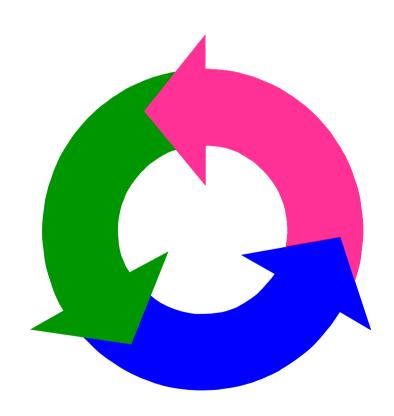
Systems Analysis and Design with UML Version 2.0

Chapter 4 Project Management

Project Management

Chapter 4

Key Definitions


- Project management is the process of planning and controlling the development of a system within a specified timeframe at a minimum cost with the right functionality.
- A project manager has the primary responsibility for managing the hundreds of tasks and roles that need to be carefully coordinated.

PM Steps

- Identifying the project sizes
- Creating and Managing the workplan
- Staffing the project.
- Coordinating project activities
 - Workplan, Staffing Plan, and Standards list

Estimation Trade-offs

- Size
 - Function points
 - Lines of code
- Effort
 - Person-months
- Time
 - Months

Estimating a Project Based on Industry Information

	Planning	Analysis	Design	Implementation
Industry Standard For Web Applications	15% s	20%	35%	30%
Time Required in Person Months	4	5.33	9.33	8

Time Estimation Using a More Complex Approach

Estimate system size (function points and lines of code) Estimate effort required (person-months) Estimate time required (months) Slics

Function Point Estimation

-- Step One

Complexity					
Description	Low	Medium	High	Total	
Inputs	x 3	x 4	x 6		
Outputs	x 4	x 5	x 7		
Queries	x 3	x 4	x 6		
Files	x 7	x 10	x 15		
Program Interfaces	x 5	x 7	x 10		
TOTAL UNADJUSTED FUNCTION POINTS					

Function Points Estimation

-- Step Two

	Scale of 1 to 5
Data Communications Heavy Use Configuration Transaction Rate End-User efficiency Complex Processing Installation Ease Multiple sites Performance Distributed functions On-line data entry On-line update Reusability	
Operational Ease	
Extensibility	
Project Complexity (PC)	

Function Point Estimation

-- Step Three

```
Processing Complexity (PC):
(From Step 2)
Adjusted Processing
Complexity (PCA) = 0.65 + (0.001 * ____)
Total Adjusted
Function Points:
  (TUFP -- From Step 1)
```

Function Points Estimation -- Step Four

=
$$.065 + (0.01 * Project Complexity)$$

Total Adjusted Function Points

=

Adjusted Project Complexity * TUFP —

Converting Function Points to Lines of Code

Language	LOC/Function Code Point
C COBOL JAVA C++ Turbo Pascal Visual Basic PowerBuilder HTML Packages (e.g., Access, Excel)	130 110 55 50 50 30 15 15 10-40

Source: Capers Jones, Software Productivity Research

Estimating Effort

- Function of size and production rate
- COCOMO model

COCOMO Estimation Calculation

```
Effort
(in Person-
Months)
```

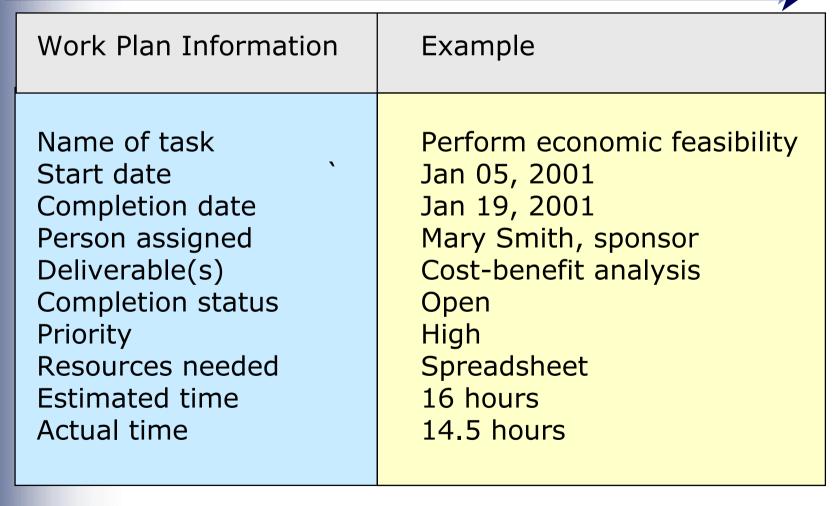
```
= 1.4 * thousands-of-
lines-of-code
```

Example:

```
If LOC = 2000 Then...

Effort = (1.4 * 2000) = 28 Person Months
```

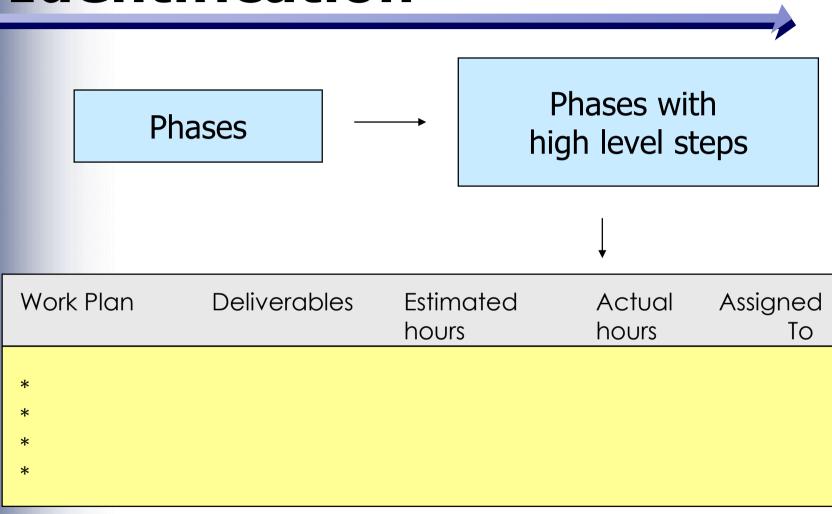
Estimating Schedule Time


Rule of thumb for estimation

Schedule Time (months)

 $3.0 * person-months^{1/3}$

CREATING THE WORK PLAN

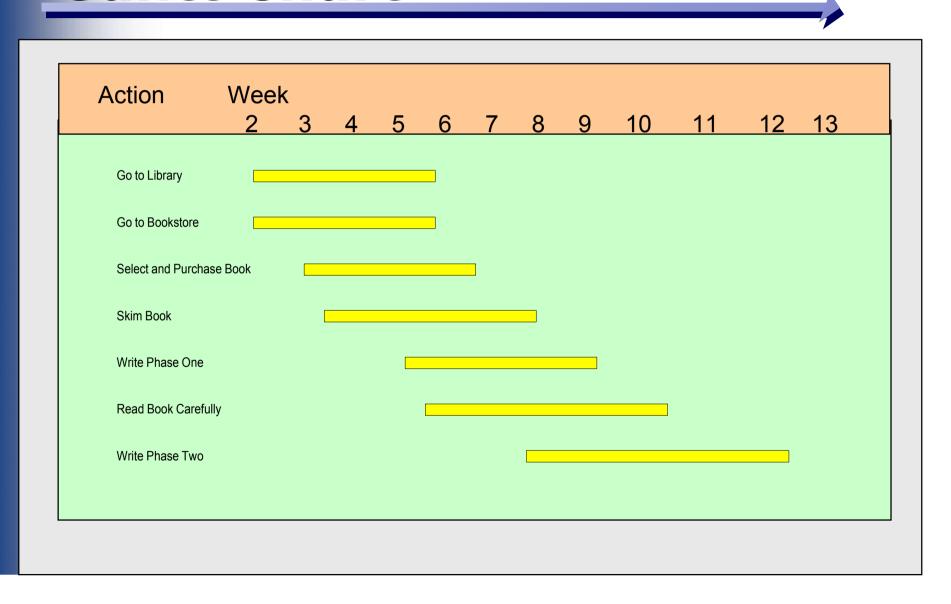

A Workplan Example

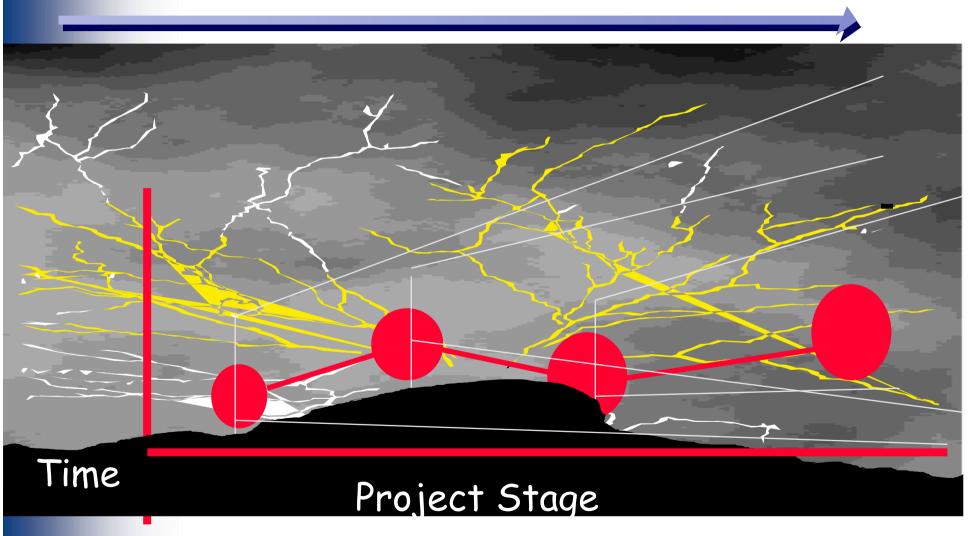
Identifying Tasks

- Top-down approach
 - Identify highest level tasks
 - Break them into increasingly smaller units
- Methodology
 - Using standard list of tasks

Top Down Task Identification

Getting the Right Numbers for Estimation


- Prior projects
 - Past experience
 - Industry standards
- Detailed analysis


Managing Scope

- Scope creep -- a major cause of development problems
 - JAD and prototyping
 - Formal change approval
 - Charging for changes

Tracking Tasks Using Gantt Chart

The Hurricane Model

Margins of Error in Cost and Time Estimates

		Typical margins of Error for Well-done Estimates		
Phase	Deliverable	Cost (%)	time (%)	
Planning	System Request Project Plan	400 100	60 25	
Analysis	System Proposal	50	15	
Design	System Specification	25	10	
Source: Boehm et al. (1995)				

Timeboxing

- Fixed deadline
- Reduced functionality, if necessary
- Fewer "finishing touches"
 - 80% versus 20%
 - 75% versus 25%

Timeboxing Steps

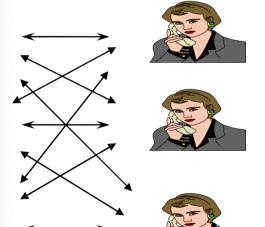
- Set delivery date
 - Deadline should not be impossible
 - Should be set by development group
- Prioritize features by importance
- Build the system core
- Postpone unfinished functionality
- Deliver the system with core functionality
- Repeat steps 3-5 to add refinements and enhancemen

STAFFING THE PROJECT

Staffing Attributes

- Staffing levels will change over a project's lifetime
- Adding staff may add more overhead than additional labor
- Using teams of 8-10 reporting in a hierarchical structure can reduce complexity

Increasing Complexity with Larger Teams



Your Turn

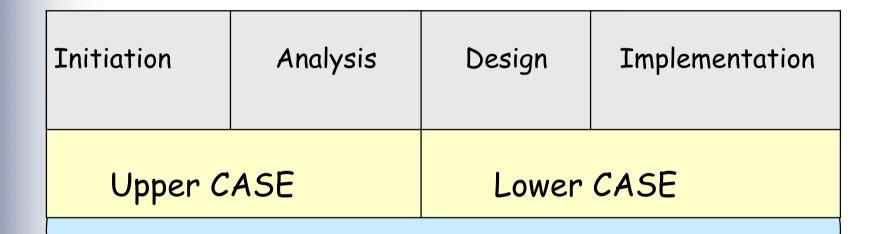
How do you know how many people to assign to a project?

How do you know what special skills will be needed for completion of the project?

Key Definitions

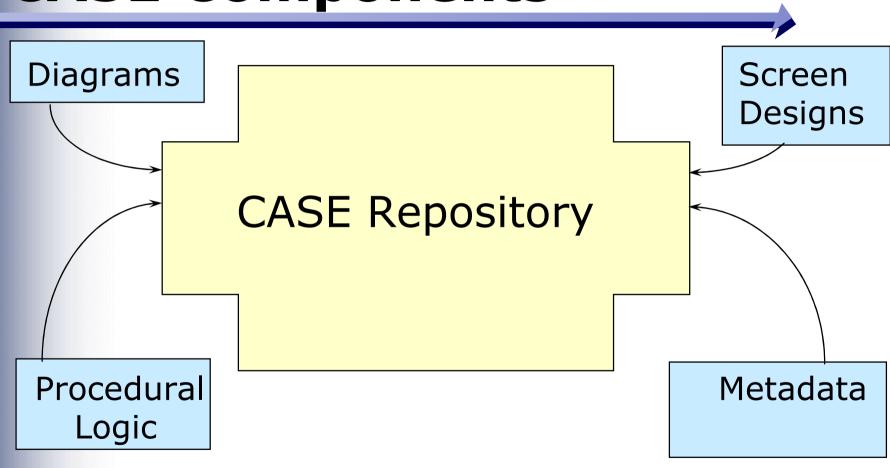
- The staffing plan describes the kinds of people working on the project
- The project charter describes the project's objectives and rules
- A functional lead manages a group of analysts
- A technical lead oversees progress of programmers and technical staff members

Motivation


- Use monetary rewards cautiously
- Use intrinsic rewards
 - Recognition
 - Achievement
 - The work itself
 - Responsibility
 - Advancement
 - Chance to learn new skills

Conflict Avoidance Strategies

- Clearly define roles and project plans
- Hold individuals accountable
- Project charter listing norms and groundrules
- Develop schedule commitments ahead of time
- Forecast other priorities and their possible impact on the project


CONTROLLING AND DIRECTING THE PROJECT

CASE Tools

Integrated CASE (I-CASE)

CASE Components

Standards

- Examples
 - Formal rules for naming files
 - Forms indicating goals reached
 - Programming guidelines

Documentation

- Project binder
- Table of contents
- Continual updating

Managing Risk

- Risk assessment (a document Fig4-20)
- Actions to reduce risk
- Revised assessment

Classic Mistakes

- Overly optimistic schedule
- Failing to monitor schedule
- Failing to update schedule
- Adding people to a late project

Summary

- Project management is critical to successful development of new systems
- Project management involves planning, controlling and reporting on time, labor, and costs.

Expanding the Domain

- For more detail on project management, visit the project management institute and its special interest group on information systems:
 - www.pmi.org
 - www.pmi-issig.org