Math-in-CTE Lesson Plan Template

Lesson Title: DC series and parallel circuits		Lesson # 13		
Author(s):Jose A. Larrinaga	Phone Number(s):		E-mail Address(es):	
		1500 ext	jlarrinaga@dadeschools.net	
Juan M. Gonzalez	2415	1500 ext		
Juan W. Gonzalez	2452	1500 ext		
Occupational Area: Engineerin	_	ogy/Drafting		
CTE Concept(s): DC series and parallel circuits				
Math Concepts: Adding Fractic				
	will be able	e to work with a	analyze series, parallel, and series	
-parallel DC circuits.	latara and		uter stations	
Supplies Needed: paper, calcul	lators, and	optional comp		
THE "7 ELEMENTS"			TEACHER NOTES (and answer key)	
1. Introduce the CTE lesson.		1. Amperes(A)	: a unit of electric currents	
Lesson induction questions:		2. Circuit: The	conducting part, or a system of	
Through question probing, assess students' math awareness as it relates to CTE topic. Why is it that in Christmas Tree when one light bulb in the wire does not work the		conducting parts, through which an electrical current passes.		
		3. Current (I): The transfer of an electric charge through a material. Current is measured in amperes.		
rest of lights in that wire does not we either? Vocabulary: amperes, circuit, cur		4. Ohm (Ω) : A unit of resistance.		
	urrent	5. Parallel circuit: A method of connecting a circuit so that the current has two or more paths follow.		
ohms, parallel, resistor, series, volts voltage source, watts, wire		6. Resistor: A device that opposes the flow of an electric current. It is used for protection operation or current control.		
			it: A method of connecting a circuit rent has one path to flow.	
		8. Volt (V): A unit of electrical potential or pressure.		
		9. Voltage (E): The electromotive force or electrical pressure. It is expressed in volts.		
		10. Watts (W):	A unit of power.	
		11. Wire: A mocomponents.	etal chord that connects electrical	

2. Assess students' math awareness as it relates to the CTE lesson. How do you add and divide	FRACTIONS QUIZ.doc		
fractions?			
3. Work through the math example <i>embedded</i> in the CTE lesson.	The Series Circuit.mht Batteries and Bulbs as DC Circuit Example.mht Students will transform circuit formulas to obtain parallel and series circuits results.		
4. Work through <i>related, contextual</i> math- in-CTE examples.	file 13 information CTE\Electrical Circuits - Series and Parallel Circuits, Ohms Law.mht		
$R_{T}=R_{1}+R_{2}+R_{3}++R_{L}$	Series		
T= total resistance L = Last resistor $R_P=1/R_1+1/R_2+1/R_3++R$	$ \begin{array}{c} 1 \\ + \\ - \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		
	Parallel 1 2 3 $+$ $ +$ $ +$ $ +$ $ +$ $ +$ $+$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		

5. Work through <i>traditional math</i> examples.	Fraction Addition and Division.doc
See attached document Fraction Addition and Division.doc.	
6. Students demonstrate their understanding.	The students will demonstrate that they will be able to calculate the equivalent resistance of series and parallel circuits by mastering the basic arithmetic of fraction addition and division
7. Formal assessment.	Series and Parallel Quiz.doc
The format assessment will include in CTE series and parallel circuits.	

DC series and parallel series **answers to math examples**

Add the following fractions and simplify:

1)
$$1/3 + 2/3 =$$
 2) $2/5 + 1/5 =$ 3) $1/6 + 2/6 =$

Find the least common multiple for the following pairs of numbers: 4) 2: 4:

- 5) 2: 3:
- 6) 6: 8:

Find the least common denominators, then add and reduce the fractions:

7) 2/4 + 1/2 = 8) 3/2 + 2/3 = 9) 3/8 + 5/6 =

Divide and simplify

10) 2/3 / 1/6 = 11) 1 / 2/5 = 12) 1 / (1/2 + 1/3) =

Student Name:	Period:	Date:	
-			

DC series and parallel series **answers to math examples**

1) 1
2) 3/5
3) 1 / 2
4) 4
5) 6
6) 24
7) 1
8) 13/6
9) 58/24 = 29/12
10) 4
11) 5/2
12) 6/5

DC series and parallel series **answers to math examples**

Add the following fractions and simplify:

1)
$$1/3 + 2/3 =$$
 2) $2/5 + 1/5 =$ 3) $1/6 + 2/6 =$

Find the least common multiple for the following pairs of numbers: 4) 2: 4:

- 5) 2: 3:
- 6) 6: 8:

Find the least common denominators, then add and reduce the fractions:

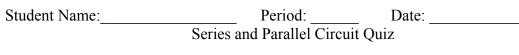
7) 2/4 + 1/2 = 8) 3/2 + 2/3 = 9) 3/8 + 5/6 =

Student Name:	Period:	Date:
DC series and parallel series	answers to math examples	
1) 1		
2) 3/5		
3) 1 / 2		
4) 4		
5) 6		
6) 24		
7) 1		
8) 13/6		
9) 58/24 = 29/12		

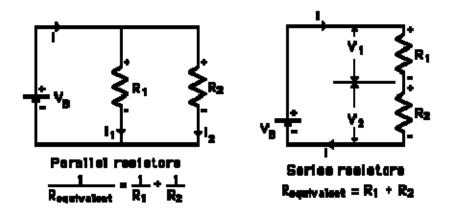
FRACTIONS QUIZ

Add and simplify

- 1) 1/3 + 5/3 =
- 2) 5/4 + 3/2 =
- 3) 5/3 + 7/2 =
- **4)** 1/6 + 1/8 =


Divide and simplify

- 5) 1/5 / 3/10 =
- 6) 1 / 2/7 =


FRACTIONS QUIZ

ANSWERS:

- 1) 2
- 2) 11/4
- 3) 31/6
- 4) 7/ 12
- 5) 2/3
- 6) 7/2

Example

1. If in the series circuit $R1 = 10 \Omega$ and $R_2 = 10\Omega$. What is $R_{equivalent}$? 2. If in the series circuit $R1 = 1000 \Omega$ and $R_2 = 0\Omega$. What is $R_{equivalent}$? 3. If in the series circuit $R1 = 150 \Omega$ and $R_2 = 200\Omega$. What is $R_{equivalent}$? 4. If in the series circuit $R1 = 1k \Omega$ and $R_2 = 10\Omega$. What is $R_{equivalent}$? 5. If in the series circuit $R1 = 189 \Omega$ and $R_2 = 234\Omega$. What is $R_{equivalent}$? 6. If in the parallel circuit $R_1 = 100 \Omega$ and $R_2 = 100\Omega$. What is $R_{equivalent}$? 7. If in the parallel circuit $R_1 = 100 \Omega$ and $R_2 = 300\Omega$. What is $R_{equivalent}$? 8. If in the parallel circuit $R_1 = 1k \Omega$ and $R_2 = 234\Omega$. What is $R_{equivalent}$? 9. If in the parallel circuit $R_1 = 1k \Omega$ and $R_2 = 300\Omega$. What is $R_{equivalent}$? 10. If in the parallel circuit $R_1 = 1k \Omega$ and $R_2 = 5\Omega$. What is $R_{equivalent}$?

Student Name:	Period:	Date:	
1	Series and Parallel Circu	it Quiz	
Answer Sheet			
1. 20 Ω			
2. 1000 Ω or 1 k Ω			
3. 350 Ω			
4. 1010 Ω			
5. 423 Ω			
6. 50 Ω			
7. 120 Ω			
8. 2000/3 Ω or ≈666.67 Ω			
9. 1000/201 Ω or ≈4.98 Ω			
10. 600/121 Ω or $\approx 4.96 \Omega$			