averaged risk of the oracle risk estimator plotted against p will be essentially a flat line. For each

shrinkage estimator considered here, the risk R(θ, θ̂) will converge to a limit as p → ∞. This

limit can be calculated numerically. Table 1 below shows these limiting risks for each simulation

example.

Example 1. We draw (A, θ, X) such that A ∼ Unif(0.1, 1) and θ ∼ N(0, 1) independently, and

X ∼ N(θ, A). Note that we draw A from Unif(0.1, 1) instead of from Unif(0, 1) to make sure that

the variances Ai are bounded away from 0. The oracle risk estimator θ̃
OR is found to have λ0 = 1

and µ0 = 0. The corresponding risk for θ̃
OR is R(θ, θ̃OR) = 1 − ln(2/1.1)/0.9 ≈ 0.3357. The plot

in Figure 1.1 shows the risks of the seven shrinkage estimators as the sample size p varies. Clearly

the performance of all shrinkage estimators except the extended James-Stein estimator eventually

approaches that of the oracle risk estimator. Table 1 confirms the picture. Note that when the

sample size is relatively small, the four SURE estimators incur slightly larger risks compared with

the two empirical Bayes estimators. This is due to the fact that the hierarchical distribution on A

and θ is exactly the one assumed by the empirical Bayes estimators; in particular, the empirical

Bayes maximum likelihood estimator relies on the parametric normal form of the prior, and the

empirical Bayes method-of-moment estimator assumes independence between A and θ, both of

which are satisfied here. The SURE estimators require neither of these conditions but still achieve

rather competitive performance. When the sample size is moderately large, all six estimators well

approach the limit given by the oracle risk estimator. The extended James-Stein estimator behaves

far worse than the others.

Example 2. We draw (A, θ, X) such that A ∼ Unif(0.1, 1) and θ ∼ Unif(0, 1) independently, and

X ∼ N(θ, A). In this example, θ no longer comes from a normal distribution, but θ and A are

still independent. The oracle risk estimator is found to have λ0 ≈ 0.0834 and µ0 = 0.5. The

corresponding risk for θ̃
OR is R(θ, θ̃OR) ≈ 0.0697. The plot in Figure 1.2 shows the risks of the

seven shrinkage estimators as the sample size p varies. Again, as p gets large, the performance of
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all shrinkage estimators except the extended James-Stein estimator eventually approaches that of

the oracle risk estimator, as confirmed by Table 1. This observation indicates that the parametric

form of the prior on θ is not crucial as long as A and θ are independent.

Example 3. (A, θ, X) are drawn such that A ∼ Unif(0.1, 1), θ = A and X ∼ N(θ, A). In this example,

A and θ are no longer independent of each other. The oracle risk estimator is found to have λ0 ≈
0.0781 and µ0 ≈ 0.5949 numerically. The corresponding risk for θ̃

OR is R(θ, θ̃OR) ≈ 0.0540. The

plot in Figure 1.3 shows the risks of the seven shrinkage estimators as functions of p, the sample

size. As our theoretical result in Section 5 indicates, the performance of the SURE estimator θ̂
M

approaches that of the oracle risk estimator, which is seen in Figure 1.3. The limiting risks of the

SURE grand-mean shrinkage estimator θ̂
G, the two empirical Bayes estimators and the extended

James-Stein estimator, on the other hand, are strictly greater than the risk of the oracle estimator, as

shown in Table 1. The main reason for the difference is that A and θ are no longer independent. It

is quite interesting to note from Table 1 that the limiting risks of the two semi-parametric shrinkage

estimators θ̂
SG and θ̂

SM are actually strictly smaller than the oracle risk (although due to the scale

of the plot, it is not easy to spot). The reason for this “better-than-oracle” performance is that

the semi-parametric estimators are not restricted to the specific parametric family that the oracle

estimator assumes.

Example 4. In this example, (A, θ, X) are drawn as A ∼ Inv-χ2
10, θ = A and X ∼ N(θ, A). The

inverse chi-square distribution is used here as it is the conjugate distribution for normal variance.

The oracle risk estimator is found to have λ0 ≈ 0.0032 and µ0 ≈ 0.1266 numerically. The corre-

sponding risk for the oracle risk estimator is R(θ, θ̃OR) ≈ 0.0051. The plot in Figure 1.4 shows the

risks of the seven shrinkage estimators as functions of the sample size p. We see from this figure

and Table 1 that the risks of the SURE estimators θ̂
M and θ̂

G approach that of the oracle risk esti-

mator, whereas the limiting risks of the James-Stein and empirical Bayes estimators θ̂
JS+, θ̂

ML and

θ̂
MM are strictly greater than the oracle risk. Note that the limiting risks of the two semi-parametric

shrinkage estimators θ̂
SG and θ̂

SM are in fact strictly smaller than the oracle risk (although due to

the scale of the plot, it is not easy to spot).

Example 5. The setting in this example is chosen in such a way that it reflects grouping in the

data. We draw (A, θ, X) as A ∼ 1
2 · 1{A=0.1} + 1

2 · 1{A=0.5}, (i.e., A is 0.1 or 0.5 with 50% probability

each), θ|A = 0.1 ∼ N(2, 0.1), θ|A = 0.5 ∼ N(0, 0.5) and X|θ, A ∼ N(θ, A) so that there exist

two groups in the data. The oracle risk estimator is found to have λ0 ≈ 0.8347 and µ0 ≈ 0.1506.

The corresponding risk for the oracle risk estimator is R(θ, θ̃OR) ≈ 0.1947. Figure 1.5 plots the

risks of the seven shrinkage estimators versus the sample size p. We see clearly that the risk of the
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SURE estimator θ̂
M approaches that of the oracle risk estimator, whereas the risks of the other four

parametric shrinkage estimators (θ̂G, θ̂
ML, θ̂

MM and θ̂
JS+) are notably greater than the oracle risk.

The semi-parametric shrinkage estimator θ̂
SM is seen to achieve an even significant improvement

over the oracle one, confirming the results of Section 6.

Example 6. In this example, we allow X to depart from the normal model, i.e., X ≁ N(θ, A), to

assess the sensitivity in performance of the estimators to the normality assumption. (A, θ, X) are

drawn as A ∼ Unif(0.1, 1), θ = A, and X ∼ Unif[θ −
√

3A, θ +
√

3A]. The oracle risk estimator is

found to have λ0 ≈ 0.0781 and µ0 ≈ 0.5949 numerically. The corresponding risk for the oracle risk

estimator θ̃
OR is R(θ, θ̃OR) ≈ 0.0540. Figure 1.6 plots the risks of the seven shrinkage estimators

versus the sample size p. We see that the performance of SURE estimator θ̂
M approaches that of

the oracle risk estimator, whereas the empirical Bayes estimators θ̂
MLand θ̂

MM and the extended

James-Stein estimator θ̂
JS+ do notably worse. Table 1 shows that the limiting risks of the two semi-

parametric shrinkage estimators θ̂
SG and θ̂

SM are strictly smaller than the oracle risk (though the

gap is not big enough to be easily seen on the plot).

(1) (2) (3) (4) (5) (6)

EBMLE 0.3357 0.0697 0.0775 0.0057 0.2470 0.0775

EBMOM 0.3357 0.0697 0.0755 0.0058 0.2434 0.0755

J-S 0.3632 0.0737 0.0797 0.0056 0.2594 0.0797

Oracle 0.3357 0.0697 0.0540 0.0051 0.1947 0.0540

SURE θ̂G 0.3357 0.0697 0.0553 0.0051 0.2337 0.0553

SURE θ̂M 0.3357 0.0697 0.0540 0.0051 0.1947 0.0540

SURE θ̂SG 0.3357 0.0697 0.0523 0.0050 0.2335 0.0523

SURE θ̂SM 0.3357 0.0697 0.0491 0.0050 0.1739 0.0491

Table 1: The limiting risk limp→∞ R(θ, θ̂) of different shrinkage estimators. The six columns (1) –
(6) correspond to the six simulation examples.

8 Application to real data

8.1 Prediction of batting average

In this subsection, we apply the SURE estimators to the baseball data in Brown (2008) to assess

their effectiveness. The data analyzed here are the batting records for all the Major League Baseball

players in the season of 2005. Like in Brown (2008), we divide the data set into two half seasons

and try to predict the batting average of each player for the second half using the data from the

first half. We also carried out the necessary preprocessing steps proposed there. For example, we
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removed from the analysis the players whose number of at-bats is less than 11. For each player, let

the number of at-bats be N and the successful number of batting be H , we have,

Hij ∼ Binomial(Nij , pj),

where i = 1, 2 is the season indicator and j = 1, · · · , p is the player indicator. As in Brown (2008),

the following variance-stablizing transformation is used before applying the shrinkage estimators

Xij = arcsin

√

Hij + 1/4

Nij + 1/2
,

resulting in

Xij∼̇N(θj ,
1

4Nij
), θj = arcsin(pj).

One error measurement, denoted as TSE, introduced in Brown (2008) are adopted here as the basis

of comparison. TSE measures the sum of squared errors in terms of θ and X , the transformed

values:

TSE(θ̂) =
∑

j

(X2j − θ̂j)
2 −

∑

j

1

4N2j
.

Table 2 below summarizes the result, where the shrinkage estimators are applied three times —

to all the baseball players, the pitchers only, and the non-pitchers only. The values reported are the

ratios of the error of a given estimator to that of the benchmark naive estimator, which simply uses

the first half season X1j to predict the second half X2j . In the table EB-MM is the empirical Bayes

method-of-moment estimator (7.2). EB-ML is the empirical Bayes maximum likelihood estimator

(7.1). James-Stein corresponds to the extended James-Stein estimator (7.3). Since this particular

data set has been widely studied, we also compare our methods with a number of more recently

developed methods, including the nonparametric shrinkage methods in Brown and Greenshtein

(2009), the binomial mixture model in Muralidharan (2010) and the weighted least squares and

general maximum likelihood estimators (with/without the covariate at bats effect) in Jiang and

Zhang (2009, 2010). Results for those methods are from Brown (2008), Muralidharan (2010) and

Jiang and Zhang (2009, 2010). The last group shows the results for our SURE estimators. SURE θ̂
G

is the SURE grand-mean shrinkage estimator (4.2). SURE θ̂
M is the SURE estimator (5.1), where

the shrinkage location µ̂ is also determined from the data. The last two estimators are the semi-

parametric SURE shrinkage estimators. SPSURE θ̂
SG is the semi-parametric grand-mean shrinkage

estimator (6.3); SPSURE θ̂
SM is the semi-parametric SURE general-mean estimator (6.2).

The numerical results demonstrate that the SURE estimators have quite appealing performance.

The total squared errors of the SURE estimators are significantly smaller than almost of their com-

petitors’, with the only exception being that the weighted general maximum likelihood methods
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ALL Pitchers NonPitchers

naive 1 1 1
Grand mean 0.852 0.127 0.378
Parametric EB-MM 0.593 0.129 0.387
Parametric EB-ML 0.902 0.117 0.398
James-Stein 0.525 0.164 0.359

Nonparametric EB 0.508 0.212 0.372
Binomial mixture 0.588 0.156 0.314
Weighted least square (Null) 1.074 0.127 0.468
Weighted generalized MLE (Null) 0.306 0.173 0.326
Weighted least square (AB) 0.537 0.087 0.290
Weighted generalized MLE (AB) 0.301 0.141 0.261

SURE θ̂
G 0.505 0.123 0.278

SURE θ̂
M 0.422 0.123 0.282

SPSURE θ̂
SG 0.409 0.081 0.261

SPSURE θ̂
SM 0.419 0.077 0.278

Table 2: Prediction errors of batting averages.

achieves a better performance in the all players’ case. The main reason, we believe, is that the base-

ball data contain features that may degrade the performance of classical empirical Bayes methods,

as discussed in Brown (2008). For example, substantial evidence against the normal prior assump-

tion is observed, and, furthermore, ignoring the correlation between the mean θ and the variance

A is not justifiable here (a player with large p tends to play more games, resulting in large N ). Both

of these features can invalidate the use of empirical Bayes methods. On the other hand, our SURE

shrinkage estimators, especially the semi-parametric ones, are shown to be robust and optimal in

much more general circumstances, resulting in the superior numerical outcome.

Figure 2 plots the shrinkage factor for four of the estimators we have considered for the “all

batters” data — the empirical Bayes method-of-moment estimator (EBMOM), the empirical Bayes

maximum likelihood estimator (EBMLE), the parametric SURE estimator θ̂
M and the semi-parametric

SURE estimator θ̂
SM . In the parametric case, the shrinkage factor is λ̂/(λ̂ + A); in the semi-

parametric case, it is 1 − b̂SM as in equation (6.2). Note that in each case the shrinkage factor

(λ̂/(λ̂+A) or 1− b̂SM ) increases with N , the number of at-bats, as they should. This corresponds to

a decrease in terms of A = 1/4N . Note that the shrinkage factor for the EB-ML estimator is much

smaller than those for the other estimators, which corresponds to greater shrinkage to the central

location, and this is intimately related to the relatively poor performance of this estimator for the
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current data set. Note also that 1 − b̂SM increases with N in a stepwise fashion. The fact that it is

non-decreasing is a direct consequence of its definition. The stepwise property is an indirect con-

sequence of its definition — monotone solutions to the minimization problem in (6.2) or (6.3) will

always be stepwise monotone. Finally, note that for large values of N (approximately N ≥ 130),

1 − b̂SM has the largest value among the four shrinkage factors. Thus, for this data set, the SURE

estimator θ̂SM shrinks somewhat less than the EB-MM estimator or the parametric SURE estima-

tor θ̂M when N is large, but shrinks comparably to these estimators for smaller N . It is also true

that the estimates of central tendency differ for these estimators, but the differences are small to

moderate. The corresponding values of µ̂ are µ̂ = 0.528, 0.538, 0.456, 0.529, respectively.

8.2 Estimation of housing price

In this subsection, we apply the SURE estimators to a housing data set. The goal is to estimate

the average housing price in each town of Scheffield, England from a small fraction of the data, as

would be the case of a survey sampling. The data was produced by the Land Registry of the United

Kingdom. It contains the information about all houses sold in Scheffield, England from 2000 to mid

2008. The sale price, the sale time, the postcode that identifies the location of the house and other

relevant statistics about the sales are available for each house that has been sold during this time

period. Nagaraja et al. (2011) discusses various analysis of similar, larger data sets from the US.

We here confine our interest mainly to the estimation of average housing prices for each town in

Scheffield, which has a distinct postcode. As conventional, the logarithm of the housing prices are

used throughout the study to better approximate the normality assumption. Our analysis starts by

removing the inflation from year to year by subtracting from each sample the overall year effect.

(A more sophisticated method might build a two-way model with the year effect treated as a fixed

effect and the area effect as a random effect.) We then randomly draw a small fraction of the data.

This small fraction serves as a survey sample, from which we want to estimate the average housing

price of each town of the entire data set. One particularly interesting feature of the data set is that

the number of towns is small (around 20), while the number of house sales in most towns are large

(above 500). To have a clear picture, we let the survey sample size range from 10% to 20% of the

entire data. We exclude the towns with less than 20 house sales so that we would at least have three

data points in the sample for each town.

To compare the performance of different shrinkage estimators, we run the simulation N =

10, 000 times and report the average results in Table 3. The variances Ai are estimated from the

sample variance of each town. As in the previous example, we use the naive estimator, the sample
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mean of each town, as the benchmark. Each number in the table refers to the ratio of the squared

error of a particular estimator to that of the naive estimator. TSE stands for the total squared es-

timation error on the logarithm scale, while TSEP corresponds to that on the original scale. Note

that unlike the baseball data, the parameter of interest θj (the average housing prices) can be di-

rectly obtained here, we can therefore evaluate the actual TSE and TSEP instead of estimating them

through adjusting the prediction errors. There have also been discussion on alternatives other than

squared error loss in the study of housing price, see Varian (1974) for one such example.

There are several interesting observations. First, the improvement of shrinkage estimators over

the naive estimator as a group is not as impressive as in the baseball data case, though significant

error reduction is still achieved. This is due to the fact that the number of groups here is signifi-

cantly smaller (20 here compared to around 500 in the baseball data). Second, as the sample size

increases, the relative performance of shrinkage estimators decreases. This is because the vari-

ance of each sample mean decreases, resulting in smaller shrinkage. Third, overall speaking, the

SURE shrinkage estimators achieve better performance compared with the other shrinkage estima-

tors. The good performance of the semi-parametric SURE estimator θ̂
SG is particularly noteworthy.

Fourth, when the number of groups p is small (around 20 here), it is not necessarily always ben-

eficial to simultaneously estimate µ, the shrinkage location, and the shrinkage factors, since the

asymptotic result is yet to take effect. Shrinking the estimates toward a predetermined location

such as the grand mean could give better result.

sampling 10% sampling 15% sampling 20%

TSE TSEP TSE TSEP TSE TSEP
naive 1.000 1.000 1.000 1.000 1.000 1.000

EB(MM) 0.735 0.748 0.779 0.788 0.816 0.824
EB(ML) 0.734 0.747 0.776 0.785 0.813 0.821

J-S 0.991 0.992 0.994 0.994 0.996 0.996

SURE θ̂
G 0.746 0.793 0.772 0.820 0.819 0.872

SURE θ̂
M 0.997 1.074 1.050 1.131 1.100 1.184

SPSURE θ̂
SG 0.556 0.574 0.518 0.534 0.522 0.536

SPSURE θ̂
SM 0.879 0.881 0.863 0.863 0.865 0.865

Table 3: Estimation errors for housing prices under different sample sizes.

9 Summary

Inspired by Stein’s unbiased risk estimate (SURE), we propose in this paper a class of shrinkage

estimators for the heteroscedastic hierarchical model, which is arguably more realistic in practical
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applications. We show that each SURE shrinkage estimator is asymptotically optimal in its own

class. This includes the parametric SURE estimators, whose forms are derived from the classical

parametric hierarchical model, as well as semi-parametric SURE estimators, which only assume

that the individual shrinkage factor is monotone in the variance. We note that the asymptotic op-

timality of the SURE shrinkage estimators do not depend on the specific distribution assumptions,

such as the normal assumption. We test the SURE estimators in comprehensive simulation studies

and two real data sets, observing encouraging results: the SURE estimators offer numerically supe-

rior performance compared to the classical empirical Bayes and James-Stein estimators. The semi-

parametric SURE estimators appear to be particularly competitive. We recommend the use of the

semi-parametric SURE estimator θ̂
SM (where the shrinkage location is simultaneously estimated),

when the number of groups are large. For data with small number of groups, we recommend the

semi-parametric SURE estimator θ̂
SG, which shrinks toward the grand mean.

There are several relevant research questions not fully addressed in this paper. For example, the

sparse normal means problem (Johnstone and Silverman; 2004) has become increasingly important

in statistics. It therefore would be of interest to study the performance of the proposed methods

under this setting. It could also be of interest to study the extent to which the proposed estimators

are minimax by using the techniques discussed in Maruyama and Strawderman(2005). It would

also be of interest to study whether these estimators are ensemble minimax in the sense of Efron and

Morris (1973) and Brown, Nie and Xie (2012). The peculiar features in the baseball data suggest that

models that explicitly consider the dependence between θi’s and Ai’s might be more appropriate.

For example, we can consider a hierarchical Bayes model where θi explicitly depends on Ai. It is

interesting to see how the performance of such estimators is compared with the SURE estimators

proposed in this paper.

Appendix: Proofs

Proof of Theorem 3.1. We only need to show the L2 convergence. Since

SURE(λ) − lp(θ, θ̂λ) =
1

p

∑

i

(

X2
i − Ai − θ2

i −
2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

)

,

we know

sup
0≤λ≤∞

∣

∣

∣
SURE(λ) − lp(θ, θ̂λ)

∣

∣

∣
≤ sup

0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

p

∑

i

(

X2
i − Ai − θ2

i

)

∣

∣

∣

∣

∣

.
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We consider the two terms separately. For the first term, without loss of generality, let us assume

A1 ≤ A2 ≤ · · · ≤ Ap. Then we know

sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

∣

∣

∣

∣

∣

≤ sup
1≥c1≥···≥cp≥0

∣

∣

∣

∣

∣

2

p

p
∑

i=1

ci(X
2
i − Xiθi − Ai)

∣

∣

∣

∣

∣

.

As in Lemma 2.1 in Li (1986), observe that

sup
1≥c1≥···≥cp≥0

∣

∣

∣

∣

∣

2

p

p
∑

i=1

ci(X
2
i − Xiθi − Ai)

∣

∣

∣

∣

∣

= max
1≤j≤p

∣

∣

∣

∣

∣

2

p

j
∑

i=1

(X2
i − Xiθi − Ai)

∣

∣

∣

∣

∣

.

Let Mj =
∑j

i=1(X
2
i − Xiθi − Ai). Then {Mj ; j = 1, 2, . . .} forms a martingale. The Lp maximum

inequality implies

E( max
1≤j≤p

M2
j ) ≤ 4E(M2

p ) = 4

p
∑

i=1

(2A2
i + Aiθ

2
i ) .

Regularity conditions (A) and (B) thus guarantee that E(maxj(
2
pMj)

2) → 0, which yields

sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

∣

∣

∣

∣

∣

→ 0 in L2, as p → ∞.

For the second term 1
p

∑

i

(

X2
i − Ai − θ2

i

)

, a direct calculation gives

E





(

1

p

∑

i

(

X2
i − Ai − θ2

i

)

)2


 =
2

p2

p
∑

i=1

(A2
i + 2Aiθ

2
i ) → 0,

by conditions (A) and (B). This completes the proof. ✷

Proof of Theorem 3.2. Since SURE(λ̂SURE) ≤ SURE(λ̃OL) by definition, and we know from the

preceding theorem that supλ

∣

∣

∣
SURE(λ) − lp(θ, θ̂λ)

∣

∣

∣
→ 0 in probability, it follows that for any ε > 0

P
(

lp(θ, θ̂SURE) ≥ lp(θ, θ̃OL) + ε
)

≤ P
(

lp(θ, θ̂SURE) − SURE(λ̂SURE) ≥ lp(θ, θ̃OL) − SURE(λ̃OL) + ε
)

→ 0,

which completes the proof. ✷

Proof of Corollary 3.3. This is a direct consequence of the definition of θ̃
OL and Theorem 3.2.

Proof of Theorem 3.4. Since

lp(θ, θ̂SURE) − lp(θ, θ̃OL)

=
(

lp(θ, θ̂SURE) − SURE(λ̂SURE)
)

+
(

SURE(λ̂SURE) − SURE(λ̃OL)
)

+
(

SURE(λ̃OL) − lp(θ, θ̃OL)
)

≤ 2 sup
0≤λ≤∞

∣

∣

∣SURE(λ) − lp(θ, θ̂λ)
∣

∣

∣ ,
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we know from Theorem 3.1 that

lp(θ, θ̂SURE) − lp(θ, θ̃OL) → 0 in L2 and in L1.

Therefore,

lim
p→∞

[

Rp(θ, θ̂SURE) − Rp(θ, θ̃OL)
]

= 0. ✷

Proof of Corollary 3.5. This is a direct consequence of the definition of θ̃
OL and Theorem 3.4.

Proof of Theorem 4.1. Since

SUREG(λ) − lp(θ, θ̂λ,X̄)

=
1

p

∑

i

(

(X2
i − Ai − θ2

i ) −
2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

− 2Ai

Ai + λ
(X̄(Xi − θi) −

Ai

p
)

)

,

we have

sup
0≤λ≤∞

∣

∣

∣
SUREG(λ) − lp(θ, θ̂λ,X̄)

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

p

∑

i

(

X2
i − Ai − θ2

i

)

∣

∣

∣

∣

∣

+ sup
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∣

∣

∣

∣

∣

1

p

∑

i

2λ

Ai + λ

(

X2
i − Xiθi − Ai

)

∣

∣

∣

∣

∣

+ sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2Ai

Ai + λ

(

X̄(Xi − θi) −
Ai

p

)

∣

∣

∣

∣

∣

.

The convergence of the first two terms in L2 has already been been established in the proof of

Theorem 3.1. We only need to show that the last term converges to 0 in L1. But

sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2Ai

(

X̄(Xi − θi) − Ai/p
)

Ai + λ

∣

∣

∣

∣

∣

≤ sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2Ai(Xi − θi)

Ai + λ

∣

∣

∣

∣

∣

·
∣

∣X̄
∣

∣ +
2

p2

∑

i

Ai.

Following the technique in the proof of Theorems 3.1, it can be shown that

sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

p
∑

i=1

2Ai(Xi − θi)

Ai + λ

∣

∣

∣

∣

∣

→ 0 in L2.

We also know that EX̄2 = 1
p2

∑

i Ai + (1
p

∑

i θi)
2, which is bounded by Conditions (A) and (C).

Therefore, we have

sup
0≤λ≤∞

∣

∣

∣

∣

∣

1

p

∑

i

2Ai(Xi − θi)

Ai + λ

∣

∣

∣

∣

∣

·
∣

∣X̄
∣

∣ → 0 in L1,

by Cauchy-Schwartz inequality, and this completes the proof. ✷
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Proof of Theorem 4.2. With Theorem 4.1 established, the proof is almost identical to that of Theo-

rem 3.2. ✷

Proof of Corollary 4.3. This is a direct consequence of the definition of θ̃
GOL and Theorem 4.2. ✷

Proof of Theorem 4.4. Since

lp(θ, θ̂G) − lp(θ, θ̃GOL)

=
(

lp(θ, θ̂G) − SUREG(λ̂G)
)

+
(

SUREG(λ̂G) − SUREG(λ̃GOL)
)

+
(

SUREG(λ̃GOL) − lp(θ, θ̃GOL)
)

≤ 2 sup
0≤λ≤∞

∣

∣

∣SUREG(λ) − lp(θ, θ̂λ,X̄)
∣

∣

∣ ,

we know from Theorem 4.1 that

lp(θ, θ̂SURE) − lp(θ, θ̃OL) → 0 in L1.

Therefore,

lim
p→∞

[

Rp(θ, θ̂SURE) − Rp(θ, θ̃OL)
]

= 0. ✷

Proof of Corollary 4.5. This is a direct consequence of the definition of θ̃
GOL and Theorem 4.4. ✷

To prove Theorem 5.1, we need the following lemma.

Lemma A.1. Assume conditions (A), (B) and (C′). Then we have

E( max
1≤i≤p

X2
i ) = O(p2/(2+δ∗)),

where δ∗ = min(1, δ).

Proof. We can write Xi =
√

AiZi + θi, where Zi are i.i.d. standard normal random variables. It

follows from X2
i = AiZ

2
i + θ2

i + 2
√

AiθiZi that

max
1≤i≤p

X2
i ≤ max

i
Ai · max

i
Z2

i + max
i

θ2
i + 2max

i

√

Ai |θi| · max
i

|Zi| . (A.1)

Condition (A) implies that max
i

A2
i ≤

∑

i A
2
i = O(p). Thus, max

i
Ai = O(p1/2). Similarly, Condition

(B) implies max
i

√
Ai |θi| = O(p1/2). Condition (C′) implies that

∑

i |θi|2+α = O(p) for all 0 ≤ α ≤ δ;

in particular,
∑

i |θi|2+δ∗ = O(p). Since maxi |θi|2+δ∗ ≤
∑

i |θi|2+δ∗ = O(p), we know that maxi θ
2
i =

O(p2/(2+δ∗)). It is well known (see, for example, Embrechts, et al., 1997, Chapter 3) that

E( max
1≤i≤p

|Zi|) = O(
√

log p), E( max
1≤i≤p

Z2
i ) = O(log p).
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Taking them into (A.1), we obtain

E( max
1≤i≤p

X2
i ) = O(p1/2 log p) + O(p2/(2+δ∗)) + O(p1/2

√

log p) = O(p2/(2+δ∗)). ✷

Proof of Theorem 5.1: Since

SUREM (λ, µ) − lp(θ, θ̂λ,µ) = SURE(λ) − lp(θ, θ̂λ) − 2µ

p

∑

i

Ai

Ai + λ
(Xi − θi) ,

it follows that

sup
0≤λ≤∞, |µ|≤maxi |Xi|

∣

∣

∣SUREM (λ, µ) − lp(θ, θ̂λ,µ)
∣

∣

∣

≤ sup
0≤λ≤∞

∣

∣

∣
SURE(λ) − lp(θ, θ̂λ)

∣

∣

∣
+

2

p
max
1≤i≤p

|Xi| · sup
0≤λ≤∞

∣

∣

∣

∣

∣

∑

i

Ai(Xi − θi)

Ai + λ

∣

∣

∣

∣

∣

. (A.2)

We know from Theorem 3.1 that

sup
0≤λ≤∞

∣

∣

∣
SURE(λ) − lp(θ, θ̂λ)

∣

∣

∣
→ 0 in L2.

It remains to show that the second term in (A.2) converges to zero in L1.

Following the same steps as in the proof of Theorem 3.1, we can show that

sup
0≤λ≤∞

∣

∣

∣

∣

∣

∑

i

Ai(Xi − θi)

Ai + λ

∣

∣

∣

∣

∣

≤ max
1≤j≤p

∣

∣

∣

∣

∣

∣

p
∑

i=j

(Xi − θi)

∣

∣

∣

∣

∣

∣

.

Therefore, by the Lp maximum inequality on martingales, we have

E{ sup
0≤λ≤∞

[
∑

i

Ai(Xi − θi)

Ai + λ
]2} ≤ E{ max

1≤j≤p
[

p
∑

i=j

(Xi − θi)]
2} ≤ 4E

(

p
∑

i=1

(Xi − θi)

)2

= 4
∑

i

Ai = O(p).

Combining this with Lemma A.1, we obtain by Cauchy-Schwartz inequality

1

p
E

(

max
1≤i≤p

|Xi| · sup
0≤λ≤∞

∣

∣

∣

∣
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∑

i

Ai(Xi − θi)

Ai + λ
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)

≤ 1

p



E

(

max
1≤i≤p

X2
i
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0≤λ≤∞

[

∑
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Ai(Xi − θi)

Ai + λ

]2










1/2

= O(p
− δ∗

2(2+δ∗) ) = o(1),
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which completes the proof. ✷

Proof of Theorem 5.2: With Theorem 5.1 established, the proof of

lim
p→∞

P
(

lp(θ, θ̂M ) ≥ lp(θ, θ̃MOL) + ε
)

= 0 for any ε > 0

is essentially identical to the proof of Theorem 3.2.

Proof of Corollary 5.3. This is a direct consequence of the definition of θ̃
MOL and Theorem 5.2. ✷

Proof of Theorem 5.4: Since

lp(θ, θ̂M ) − lp(θ, θ̃MOL) ≤ 2 sup
0≤λ≤∞, |µ|≤maxi |Xi|

∣

∣

∣SUREM (λ, µ) − lp(θ, θ̂λ,µ)
∣

∣

∣ ,

the result follows from Theorem 5.1. ✷

Proof of Corollary 5.5. This is a direct consequence of the definition of θ̃
MOL and Theorem 5.4. ✷

Proof of Corollary 5.6: This is a special case of Corollary 5.5. ✷

Proof of Theorem 6.1. First, we have

∣

∣

∣
SUREM (b, µ) − lp(θ, θ̂b,µ)

∣

∣

∣

≤ 1

p

∣

∣

∣

∣

∣

p
∑

i=1

(

X2
i − θ2

i − Ai

)

∣

∣

∣

∣

∣

+
1

p

∣

∣

∣

∣

∣

p
∑

i=1

2(1 − bi)
(

X2
i − Xiθi − Ai

)

∣

∣

∣

∣

∣

+
1

p

∣

∣

∣

∣

∣

p
∑

i=1

2bi(Xi − θi) · µ
∣

∣

∣

∣

∣

.

Note that the order of bi is determined by that of Ai, which is not random. The rest of the proof

follows essentially the same steps as in that of Theorem 5.1 upon using Lemma A.1. ✷

Proof of Theorem 6.2: With Theorem 6.1 established, the proof of

lim
p→∞

P
(

lp(θ, θ̂SM ) ≥ lp(θ, θ̂b̂p,µ̂p) + ε
)

= 0 for any ε > 0

is the same as the proof of Theorem 3.2. Likewise, to show

lim sup
p→∞

[

Rp(θ, θ̂SM ) − Rp(θ, θ̂b̂p,µ̂p)
]

≤ 0,

we use the inequality

lp(θ, θ̂SM ) − lp(θ, θ̂b̂p,µ̂p) ≤ 2 sup
∣

∣

∣SUREM (b, µ) − lp(θ, θ̂b,µ)
∣

∣

∣ ,

and Theorem 6.1. ✷
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Figure 1: Comparing the risks of different shrinkage estimators. (1)-(6) correspond to the six simu-
lation examples.
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