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On developing ridge regression parameters:

a graphical investigation

Gisela Muniz1, B. M. Golam Kibria2, Kristofer Mansson3 and Ghazi Shukur3,4

Abstract

In this paper we review some existing and propose some new estimators for estimating the ridge

parameter. All in all 19 different estimators have been studied. The investigation has been carried

out using Monte Carlo simulations. A large number of different models have been investigated

where the variance of the random error, the number of variables included in the model, the

correlations among the explanatory variables, the sample size and the unknown coefficient vector

were varied. For each model we have performed 2000 replications and presented the results both

in term of figures and tables. Based on the simulation study, we found that increasing the number

of correlated variable, the variance of the random error and increasing the correlation between

the independent variables have negative effect on the mean squared error. When the sample size

increases the mean squared error decreases even when the correlation between the independent

variables and the variance of the random error are large. In all situations, the proposed estimators

have smaller mean squared error than the ordinary least squares and other existing estimators.

MSC: Primary 62J07, Secondary 62F10.
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1. Introduction

In most empirical studies practitioners are often concerned about the specification of

the models under consideration, especially with regards to problems associated with the

residuals, with the aim of assessing white noise errors to judge whether the model is

well specified. Model misspecification can be due to omission of one or several relevant
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variables, inclusion of unnecessary variables, wrong functional form, misspecified dy-

namics, autocorrelation, heteroscedasicity, etc. It is recommended that some diagnostic

tests should be conducted in order to assure the whiteness of the model under consider-

ation, otherwise the estimated results can be inefficient, biased or inconsistent.

However, there are other problems that also might influence the results, e.g. multi-

collinearity. This problem occurs in situations when the explanatory variables are highly

inter-correlated. Empirically the problem of multicollinearity can be observed, for ex-

ample in cement production, when the amount of different compounds in the clinkers

is regressed on the heat evolved of cement (see the classical Portland cement data used

in Muniz and Kibria, 2009). Another examples in economics could be the effect of dif-

ferent amenities that attract visitors and tourists on the gross regional product. A final

example is when the usage of different types of vehicles on the number of injured people

in traffic is analyzed. In these situations it becomes difficult to disentangle the separate

effects of each of the explanatory variables on the response variable. As a result, es-

timated parameters can be wrongly insignificant or have (unexpectedly) wrong signs.

Note that multicollinearity is more a problem with the data than with the model itself,

and hence this kind of problem can not be identified by residual analysis. As a result, a

common deficiency in many applied studies is the absence of paying serious attention to

this problem. Indeed, although model misspecification is an important area in statistical

modelling, multicollinearity is an important issue too.

The history of multicollinearity dates back at least to the paper by Frisch (1934) who

introduced the concept to denote a situation where the variables dealt with are subject

to two or more relations. One way to deal with this problem is called ridge regression,

first introduced by Hoerl and Kennard (1970a,b). At this stage, the main interest lies

in finding a value of the ridge parameter, say k, such that the reduction in the variance

term of the slope parameter is greater than the increase in its squared bias. The authors

proved that there is a nonzero value of such ridge parameter for which the mean squared

error (MSE) for the slope parameter using ridge regression is smaller than the variance

of the ordinary least squares (OLS) estimator of the respective parameter. Many authors

thereafter worked in this area of research and developed and proposed different estimates

for the ridge regression parameter. To mention a few, McDonald and Galarneau (1975),

Lawless and Wang (1976), Saleh and Kibria (1996), Haq and Kibria (1996), Kibria

(2003), Khalaf and Shukur (2005) and Alkhamisi, Khalaf and Shukur (2006). In Kibria

(2003) and Alkhamisi et al. (2006), the authors used simulation techniques to study the

properties of some new proposed estimators and compared their properties with some

popular existing estimators. Under certain conditions, they found that the MSEs of some

of the new proposed estimators are smaller than the corresponding MSE of the OLS

estimator and other existing estimators. Recently, Muniz and Kibria (2009) developed

five new ridge parameters based on Kibria (2003) and Khalaf and Shukur (2005) in

models with two explanatory variables. They found the new parameters outperform the

previous ones in term of smaller MSEs.
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In this paper we aim to extend the study by Muniz and Kibria (2009) by developing

nine more new ridge parameters and to extend the models by including more explanatory

variables. We also study models with four explanatory variables that are more realistic

in empirical work than models with only two variables. Proceeding in this manner, it is

possible to investigate the effect of the additional included variables on the MSEs.

The paper is organized as follows: In Section 2 we present the model we analyze,

and give the formal definition of the ridge regression parameters used in this study.

In Section 3, the design of our Monte Carlo experiment together with the factors that

can affect the small sample properties of these proposed parameters are introduced. In

Section 4 we describe the results concerning the various parameters in term of MSE.

The conclusions of the paper are presented in Section 5.

2. Methodology

In this section we present the proposed ridge regression estimators. This includes a

brief background on the methods suggested by Hoerl and Kennard (1970a), and that

developed by Khalaf and Shukur (2005), Alkhamisi and Shukur (2008), Alkhamisi et

al. (2006) and Muniz and Kibria (2009). Moreover, we present the new ridge parameter,

(denoted by KAS), together with the other five new versions.

2.1. Notations and some preliminaries

The multiple linear regression model can be expressed as:

y = Xβ+e, (2.1)

where y is an n×1 vector of responses, X is an n× p observed matrix of the regressors,

β is a p×1 vector of unknown parameters, and e is an n×1 vector of errors.

The ordinary least squares estimator (OLS) of the regression coefficients β is defined

as

β̂ =
(

XTX
)−1

XTy, (2.2)

Suppose, there exists an orthogonal matrix D such that DTCD =Λ, where Λ= diag(λ1,

λ2, . . . ,λp) are the eigenvalues of the matrix C = XTX. The orthogonal (canonical form)

version of the multiple regression model (2.1) is

Y = X∗α+e
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where X∗ =X D andα=DTβ . In case the matrix XTX is ill-conditioned however (in the

sense of there is a near-linear dependency among the columns of the matrix) the OLS

estimator of β has a large variance, and multicollinearity is said to be present. Ridge

regression replaces XTX with XTX+ kI, (k > 0). Then the generalized ridge regression

estimator of α are given as follows:

α̂(k) =
(

X∗TX∗+K
)−1

X∗TY (2.3)

where K = diag(k1,k2, . . . ,kp), ki > 0 and α̂=Λ
−1X∗TY is the OLS estimator of α.

According to Hoerl and Kennard (1970a) the value of ki which minimizes the

MSE(α̂(K)) is

ki =
σ2

α2
i

, (2.4)

where σ2 represents the error variance of the multiple regression model, and αi is the

ith element of α.

2.2. Proposed estimators

In this section, we review some already available ridge estimators and propose some

new ones.

2.2.1. Estimators based on Hoerl and Kennard (1970)

Hocking, Speed and Lynn (1976) showed that for known optimal ki, the generalized

ridge regression estimator is superior to all other estimators within the class of biased

estimators they considered. Nevertheless, the optimal value of ki fully depends on

the unknown σ2 and αi, which must be estimated from the observed data. Hoerl

and Kennard (1970) suggested to replace σ2 and α2
i by their corresponding unbiased

estimators in (2.4). That is,

k̂i =
σ̂2

α̂2
i

(2.5)

where σ̂2 is the residual mean square estimate, which is an unbiased estimator of σ2

and α̂i is the ith element of α̂, which is an unbiased estimator of α.

Hoerl and Kennard (1970) suggested k to be

kHK1 = k̂HK =
σ̂2

α̂2
max

(2.6)
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where α̂max is the maximum element of α̂. Now, when σ2 and α are known then k̂HK

will give smaller MSE than the OLS.

Hoerl et al. (1975), proposed a different estimator of k by taking the harmonic mean

of k̂i. That is

kHK2 = k̂HKB =
pσ̂2

∑
p
i=1α

2
i

=
pσ̂2

α̂Tα̂
(2.7)

2.2.2. Estimators based on Kibria (2003)

Kibria (2003) proposed some new estimators based on the generalized ridge regression

approach. They are as follows:

By using the geometric mean of k̂i, which produces the following estimator

kK1 = k̂GM =
σ̂2

(
∏

p
i=1 α̂

2
i

) 1
p

(2.8)

By using the median of k̂i, which produces the following estimator for p ≥ 3

kK2 = k̂MED = median

{
σ̂2

α̂2
i

}
, i = 1,2, . . . , p (2.9)

2.2.3. Estimators based on Khalaf and Shukur (2005)

Khalaf and Shukur (2005) suggested a new method to estimate the ridge parameter k, as

a modification of kHK1 as

kS1 = k̂KS =
tmaxσ̂

2

(n− p)σ̂2 + tmaxα̂2
max

(2.10)

where tmax is the maximum eigenvalue of the matrix XTX.

Following Kibria (2003) and Khalaf and Shukur (2005), Alkhamisi et al. (2006)

proposed the following estimators for k:

kS2 = k̂KS
arith =

1

p

p

∑
i=1

(
tiσ̂

2

(n− p)σ̂2 + tiα̂
2
i

)
, i = 1,2, . . . , p (2.11)

kS3 = k̂KS
max = max

(
tiσ̂

2

(n− p)σ̂2 + tiα̂
2
i

)
, i = 1,2, . . . , p (2.12)
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kS4 = k̂KS
md = median

(
tiσ̂

2

(n− p)σ̂2 + tiα̂
2
i

)
. (2.13)

2.2.4. Some proposed new estimators

Following Kibria (2003), Khalaf and Shukur (2005), Alkhamisi et al. (2006) and

Alkhamisi and Shukur (2008), we proposed the following estimators. First, following

Kibria (2003) and Khalaf and Shukur (2005), we propose the following estimator

kKM1 = k̂KS
gm =

(
p

∏
i=1

tiσ̂
2

(n− p)σ̂2 + tiα̂
2
i

) 1
p

(2.14)

In Muniz and Kibria (2009) some ridge parameters that are functions of the optimal

value shown in equation (2.4) was proposed. These functions of the optimal value used

firstly different quantiles such as the median and max just as in Khalaf and Shukur

(2005) and secondly the square root transformation that was shown to work well in

Alkhamisi and Shukur (2008). These ridge parameters correspond to:

kKM2 = max




1√
σ̂2

α̂2
i


 (2.15)

kKM3 = max

(√
σ̂2

α̂2
i

)
(2.16)

kKM4 =




p

∏
i=1

1√
σ̂2

α̂2
i




1
p

(2.17)

kKM5 =

(
p

∏
i=1

√
σ̂2

α̂2
i

) 1
p

(2.18)

kKM6 = median




1√
σ̂2

α̂2
i


 (2.19)
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kKM7 = median

(√
σ̂2

α̂2
i

)
(2.20)

Furthermore, we will propose some new estimators of the ridge parameter. These also

use different quantiles and the square root transformation proposed in Khalaf and Shukur

(2005) and Alkhamisi and Shukur (2008) respectively. However, the base of the different

functions is no longer the optimal value but a modification proposed by Khalaf and

Shukur (2005). This modification, which in general leads to larger values of the ridge

parameters than those derived from the optimal value, was shown to work well in the

simulation study conducted in that paper:

kKM8 = max




1√
tmaxσ̂2

(n−p)σ̂2+tmaxα̂
2
i


 (2.21)

kKM9 = max

(√
tmaxσ̂2

(n− p)σ̂2 + tmaxα̂
2
i

)
(2.22)

kKM10 =




p

∏
i=1

1√
tmaxσ̂2

(n−p)σ̂2+tmaxα̂
2
i




1
p

(2.23)

kKM11 =

(
p

∏
i=1

√
tmaxσ̂2

(n− p)σ̂2 + tmaxα̂
2
i

) 1
p

(2.24)

kKM12 = median




1√
tmaxσ̂2

(n−p)σ̂2+tmaxα̂
2
i


 (2.25)

Note that the new proposed estimators: kS1 (in 2.10), kS2 (in 2.11), kKM3 (in 2.16), kKM7

(in 2.20), kKM8 (in 2.21), kKM9 (in 2.22), kKM10 (in 2.23), kKM11 (in 2.24) and finally

kKM12 (in 2.25) were not investigated in Muniz and Kibria (2009).
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3. The Monte Carlo design

The aim of this paper is to compare the performance of our new proposed estimators

and the other estimators together with the OLS. Since a theoretical comparison is not

possible, a simulation study has been conducted using S-plus 8.0 software. The design

of a good simulation study is dependent on (i) what factors are expected to affect the

properties of the estimators under investigation and (ii) what criteria are being used to

judge the results. Since ridge estimators are supposed to have smaller MSE compared

to OLS, the MSE will be used to measure the goodness of an estimator, while the first

question will be treated briefly.

Since the degree of collinearity among the explanatory variable is of central im-

portance, we followed Muniz and Kibria (2009) in generating the explanatory variable

using the following device:

xi j =
(
1−γ2

)1/2
zi j +γzip, i = 1,2, . . . ,n, j = 1,2, . . . , p (3.26)

where γ2 represents the correlation between the explanatory variables, and zi j are

independent standard pseudo-random numbers. The n observations for the dependent

variable are then determined by:

yi = β0 +β1xi1 +β2xi2 + ...+βpxip + ei, i = 1,2, . . . ,n (3.27)

where ei are i.i.d. N
(
0,σ2

)
pseudo-random numbers, and β0 is taken to be zero without

loss of generality.

3.1. Factors that vary in the Monte Carlo simulations

Since our primary interest lies in the performance of our proposed estimators according

to the strength of the multcollinearity, we used different degrees of correlation between

the variables and let γ = 0.7, 0.8 and 0.9. We also want to see the effect of the sample

sizes on the performance of the estimators. Therefore, in this study, we considered

n = 10, 20, 30, 40, 50 and 100 which will cover models with small, medium and large

sample sizes. The number of the explanatory variables is also of great importance since

the bad impact of the collinearity on the MSE might be stronger when more variables

in the model are correlated. We hence generated models with p = 2 and 4 explanatory

variables. To see whether the magnitude of the error variance has a significant effect

of the performances of the proposed estimators, we used different values of the error

standard deviations σ = 0.01, 0.5, 1, 3, and 5. For each set of explanatory variables

we considered the coefficient vector that corresponded to the largest eigenvalue of XTX

matrix subject to the constraint that βTβ = 1. Newhouse and Oman (1971) stated that
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if the mean squared error (MSE) is a function of β , σ2, and k, and if the explanatory

variables are fixed, then the MSE is minimized when we choose this coefficient vector.

For given values of n, p,β ,γ, and σ, the set of explanatory variables was generated.

Then the experiment was repeated 2000 times and the average mean squared error was

calculated for all 15 estimators.

4. Results and discussion

In this section we present the results of our Monte Carlo experiment concerning the

MSEs of the different proposed estimators compare to the OLS. A conventional way to

report the results of a Monte Carlo experiment is to tabulate the values of these MSEs

under different conditions. When determining the manner of presentation, some account

has to be taken to the results obtained. Our original intention was to start by presenting

results for all the main effects in term of tables. However, since the results are too

extensive, presenting the results in term of tables will make it difficult to follow the

main findings. We hence present our most important findings in the form of figures that

summarize most of the results with respect to the different features under investigation.

More exact results of the simulated MSEs for the 15 estimators are provided in the

appendix (all results are not included in tables, however, but are available on request

from the authors). Simulated MSEs for fixed n, p and γ and different values of σ are

presented in Table A.1, for fixed n, p and σ and different values of γ are presented in

Table A.2, for fixed p, γ and σ and different values of n are presented in Table A.3.

4.1. Performance as a function of σσσ

In Table A.1 we have provided the MSEs of the estimators as a function of the variance

of the errors(σ). When the value of σ increases, the MSE of the estimators also

increases. For all values of σ, the ridge regression estimators have smaller MSE than

the OLS. However, the performance of the proposed estimators kKM4, kKM5, kKM8,

kKM10, kKM12, and kK1, kK2 is better than the performance of the rest of the analysed

estimators. This behaviour was almost constant for any sample size and number of

variables considered. However, when the standard deviation is large, i.e. (σ = 5), the

new kKM8, kKM12 outperform all the other estimators in term of producing less MSE.

For given γ = 0.70 and n = 10, the performance of estimators as a function of the

standard deviation of the errors for p = 2 and p = 4 are provided in Figures 1 and 2

respectively. From these figures we observe that as the standard deviation increases, the

MSE also increases. The same is true when shifting from models with 2 variables to

those with 4, especially for the OLS, kHK, kS1, kS2, (see Figure 2).
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4.3. Performance as a function of nnn

In Table A.3 we have provided the MSEs of the estimators as a function of the sample

size. We observed that, in general, when the sample size increases the MSE decreases,

or remains the same. Even for the large values of γ and σ, if we increase the sample

size the MSE of estimators decreases. Again in this situation, as n and p increase the

performance of kKM4, kKM5, kKM8, kKM10, kKM12, and kK1, kK2 is better than the rest of

the k estimators.

For given γ= 0.90 and p = 2, the performance of the estimators as a function of the

sample size for σ = 0.5 and σ = 5 is provided in Figures 5 and 6 respectively. From

these figures, we observe that as the sample size increases, the MSE decreases. Except

for a few situations, this pattern was constant for all of the estimators. Note the huge

increase in the MSE when shifting from σ = 0.5 to σ = 5.

5. Concluding remarks

In this paper we have reviewed and proposed some new estimators for estimating the

ridge parameter k. The new proposed estimators are defined based on the work of

Kibria (2003), Khalaf and Shukur (2005) and Alkhamisi et al. (2006). The performance

of the estimators depends on the variance of the random error (σ), the correlations

among the explanatory variables (γ), the sample size (n) and the unknown coefficient

vector β . Based on the simulation study, some conclusions can be drawn. However,

these restrictions may be restricted to the set of experimental conditions that are

investigated. We used the MSE criterion to measure the performance of the estimators.

The increase of the number of correlated variables, of σ and of the correlation between

the independent variables have a negative effect in the MSE, in the sense that it also

increases. When the sample size increases the MSE decreases, even when the correlation

between the independent variables and σ are large. In all situations, the proposed

estimators have smaller MSE than the ordinary least squared estimators. Five of them,

kKM4, kKM5, kKM8, kKM10, kKM12, and the kK1, kK2 performed better than the rest in the

sense of smaller MSE. Finally, it appears that the proposed estimators kKM4, kKM5, kKM8,

kKM10, kKM12 are useful and may be recommended to practitioners. The kKM8 and kKM12

estimators are particularly also recommended when working with models with large

residual variances since they outperform all the others in such cases.
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Table A.1: Simulated MSE for fixed n, p, and γ and different values of σ.

n = 10, p = 2, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.427 0.426 0.426 0.426 0.426 0.426 0.389 0.125 0.129 0.272 0.125 0.125 0.389 0.129 0.272 0.125

0.5 0.765 0.516 0.336 0.269 0.517 0.517 0.304 0.172 0.171 0.189 0.172 0.136 0.304 0.149 0.222 0.136

1 1.799 1.051 0.438 0.297 1.042 1.042 0.479 0.270 0.223 0.215 0.270 0.143 0.479 0.163 0.291 0.143

5 36.39 18.75 3.898 1.701 18.36 18.36 6.025 2.733 1.446 1.204 2.733 0.317 6.025 0.547 2.373 0.317

n = 10, p = 2, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 K12

0.01 0.073 0.073 0.073 0.073 0.073 0.073 0.057 0.121 0.094 0.025 0.121 0.121 0.057 0.095 0.025 0.120

0.5 0.438 0.244 0.117 0.084 0.243 0.243 0.087 0.065 0.053 0.047 0.065 0.084 0.087 0.063 0.048 0.084

1 1.608 0.866 0.254 0.133 0.840 0.840 0.271 0.121 0.084 0.082 0.121 0.089 0.271 0.075 0.115 0.089

5 38.59 20.17 4.069 1.577 20.19 20.19 6.265 2.712 1.384 1.138 2.712 0.271 6.265 0.477 3.325 0.271

n = 10, p = 2, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM 11 K12

0.01 0.073 0.073 0.073 0.073 0.073 0.073 0.052 0.120 0.094 0.020 0.120 0.052 0.094 0.020 0.121 0.052.

0.5 0.618 0.329 0.125 0.076 0.313 0.313 0.087 0.063 0.051 0.043 0.063 0.085 0.087 0.063 0.042 0.085

1 2.445 1.267 0.296 0.137 1.191 1.191 0.301 0.133 0.195 0.081 0.133 0.094 0.301 0.074 0.109 0.090

5 61.65 31.81 4.630 1.542 30.49 30.49 7.311 2.890 1.224 1.222 2.890 0.256 7.311 0.438 2.203 0.256

n = 20, p = 2, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.035 0.032 0.032 0.032 0.032 0.032 0.030 0.032 0.032 0.020 0.032 0.032 0.030 0.032 0.020 0.032

0.5 0.090 0.061 0.045 0.041 0.072 0.072 0.043 0.029 0.025 0.025 0.029 0.038 0.043 0.029 0.028 0.038

1 0.264 0.152 0.080 0.064 0.209 0.209 0.119 0.059 0.047 0.043 0.059 0.040 0.119 0.035 0.068 0.040

5 5.529 2.823 1.010 0.645 4.299 4.299 2.393 1.198 0.853 0.524 0.198 0.116 2.393 0.246 1.293 0.116

n = 20, p = 2, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.189 0.189 0.189 0.189 0.189 0.189 0.174 0.055 0.057 0.123 0.055 0.055 0.174 0.057 0.123 0.057

0.5 0.334 0.225 0.149 0.20 0.255 0.255 0.156 0.077 0.077 0.086 0.077 0.05 0.156 0.065 0.107 0.059

1 0.776 0.444 0.182 0.127 0.535 0.535 0.265 0.117 0.099 0.098 0.117 0.061 0.265 0.071 0.146 0.061

5 13.77 6.66 1.312 0.619 8.96 8.96 3.500 1.265 0.703 0.521 1.265 0.113 3.500 0.217 1.280 0.113

n = 20, p = 2, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.032 0.032 0.032 0.032 0.032 0.032 0.025 0.032 0.032 0.011 0.032 0.032 0.025 0.032 0.011 0.032

0.5 0.190 0.104 0.049 0.035 0.121 0.121 0.047 0.028 0.023 0.020 0.028 0.040 0.047 0.029 0.022 0.040

1 0.666 0.340 0.094 0.056 0.419 0.419 0.155 0.050 0.037 0.037 0.050 0.042 0.155 0.034 0.058 0.042

5 15.76 7.692 1.441 0.599 9.601 9.601 3.440 1.303 0.635 0.457 1.303 0.093 3.440 0.176 1.141 0.093

n = 50, p = 2, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.013 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.013 0.008 0.012 0.012 0.011 0.011 0.008 0.012

0.5 0.027 0.020 0.016 0.015 0.025 0.025 0.018 0.011 0.010 0.010 0.011 0.016 0.018 0.012 0.016 0.016

1 0.076 0.046 0.027 0.023 0.071 0.071 0.049 0.023 0.020 0.017 0.023 0.016 0.049 0.014 0.030 0.016

5 1.561 0.783 0.323 0.231 1.444 1.444 0.994 0.434 0.329 0.204 0.434 0.029 0.994 0.075 0.578 0.029

n = 50, p = 2, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.073 0.071 0.071 0.071 0.071 0.071 0.068 0.020 0.022 0.054 0.020 0.020 0.068 0.022 0.054 0.020

0.5 0.096 0.070 0.053 0.047 0.089 0.089 0.067 0.033 0.032 0.035 0.033 0.022 0.067 0.025 0.048 0.022

1 0.172 0.107 0.061 0.049 0.156 0.156 0.106 0.050 0.043 0.039 0.050 0.022 0.106 0.026 0.067 0.022

5 2.381 1.184 0.388 0.250 2.099 2.099 1.246 0.467 0.322 0.217 0.467 0.035 1.246 0.081 0.616 0.035
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n = 50, p = 2, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.013 0.012 0.012 0.012 0.012 0.012 0.009 0.020 0.015 0.004 0.012 0.012 0.009 0.015 0.004 0.012

0.5 0.072 0.039 0.017 0.012 0.054 0.054 0.023 0.010 0.008 0.007 0.010 0.016 0.023 0.012 0.009 0.016

1 0.248 0.123 0.033 0.019 0.189 0.189 0.079 0.020 0.013 0.013 0.020 0.016 0.079 0.012 0.025 0.016

5 6.132 2.978 0.464 0.199 4.572 4.572 1.858 0.452 0.225 0.169 0.452 0.026 1.858 0.052 0.539 0.026

n = 100, p = 2, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.008 0.004 0.009 0.009 0.005 0.008 0.004 0.009

0.5 0.014 0.010 0.008 0.007 0.013 0.013 0.010 0.005 0.005 0.005 0.005 0.008 0.010 0.006 0.006 0.008

1 0.039 0.023 0.013 0.011 0.038 0.038 0.028 0.011 0.009 0.008 0.011 0.008 0.028 0.007 0.017 0.008

5 0.812 0.412 0.163 0.113 0.779 0.779 0.572 0.221 0.165 0.102 0.221 0.012 0.572 0.031 0.326 0.012

n = 100, p = 2, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.007 0.003 0.009 0.009 0.005 0.007 0.003 0.009

0.5 0.016 0.010 0.008 0.007 0.015 0.015 0.010 0.005 0.004 0.004 0.005 0.008 0.010 0.006 0.006 0.008

1 0.048 0.027 0.013 0.011 0.045 0.045 0.031 0.010 0.008 0.008 0.010 0.008 0.031 0.006 0.016 0.008

5 1.026 0.518 0.178 0.114 0.968 0.968 0.653 0.212 0.150 0.096 0.212 0.011 0.653 0.028 0.033 0.011

n = 100, p = 2, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.036 0.034 0.034 0.034 0.034 0.034 0.032 0.010 0.010 0.023 0.010 0.010 0.032 0.010 0.023 0.010

0.5 0.058 0.039 0.026 0.021 0.053 0.053 0.036 0.014 0.014 0.016 0.014 0.010 0.036 0.011 0.023 0.010

1 0.118 0.067 0.029 0.021 0.106 0.106 0.064 0.021 0.018 0.017 0.021 0.010 0.064 0.012 0.032 0.010

5 2.115 1.005 0.222 0.118 1.861 1.861 0.960 0.226 0.132 0.099 0.226 0.013 0.960 0.029 0.013 0.013

n = 10, p = 4, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.184 0.183 0.183 0.183 0.183 0.183 0.071 0.159 0.103 0.063 0.159 0.159 0.133 0.103 0.063 0.159

0.5 1.482 0.847 0.190 0.171 0.664 0.664 0.133 0.140 0.104 0.105 0.140 0.124 0.234 0.103 0.111 0.124

1 5.564 3.088 0.392 0.359 2.278 2.278 0.329 0.327 0.185 0.188 0.327 0.139 0.701 0.151 0.233 0.139

5 129.0 70.10 6.667 6.191 50.63 50.63 6.225 6.286 2.659 2.616 6.286 0.568 14.72 1.587 3.912 0.568

n = 10, p = 4, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.170 0.169 0.169 0.169 0.169 0.169 0.192 0.169 0.190 0.193 0.169 0.169 0.193 0.190 0.193 0.169

0.5 12.04 6.365 0.341 0.289 3.308 3.308 0.264 0.217 0.213 0.223 0.217 0.183 0.409 0.205 0.234 0.183

1 47.61 24.49 0.661 0.495 11.43 11.43 0.485 0.384 0.514 0.283 0.306 0.384 0.196 0.247 0.359 0.196

5 1190. 613.5 10.40 6.984 292.0 292.0 7.455 5.690 2.463 2.868 5.690 0.582 21.58 1.507 4.237 0.582

n = 10, p = 4, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.188 0.177 0.179 0.179 0.179 0.179 0.209 0.164 0.160 0.184 0.164 0.164 0.243 0.159 0.184 0.164

0.5 23.17 11.50 0.405 0.321 5.521 5.521 0.270 0.190 0.182 0.197 0.190 0.164 0.480 0.173 0.215 0.164

1 94.17 48.44 0.865 0.627 22.26 22.26 0.517 0.406 0.241 0.275 0.406 0.173 1.278 0.205 0.336 0.173

5 2313 1174 13.87 9.616 553.3 553.3 8.052 6.160 2.021 2.583 6.160 0.452 26.49 1.187 3.965 0.452

n = 20, p = 4, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.063 0.063 0.063 0.063 0.063 0.063 0.060 0.060 0.047 0.054 0.060 0.060 0.062 0.047 0.054 0.060

0.5 0.359 0.223 0.082 0.079 0.221 0.221 0.081 0.067 0.059 0.060 0.067 0.052 0.117 0.053 0.068 0.052

1 1.185 0.646 0.121 0.114 0.673 0.673 0.160 0.145 0.097 0.093 0.145 0.057 0.288 0.075 0.121 0.057

5 28.52 14.95 1.624 1.495 15.52 15.52 2.851 2.599 1.390 1.208 2.599 0.209 5.958 0.785 1.921 0.209
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n = 20, p = 4, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.063 0.064 0.064 0.063 0.063 0.063 0.063 0.063

0.5 0.367 0.241 0.111 0.110 0.280 0.280 0.102 0.087 0.080 0.082 0.087 0.067 0.154 0.076 0.088 0.067

1 1.295 0.756 0.182 0.196 0.936 0.936 0.198 0.154 0.109 0.110 0.154 0.069 0.419 0.090 0.139 0.069

5 30.56 16.70 2.512 3.022 21.69 21.69 3.336 2.627 1.147 1.041 2.627 0.169 8.985 0.588 1.850 0.169

n = 20, p = 4, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.01 0.0630 0.0620 0.062 0.062 0.062 0.062 0.049 0.061 0.057 0.022 0.061 0.061 0.054 0.057 0.052 0.061

0.5 0.579 0.344 0.112 0.113 0.419 0.419 0.085 0.070 0.063 0.064 0.070 0.059 0.171 0.060 0.070 0.059

1 2.099 1.170 0.210 0.248 1.500 1.500 0.179 0.136 0.083 0.087 0.136 0.061 0.530 0.070 0.112 0.061

5 51.09 27.72 3.112 35.62 35.62 3.155 2.742 8.514 0.835 0.820 2.742 0.129 11.745 0.416 1.478 0.129

n = 50, p = 4, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.023 0.022 0.022 0.022 0.022 0.022 0.018 0.021 0.016 0.016 0.021 0.021 0.022 0.016 0.016 0.021

0.5 0.071 0.049 0.026 0.027 0.066 0.066 0.030 0.023 0.020 0.020 0.023 0.019 0.047 0.018 0.0241 0.019

1 0.210 0.124 0.040 0.043 0.191 0.191 0.069 0.047 0.034 0.031 0.047 0.019 0.126 0.024 0.046 0.019

5 4.868 2.686 0.489 0.552 4.413 4.413 1.386 0.969 0.517 0.408 0.969 0.042 2.817 0.225 0.810 0.042

n = 50, p = 4, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.020 0.021 0.021 0.020

0.5 0.112 0.073 0.035 0.035 0.098 0.098 0.037 0.029 0.028 0.028 0.029 0.023 0.061 0.026 0.031 0.023

1 0.374 0.214 0.056 0.059 0.319 0.319 0.078 0.053 0.037 0.037 0.053 0.023 0.176 0.030 0.050 0.023

5 9.112 4.978 0.698 0.911 7.735 7.735 1.481 0.924 0.394 0.356 0.924 0.040 4.065 0.176 0.730 0.040

n = 50, p = 4, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.023 0.022 0.022 0.022 0.022 0.022 0.015 0.021 0.017 0.015 0.021 0.021 0.019 0.017 0.015 0.021

0.5 0.166 0.099 0.032 0.033 0.138 0.138 0.030 0.021 0.019 0.019 0.021 0.020 0.071 0.018 0.022 0.020

1 0.600 0.335 0.063 0.071 0.494 0.494 0.074 0.045 0.027 0.028 0.045 0.020 0.235 0.022 0.040 0.020

5 14.84 8.068 0.999 1.504 12.04 12.04 1.516 1.023 0.314 0.301 1.023 0.035 5.570 0.139 0.635 0.035

n = 100, p = 4, γ= 0.7

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.008 0.010 0.008 0.008 0.010 0.010 0.010 0.008 0.008 0.010

0.5 0.030 0.021 0.012 0.012 0.029 0.029 0.015 0.011 0.010 0.010 0.011 0.009 0.023 0.009 0.012 0.009

1 0.089 0.053 0.019 0.020 0.085 0.085 0.037 0.024 0.018 0.016 0.024 0.010 0.063 0.012 0.024 0.010

5 1.966 1.067 0.213 0.245 1.879 1.879 0.727 0.440 0.253 0.199 0.440 0.016 1.365 0.103 0.423 0.016

n = 100, p = 4, γ= 0.8

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.5 0.040 0.027 0.015 0.015 0.038 0.038 0.018 0.013 0.012 0.012 0.013 0.010 0.028 0.011 0.014 0.010

1 0.131 0.077 0.023 0.025 0.123 0.123 0.041 0.026 0.018 0.017 0.026 0.010 0.083 0.013 0.025 0.010

5 3.065 1.679 0.278 0.330 2.869 2.869 0.816 0.458 0.219 0.180 0.458 0.015 1.889 0.084 0.409 0.015

n = 100, p = 4, γ= 0.9

σ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 KM11 KM12

0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.5 0.069 0.043 0.018 0.018 0.063 0.063 0.019 0.013 0.012 0.012 0.013 0.010 0.040 0.011 0.014 0.010

1 0.236 0.132 0.029 0.035 0.213 0.213 0.045 0.026 0.016 0.016 0.026 0.010 0.125 0.013 0.024 0.010

5 5.757 3.139 0.420 0.599 5.195 5.195 0.913 0.432 0.165 0.158 0.432 0.015 2.967 0.068 0.369 0.015
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Table A.2: Simulated MSE for fixed n, p, and σ and different values of γ.

n = 10, p = 2,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 0.427 0.426 0.426 0.426 0.426 0.426 0.389 0.125 0.129 0.272 0.125 0.125 0.389 0.129 0.272 0.125

0.80 0.073 0.073 0.073 0.073 0.073 0.073 0.057 0.121 0.094 0.025 0.121 0.121 0.057 0.095 0.025 0.120

0.90 0.073 0.073 0.073 0.073 0.073 0.073 0.052 0.120 0.094 0.020 0.120 0.052 0.094 0.020 0.121 0.052.

n = 10, p = 2,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 1.799 1.051 0.438 0.297 1.042 1.042 0.479 0.270 0.223 0.215 0.270 0.143 0.479 0.163 0.291 0.143

0.80 1.608 0.866 0.254 0.133 0.840 0.840 0.271 0.121 0.084 0.082 0.121 0.089 0.271 0.075 0.115 0.089

0.90 2.445 1.267 0.296 0.137 1.191 1.191 0.301 0.133 0.195 0.081 0.133 0.094 0.301 0.074 0.109 0.090

n = 10, p = 2,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 36.39 18.75 3.898 1.701 18.36 18.36 6.025 2.733 1.446 1.204 2.733 0.317 6.025 0.547 2.373 0.317

0.80 38.59 20.17 4.069 1.577 20.19 20.19 6.265 2.712 1.384 1.138 2.712 0.271 6.265 0.477 3.325 0.271

0.90 61.65 31.81 4.630 1.542 30.49 30.49 7.311 2.890 1.224 1.222 2.890 0.256 7.311 0.438 2.203 0.256

n = 10, p = 4,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 0.184 0.183 0.183 0.183 0.183 0.183 0.071 0.159 0.103 0.063 0.159 0.159 0.133 0.103 0.063 0.159

0.80 0.170 0.169 0.169 0.169 0.169 0.169 0.192 0.169 0.190 0.193 0.169 0.169 0.193 0.190 0.193 0.169

0.90 0.188 0.177 0.179 0.179 0.179 0.179 0.209 0.164 0.160 0.184 0.164 0.164 0.243 0.159 0.184 0.164

n = 10, p = 4,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 5.564 3.088 0.392 0.359 2.278 2.278 0.329 0.327 0.185 0.188 0.327 0.139 0.701 0.151 0.233 0.139

0.80 47.61 24.49 0.661 0.495 11.43 11.43 0.485 0.384 0.514 0.283 0.306 0.384 0.196 0.247 0.359 0.196

0.90 94.17 48.44 0.865 0.627 22.26 22.26 0.517 0.406 0.241 0.275 0.406 0.173 1.278 0.205 0.336 0.173

n = 10, p = 4,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 129 70.10 6.667 6.191 50.63 50.63 6.225 6.286 2.659 2.616 6.286 0.568 14.72 1.587 3.912 0.568

0.80 1190 613.5 10.40 6.984 292 292 7.455 5.690 2.463 2.868 5.690 0.582 21.58 1.507 4.237 0.582

0.90 2313. 1174 13.87 9.616 553.3 553.3 8.052 6.160 2.021 2.583 6.160 0.452 26.49 1.187 3.965 0.452

n = 20, p = 2,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K11 K12

0.70 0.035 0.032 0.032 0.032 0.032 0.032 0.030 0.032 0.032 0.020 0.032 0.032 0.030 0.032 0.020 0.032

0.80 0.189 0.189 0.189 0.189 0.189 0.189 0.174 0.055 0.057 0.123 0.055 0.055 0.174 0.057 0.123 0.057

0.90 0.032 0.032 0.032 0.032 0.032 0.032 0.025 0.032 0.032 0.011 0.032 0.032 0.025 0.032 0.011 0.032

n = 20, p = 2,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.264 0.152 0.080 0.064 0.209 0.209 0.119 0.059 0.047 0.043 0.059 0.040 0.119 0.035 0.068 0.040

0.80 0.776 0.444 0.182 0.127 0.535 0.535 0.265 0.117 0.099 0.098 0.117 0.061 0.265 0.071 0.146 0.061

0.90 0.666 0.340 0.094 0.056 0.419 0.419 0.155 0.050 0.037 0.037 0.050 0.042 0.155 0.034 0.058 0.042

n = 20, p = 2,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 5.529 2.823 1.010 0.645 4.299 4.299 2.393 1.198 0.853 0.524 0.198 0.116 2.393 0.246 1.293 0.116

0.80 13.77 6.66 1.312 0.619 8.96 8.96 3.500 1.265 0.703 0.521 1.265 0.113 3.500 0.217 1.280 0.113

0.90 15.76 7.692 1.441 0.599 9.601 9.601 3.440 1.303 0.635 0.457 1.303 0.093 3.440 0.176 1.141 0.093
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n = 20, p = 4,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.063 0.063 0.063 0.063 0.063 0.063 0.060 0.060 0.047 0.054 0.060 0.060 0.062 0.047 0.054 0.060

0.80 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.063 0.064 0.064 0.063 0.063 0.063 0.063 0.063

0.90 0.063 0.062 0.062 0.062 0.062 0.062 0.049 0.061 0.057 0.022 0.061 0.061 0.054 0.057 0.052 0.061

n = 20, p = 4,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 1.185 0.646 0.121 0.114 0.673 0.673 0.160 0.145 0.097 0.093 0.145 0.057 0.288 0.075 0.121 0.057

0.80 1.295 0.756 0.182 0.196 0.936 0.936 0.198 0.154 0.109 0.110 0.154 0.069 0.419 0.090 0.139 0.069

0.90 2.099 1.170 0.210 0.248 1.500 1.500 0.179 0.136 0.083 0.087 0.136 0.061 0.530 0.070 0.112 0.061

n = 20, p = 4,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 28.52 14.95 1.624 1.495 15.52 15.52 2.851 2.599 1.390 1.208 2.599 0.209 5.958 0.785 1.921 0.209

0.80 30.56 16.70 2.512 3.022 21.69 21.69 3.336 2.627 1.147 1.041 2.627 0.169 8.985 0.588 1.850 0.169

0.90 51.09 27.72 3.112 35.62 35.62 3.155 2.742 8.514 0.835 0.820 2.742 0.129 11.745 0.416 1.478 0.129

n = 50, p = 2,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.013 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.013 0.008 0.012 0.012 0.011 0.011 0.008 0.012

0.80 0.073 0.071 0.071 0.071 0.071 0.071 0.068 0.020 0.022 0.054 0.020 0.020 0.068 0.022 0.054 0.020

0.90 0.013 0.012 0.012 0.012 0.012 0.012 0.009 0.020 0.015 0.004 0.012 0.012 0.009 0.015 0.004 0.012

n = 50, p = 2,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.076 0.046 0.027 0.023 0.071 0.071 0.049 0.023 0.020 0.017 0.023 0.016 0.049 0.014 0.030 0.016

0.80 0.172 0.107 0.061 0.049 0.156 0.156 0.106 0.050 0.043 0.039 0.050 0.022 0.106 0.026 0.067 0.022

0.90 0.248 0.123 0.033 0.019 0.189 0.189 0.079 0.020 0.013 0.013 0.020 0.016 0.079 0.012 0.025 0.016

n = 50, p = 2,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 1.561 0.783 0.323 0.231 1.444 1.444 0.994 0.434 0.329 0.204 0.434 0.029 0.994 0.075 0.578 0.029

0.80 2.381 1.184 0.388 0.250 2.099 2.099 1.246 0.467 0.322 0.217 0.467 0.035 1.246 0.081 0.616 0.035

0.90 6.132 2.978 0.464 0.199 4.572 4.572 1.858 0.452 0.225 0.169 0.452 0.026 1.858 0.052 0.539 0.026

n = 50, p = 4,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.023 0.022 0.022 0.022 0.022 0.022 0.018 0.021 0.016 0.016 0.021 0.021 0.022 0.016 0.016 0.021

0.80 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.020 0.021 0.021 0.020

0.90 0.023 0.022 0.022 0.022 0.022 0.022 0.015 0.021 0.017 0.015 0.021 0.021 0.019 0.017 0.015 0.021

n = 50, p = 4,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.210 0.124 0.040 0.043 0.191 0.191 0.069 0.047 0.034 0.031 0.047 0.019 0.126 0.024 0.046 0.019

0.80 0.374 0.214 0.056 0.059 0.319 0.319 0.078 0.053 0.037 0.037 0.053 0.023 0.176 0.030 0.050 0.023

0.90 0.600 0.335 0.063 0.071 0.494 0.494 0.074 0.045 0.027 0.028 0.045 0.020 0.235 0.022 0.040 0.020

n = 50, p = 4,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 4.868 2.686 0.489 0.552 4.413 4.413 1.386 0.969 0.517 0.408 0.969 0.042 2.817 0.225 0.810 0.042

0.80 9.112 4.978 0.698 0.911 7.735 7.735 1.481 0.924 0.394 0.356 0.924 0.040 4.065 0.176 0.730 0.040

0.90 14.84 8.068 0.999 1.504 12.04 12.04 1.516 1.023 0.314 0.301 1.023 0.035 5.570 0.139 0.635 0.035
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n = 100, p = 2,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.008 0.004 0.009 0.009 0.005 0.008 0.004 0.009

0.80 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.007 0.003 0.009 0.009 0.005 0.007 0.003 0.009

0.90 0.036 0.034 0.034 0.034 0.034 0.034 0.032 0.010 0.010 0.023 0.010 0.010 0.032 0.010 0.023 0.010

n = 100, p = 2,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.039 0.023 0.013 0.011 0.038 0.038 0.028 0.011 0.009 0.008 0.011 0.008 0.028 0.007 0.017 0.008

0.80 0.048 0.027 0.013 0.011 0.045 0.045 0.031 0.010 0.008 0.008 0.010 0.008 0.031 0.006 0.016 0.008

0.90 0.118 0.067 0.029 0.021 0.106 0.106 0.064 0.021 0.018 0.017 0.021 0.010 0.064 0.012 0.032 0.010

n = 100, p = 2,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.812 0.412 0.163 0.113 0.779 0.779 0.572 0.221 0.165 0.102 0.221 0.012 0.572 0.031 0.326 0.012

0.80 1.026 0.518 0.178 0.114 0.968 0.968 0.653 0.212 0.150 0.096 0.212 0.011 0.653 0.028 0.033 0.011

0.90 2.115 1.005 0.222 0.118 1.861 1.861 0.960 0.226 0.132 0.099 0.226 0.013 0.960 0.029 0.013 0.013

n = 100, p = 4,σ = 0.01
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.010 0.010 0.010 0.010 0.010 0.010 0.008 0.010 0.008 0.008 0.010 0.010 0.010 0.008 0.008 0.010

0.80 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.90 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

n = 100, p = 4,σ = 1
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 0.089 0.053 0.019 0.020 0.085 0.085 0.037 0.024 0.018 0.016 0.024 0.010 0.063 0.012 0.024 0.010

0.80 0.131 0.077 0.023 0.025 0.123 0.123 0.041 0.026 0.018 0.017 0.026 0.010 0.083 0.013 0.025 0.010

0.90 0.236 0.132 0.029 0.035 0.213 0.213 0.045 0.026 0.016 0.016 0.026 0.010 0.125 0.013 0.024 0.010

n = 100, p = 4,σ = 5
γ OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

0.70 1.966 1.067 0.213 0.245 1.879 1.879 0.727 0.440 0.253 0.199 0.440 0.016 1.365 0.103 0.423 0.016

0.80 3.065 1.679 0.278 0.330 2.869 2.869 0.816 0.458 0.219 0.180 0.458 0.015 1.889 0.084 0.409 0.015

0.90 5.757 3.139 0.420 0.599 5.195 5.195 0.913 0.432 0.165 0.158 0.432 0.015 2.967 0.068 0.369 0.015
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Table A.3: Simulated MSE for fixed p, γ and σ and different values of n.

p = 2, γ= 0.7,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.427 0.426 0.426 0.426 0.426 0.426 0.389 0.125 0.129 0.272 0.125 0.125 0.389 0.129 0.272 0.125

20 0.035 0.032 0.032 0.032 0.032 0.032 0.030 0.032 0.032 0.020 0.032 0.032 0.030 0.032 0.020 0.032

30 0.122 0.121 0.121 0.121 0.121 0.121 0.117 0.035 0.037 0.093 0.035 0.035 0.117 0.037 0.093 0.035

40 0.089 0.089 0.089 0.089 0.089 0.089 0.086 0.026 0.028 0.071 0.026 0.026 0.086 0.028 0.071 0.026

50 0.013 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.013 0.008 0.012 0.012 0.011 0.011 0.008 0.012

100 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.008 0.004 0.009 0.009 0.005 0.008 0.004 0.009

p = 2, γ= 0.7,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.765 0.516 0.336 0.269 0.517 0.517 0.304 0.172 0.171 0.189 0.172 0.136 0.304 0.149 0.222 0.136

20 0.090 0.061 0.045 0.041 0.072 0.072 0.043 0.029 0.025 0.025 0.029 0.038 0.043 0.029 0.028 0.038

30 0.161 0.118 0.089 0.078 0.145 0.145 0.107 0.056 0.055 0.060 0.056 0.038 0.107 0.044 0.079 0.038

40 0.114 0.086 0.067 0.059 0.107 0.107 0.083 0.043 0.042 0.046 0.043 0.028 0.083 0.032 0.063 0.028

50 0.027 0.020 0.016 0.015 0.025 0.025 0.018 0.011 0.010 0.010 0.011 0.016 0.018 0.012 0.016 0.016

100 0.014 0.010 0.008 0.007 0.013 0.013 0.010 0.005 0.005 0.005 0.005 0.008 0.010 0.006 0.006 0.008

p = 2, γ= 0.7,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 1.799 1.051 0.438 0.297 1.042 1.042 0.479 0.270 0.223 0.215 0.270 0.143 0.479 0.163 0.291 0.143

20 0.264 0.152 0.080 0.064 0.209 0.209 0.119 0.059 0.047 0.043 0.059 0.040 0.119 0.035 0.068 0.040

30 0.279 0.171 0.098 0.080 0.240 0.240 0.158 0.083 0.073 0.066 0.083 0.039 0.158 0.047 0.104 0.039

40 0.194 0.124 0.073 0.059 0.177 0.177 0.126 0.066 0.058 0.051 0.066 0.029 0.126 0.035 0.084 0.029

50 0.076 0.046 0.027 0.023 0.071 0.071 0.049 0.023 0.020 0.017 0.023 0.016 0.049 0.014 0.030 0.016

100 0.039 0.023 0.013 0.011 0.038 0.038 0.028 0.011 0.009 0.008 0.011 0.008 0.028 0.007 0.017 0.008

p = 2, γ= 0.7,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 36.39 18.75 3.898 1.701 18.36 18.36 6.025 2.733 1.446 1.204 2.733 0.317 6.025 0.547 2.373 0.317

20 5.529 2.823 1.010 0.645 4.299 4.299 2.393 1.198 0.853 0.524 0.198 0.116 2.393 0.246 1.293 0.116

30 4.417 2.277 0.757 0.465 3.654 3.654 2.041 0.795 0.553 0.402 0.795 0.072 2.041 0.160 1.022 0.072

40 2.685 1.378 0.534 0.358 2.373 2.373 1.470 0.587 0.426 0.295 0.587 0.049 1.470 0.114 0.786 0.049

50 1.561 0.783 0.323 0.231 1.444 1.444 0.994 0.434 0.329 0.204 0.434 0.029 0.994 0.075 0.578 0.029

100 0.812 0.412 0.163 0.113 0.779 0.779 0.572 0.221 0.165 0.102 0.221 0.012 0.572 0.031 0.326 0.012

p = 2, γ= 0.8,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.073 0.073 0.073 0.073 0.073 0.073 0.057 0.121 0.094 0.025 0.121 0.121 0.057 0.095 0.025 0.120

20 0.035 0.032 0.032 0.032 0.032 0.032 0.030 0.032 0.032 0.020 0.032 0.032 0.030 0.032 0.020 0.032

30 0.021 0.020 0.020 0.020 0.020 0.020 0.018 0.034 0.027 0.009 0.034 0.034 0.034 0.027 0.009 0.034

40 0.089 0.089 0.089 0.089 0.089 0.089 0.086 0.026 0.028 0.071 0.026 0.026 0.086 0.028 0.071 0.026

50 0.073 0.071 0.071 0.071 0.071 0.071 0.068 0.020 0.022 0.054 0.020 0.020 0.068 0.022 0.054 0.020

100 0.010 0.006 0.006 0.006 0.006 0.006 0.005 0.009 0.007 0.003 0.009 0.009 0.005 0.007 0.003 0.009

p = 2, γ= 0.8,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.438 0.244 0.117 0.084 0.243 0.243 0.087 0.065 0.053 0.047 0.065 0.084 0.087 0.063 0.048 0.084

20 0.334 0.225 0.149 0.20 0.255 0.255 0.156 0.077 0.077 0.086 0.077 0.05 0.156 0.065 0.107 0.059

30 0.084 0.051 0.031 0.025 0.065 0.065 0.032 0.017 0.014 0.013 0.017 0.026 0.032 0.019 0.016 0.026

40 0.045 0.029 0.020 0.018 0.039 0.039 0.023 0.013 0.011 0.011 0.013 0.019 0.023 0.014 0.013 0.019

50 0.096 0.070 0.053 0.047 0.089 0.089 0.067 0.033 0.032 0.035 0.033 0.022 0.067 0.025 0.048 0.022

100 0.016 0.010 0.008 0.007 0.015 0.015 0.010 0.005 0.004 0.004 0.005 0.008 0.010 0.006 0.006 0.008
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p = 2, γ= 0.8,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 1.608 0.866 0.254 0.133 0.840 0.840 0.271 0.121 0.084 0.082 0.121 0.089 0.271 0.075 0.115 0.089

20 0.776 0.444 0.182 0.127 0.535 0.535 0.265 0.117 0.099 0.098 0.117 0.061 0.265 0.071 0.146 0.061

30 0.273 0.143 0.053 0.037 0.207 0.207 0.099 0.038 0.027 0.025 0.038 0.027 0.099 0.043 0.027 0.099

40 0.140 0.076 0.036 0.027 0.120 0.120 0.068 0.028 0.021 0.019 0.028 0.020 0.068 0.016 0.034 0.020

50 0.172 0.107 0.061 0.049 0.156 0.156 0.106 0.050 0.043 0.039 0.050 0.022 0.106 0.026 0.067 0.022

100 0.048 0.027 0.013 0.011 0.045 0.045 0.031 0.010 0.008 0.008 0.010 0.008 0.031 0.006 0.016 0.008

p = 2, γ= 0.8,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 38.59 20.17 4.069 1.577 20.19 20.19 6.265 2.712 1.384 1.138 2.712 0.271 6.265 0.477 3.325 0.271

20 13.77 6.66 1.312 0.619 8.96 8.96 3.500 1.265 0.703 0.521 1.265 0.113 3.500 0.217 1.280 0.113

30 6.236 3.051 0.788 0.430 4.653 4.653 2.168 0.762 0.469 0.329 0.762 0.058 2.168 0.124 0.898 0.058

40 3.133 1.549 0.480 0.294 2.660 2.660 1.490 0.559 0.371 0.252 0.559 0.038 1.490 0.08 0.711 0.038

50 2.381 1.184 0.388 0.250 2.099 2.099 1.246 0.467 0.322 0.217 0.467 0.035 1.246 0.081 0.616 0.035

100 1.026 0.518 0.178 0.114 0.968 0.968 0.653 0.212 0.150 0.096 0.212 0.011 0.653 0.028 0.033 0.011

p = 2, γ= 0.9,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.073 0.073 0.073 0.073 0.073 0.073 0.052 0.120 0.094 0.020 0.120 0.052 0.094 0.020 0.121 0.052.

20 0.032 0.032 0.032 0.032 0.032 0.032 0.025 0.032 0.032 0.011 0.032 0.032 0.025 0.032 0.011 0.032

30 0.021 0.020 0.020 0.020 0.020 0.020 0.016 0.034 0.027 0.007 0.034 0.034 0.016 0.027 0.007 0.034

40 0.090 0.089 0.089 0.089 0.089 0.089 0.079 0.026 0.027 0.053 0.026 0.026 0.079 0.027 0.054 0.026

50 0.013 0.012 0.012 0.012 0.012 0.012 0.009 0.020 0.015 0.004 0.012 0.012 0.009 0.015 0.004 0.012

100 0.036 0.034 0.034 0.034 0.034 0.034 0.032 0.010 0.010 0.023 0.010 0.010 0.032 0.010 0.023 0.010

p = 2, γ= 0.9,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.618 0.329 0.125 0.076 0.313 0.313 0.087 0.063 0.051 0.043 0.063 0.085 0.087 0.063 0.042 0.085

20 0.190 0.104 0.049 0.035 0.121 0.121 0.047 0.028 0.023 0.020 0.028 0.040 0.047 0.029 0.022 0.040

30 0.123 0.066 0.030 0.022 0.087 0.087 0.035 0.017 0.014 0.013 0.017 0.027 0.035 0.019 0.015 0.027

40 0.195 0.125 0.070 0.053 0.151 0.151 0.084 0.035 0.035 0.039 0.035 0.027 0.084 0.029 0.050 0.027

50 0.072 0.039 0.017 0.012 0.054 0.054 0.023 0.010 0.008 0.007 0.010 0.016 0.023 0.012 0.009 0.016

100 0.058 0.039 0.026 0.021 0.053 0.053 0.036 0.014 0.014 0.016 0.014 0.010 0.036 0.011 0.023 0.010

p = 2, γ= 0.9,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 2.445 1.267 0.296 0.137 1.191 1.191 0.301 0.133 0.195 0.081 0.133 0.094 0.301 0.074 0.109 0.090

20 0.666 0.340 0.094 0.056 0.419 0.419 0.155 0.050 0.037 0.037 0.050 0.042 0.155 0.034 0.058 0.042

30 0.449 0.230 0.061 0.034 0.304 0.304 0.116 0.034 0.023 0.023 0.034 0.027 0.116 0.022 0.039 0.027

40 0.499 0.275 0.093 0.057 0.358 0.358 0.160 0.052 0.044 0.045 0.052 0.027 0.160 0.031 0.071 0.027

50 0.248 0.123 0.033 0.019 0.189 0.189 0.079 0.020 0.013 0.013 0.020 0.016 0.079 0.012 0.025 0.016

100 0.118 0.067 0.029 0.021 0.106 0.106 0.064 0.021 0.018 0.017 0.021 0.010 0.064 0.012 0.032 0.010

p = 2, γ= 0.9,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 61.65 31.81 4.630 1.542 30.49 30.49 7.311 2.890 1.224 1.222 2.890 0.256 7.311 0.438 2.203 0.256

20 15.76 7.692 1.441 0.599 9.601 9.601 3.440 1.303 0.635 0.457 1.303 0.093 3.440 0.176 1.141 0.093

30 10.65 5.177 0.686 0.382 7.235 7.235 2.718 0.754 0.385 0.301 0.754 0.052 2.718 0.101 0.826 0.052

40 9.842 4.804 0.761 0.301 6.910 6.910 2.565 0.538 0.288 0.256 0.538 0.042 2.565 0.085 0.698 0.042

50 6.132 2.978 0.464 0.199 4.572 4.572 1.858 0.452 0.225 0.169 0.452 0.026 1.858 0.052 0.539 0.026

100 2.115 1.005 0.222 0.118 1.861 1.861 0.960 0.226 0.132 0.099 0.226 0.013 0.960 0.029 0.013 0.013
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p = 4, γ= 0.7,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.184 0.183 0.183 0.183 0.183 0.183 0.071 0.159 0.103 0.063 0.159 0.159 0.133 0.103 0.063 0.159

20 0.063 0.063 0.063 0.063 0.063 0.063 0.060 0.060 0.047 0.054 0.060 0.060 0.062 0.047 0.054 0.060

30 0.379 0.378 0.378 0.378 0.378 0.378 0.031 0.037 0.033 0.030 0.037 0.037 0.036 0.033 0.030 0.037

40 0.025 0.025 0.025 0.025 0.025 0.025 0.015 0.025 0.016 0.012 0.025 0.025 0.022 0.016 0.012 0.025

50 0.023 0.022 0.022 0.022 0.022 0.022 0.018 0.021 0.016 0.016 0.021 0.021 0.022 0.016 0.016 0.021

100 0.010 0.010 0.010 0.010 0.010 0.010 0.008 0.010 0.008 0.008 0.010 0.010 0.010 0.008 0.008 0.010

p = 4, γ= 0.7,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 1.482 0.847 0.190 0.171 0.664 0.664 0.133 0.140 0.104 0.105 0.140 0.124 0.234 0.103 0.111 0.124

20 0.359 0.223 0.082 0.079 0.221 0.221 0.081 0.067 0.059 0.060 0.067 0.052 0.117 0.053 0.068 0.052

30 0.143 0.097 0.051 0.051 0.123 0.123 0.052 0.043 0.038 0.039 0.043 0.035 0.084 0.036 0.043 0.035

40 0.089 0.057 0.027 0.027 0.078 0.078 0.028 0.022 0.018 0.018 0.022 0.021 0.049 0.016 0.021 0.021

50 0.071 0.049 0.026 0.027 0.066 0.066 0.030 0.023 0.020 0.020 0.023 0.019 0.047 0.018 0.024 0.019

100 0.030 0.021 0.012 0.012 0.029 0.029 0.015 0.011 0.010 0.010 0.011 0.009 0.023 0.009 0.012 0.009

p = 4, γ= 0.7,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 5.564 3.088 0.392 0.359 2.278 2.278 0.329 0.327 0.185 0.188 0.327 0.139 0.701 0.151 0.233 0.139

20 1.185 0.646 0.121 0.114 0.673 0.673 0.160 0.145 0.097 0.093 0.145 0.057 0.288 0.075 0.121 0.057

30 0.455 0.266 0.083 0.087 0.383 0.383 0.119 0.091 0.063 0.060 0.091 0.037 0.225 0.048 0.083 0.037

40 0.291 0.167 0.047 0.050 0.253 0.253 0.077 0.055 0.036 0.033 0.055 0.022 0.150 0.025 0.050 0.022

50 0.210 0.124 0.040 0.043 0.191 0.191 0.069 0.047 0.034 0.031 0.047 0.019 0.126 0.024 0.046 0.019

100 0.089 0.053 0.019 0.020 0.085 0.085 0.037 0.024 0.018 0.016 0.024 0.010 0.063 0.012 0.024 0.010

p = 4, γ= 0.7,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 129.0 70.10 6.667 6.191 50.63 50.63 6.225 6.286 2.659 2.616 6.286 0.568 14.72 1.587 3.912 0.568

20 28.52 14.95 1.624 1.495 15.52 15.52 2.851 2.599 1.390 1.208 2.599 0.209 5.958 0.785 1.921 0.209

30 10.56 5.809 1.060 1.178 8.725 8.725 2.214 1.668 0.849 0.709 1.668 0.096 4.821 0.410 1.304 0.096

40 6.643 3.564 0.639 0.723 5.760 5.760 1.634 1.154 0.629 0.518 1.154 0.056 3.380 0.292 0.978 0.056

50 4.868 2.686 0.489 0.552 4.413 4.413 1.386 0.969 0.517 0.408 0.969 0.042 2.817 0.225 0.810 0.042

100 1.966 1.067 0.213 0.245 1.879 1.879 0.727 0.440 0.253 0.199 0.440 0.016 1.365 0.103 0.423 0.016

p = 4, γ= 0.8,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.170 0.169 0.169 0.169 0.169 0.169 0.192 0.169 0.190 0.193 0.169 0.169 0.193 0.190 0.193 0.169

20 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.063 0.064 0.064 0.063 0.063 0.063 0.063 0.063

30 0.040 0.039 0.039 0.039 0.039 0.039 0.036 0.038 0.037 0.038 0.038 0.038 0.038 0.038 0.037 0.038

40 0.026 0.026 0.026 0.026 0.026 0.026 0.016 0.026 0.017 0.013 0.026 0.026 0.023 0.017 0.013 0.026

50 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.020 0.021 0.021 0.020

100 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

p = 4, γ= 0.8,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 12.04 6.365 0.341 0.289 3.308 3.308 0.264 0.217 0.213 0.223 0.217 0.183 0.409 0.205 0.234 0.183

20 0.367 0.241 0.111 0.110 0.280 0.280 0.102 0.087 0.080 0.082 0.087 0.067 0.154 0.076 0.088 0.067

30 0.184 0.121 0.059 0.059 0.154 0.154 0.059 0.047 0.044 0.044 0.047 0.038 0.094 0.041 0.049 0.038

40 0.113 0.071 0.029 0.029 0.097 0.097 0.030 0.023 0.018 0.019 0.023 0.024 0.058 0.017 0.022 0.022

50 0.112 0.073 0.035 0.035 0.098 0.098 0.037 0.029 0.028 0.028 0.029 0.023 0.061 0.026 0.031 0.023

100 0.040 0.027 0.015 0.015 0.038 0.038 0.018 0.013 0.012 0.012 0.013 0.010 0.028 0.011 0.014 0.010
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p = 4, γ= 0.8,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 47.61 24.49 0.661 0.495 11.43 11.43 0.485 0.384 0.514 0.283 0.306 0.384 0.196 0.247 0.359 0.196

20 1.295 0.756 0.182 0.196 0.936 0.936 0.198 0.154 0.109 0.110 0.154 0.069 0.419 0.090 0.139 0.069

30 0.653 0.385 0.101 0.109 0.532 0.532 0.129 0.093 0.064 0.063 0.093 0.040 0.282 0.050 0.085 0.040

40 0.378 0.215 0.055 0.059 0.322 0.322 0.083 0.057 0.035 0.033 0.057 0.023 0.182 0.024 0.050 0.023

50 0.374 0.214 0.056 0.059 0.319 0.319 0.078 0.053 0.037 0.037 0.053 0.023 0.176 0.030 0.050 0.023

100 0.131 0.077 0.023 0.025 0.123 0.123 0.041 0.026 0.018 0.017 0.026 0.010 0.083 0.013 0.025 0.010

p = 4, γ= 0.8,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 1190 613 10.40 6.984 292.0 292.0 7.455 5.690 2.463 2.868 5.690 0.582 21.58 1.507 4.237 0.582

20 30.56 16.70 2.512 3.022 21.69 21.69 3.336 2.627 1.147 1.041 2.627 0.169 8.985 0.588 1.850 0.169

30 14.29 7.724 1.260 1.633 11.44 11.44 2.190 1.643 0.703 0.606 1.643 0.083 5.743 0.328 1.159 0.083

40 8.662 4.724 0.760 0.890 7.315 7.315 1.701 1.283 0.579 0.473 1.283 0.056 4.022 0.257 0.933 0.056

50 9.112 4.978 0.698 0.911 7.735 7.735 1.481 0.924 0.394 0.356 0.924 0.040 4.065 0.176 0.730 0.040

100 3.065 1.679 0.278 0.330 2.869 2.869 0.816 0.458 0.219 0.180 0.458 0.015 1.889 0.084 0.409 0.015

p = 4, γ= 0.9,σ = 0.01
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.038 0.038 0.038 0.038 0.038 0.038 0.032 0.037 0.033 0.032 0.037 0.037 0.035 0.033 0.032 0.037

20 0.063 0.062 0.062 0.062 0.062 0.062 0.049 0.061 0.057 0.022 0.061 0.061 0.054 0.057 0.052 0.061

30 0.038 0.038 0.038 0.038 0.038 0.038 0.032 0.037 0.033 0.032 0.037 0.037 0.035 0.033 0.032 0.037

40 0.028 0.028 0.028 0.028 0.028 0.028 0.024 0.027 0.024 0.023 0.027 0.027 0.026 0.024 0.024 0.027

50 0.023 0.022 0.022 0.022 0.022 0.022 0.015 0.021 0.017 0.015 0.021 0.021 0.019 0.017 0.015 0.021

100 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

p = 4,γ= 0.9,σ = 0.5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 0.308 0.184 0.065 0.066 0.247 0.247 0.053 0.040 0.036 0.037 0.040 0.035 0.118 0.035 0.041 0.035

20 0.579 0.344 0.112 0.113 0.419 0.419 0.085 0.070 0.063 0.064 0.070 0.059 0.171 0.060 0.070 0.059

30 0.308 0.184 0.065 0.066 0.247 0.247 0.053 0.040 0.036 0.037 0.040 0.035 0.118 0.035 0.041 0.035

40 0.171 0.105 0.043 0.044 0.144 0.144 0.042 0.030 0.027 0.028 0.030 0.026 0.080 0.025 0.032 0.026

50 0.166 0.099 0.032 0.033 0.138 0.138 0.030 0.021 0.019 0.019 0.021 0.020 0.071 0.018 0.022 0.020

100 0.069 0.043 0.018 0.018 0.063 0.063 0.019 0.013 0.012 0.012 0.013 0.010 0.040 0.011 0.014 0.010

p = 4, γ= 0.9,σ = 1
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 1.149 0.651 0.123 0.147 0.900 0.900 0.121 0.091 0.051 0.051 0.091 0.036 0.383 0.041 0.070 0.036

20 2.099 1.170 0.210 0.248 1.500 1.500 0.179 0.136 0.083 0.087 0.136 0.061 0.530 0.070 0.112 0.061

30 1.149 0.651 0.123 0.147 0.900 0.900 0.121 0.091 0.051 0.051 0.091 0.036 0.383 0.041 0.070 0.036

40 0.600 0.336 0.073 0.084 0.490 0.490 0.092 0.067 0.039 0.039 0.067 0.026 0.241 0.030 0.055 0.026

50 0.600 0.335 0.063 0.071 0.494 0.494 0.074 0.045 0.027 0.028 0.045 0.020 0.235 0.022 0.040 0.020

100 0.236 0.132 0.029 0.035 0.213 0.213 0.045 0.026 0.016 0.016 0.026 0.010 0.125 0.013 0.024 0.010

p = 4, γ= 0.9,σ = 5
n OLS HK K1 K2 S3 S4 KM1 KM2 KM4 KM5 KM6 KM8 KM9 KM10 K12 K12

10 27.93 15.14 1.876 2.760 21.46 21.46 2.269 1.690 0.509 0.507 1.690 0.068 8.729 0.246 0.987 0.068

20 51.09 27.72 3.112 35.62 35.62 3.155 2.742 8.514 0.835 0.820 2.742 0.129 11.74 0.416 1.478 0.129

30 27.93 15.14 1.876 2.760 21.46 21.46 2.269 1.690 0.509 0.507 1.690 0.068 8.729 0.246 0.987 0.068

40 9.842 4.804 0.761 0.301 6.910 6.910 2.565 0.538 0.288 0.256 0.538 0.042 2.565 0.085 0.698 0.042

50 14.84 8.068 0.999 1.504 12.04 12.04 1.516 1.023 0.314 0.301 1.023 0.035 5.570 0.139 0.635 0.035

100 5.757 3.139 0.420 0.599 5.195 5.195 0.913 0.432 0.165 0.158 0.432 0.015 2.967 0.068 0.369 0.015



Statistics & Operations Research Transactions

SORT 36 (2) July-December 2012, 139-152

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

A note on the use of supply-use tables

in impact analyses∗

Manfred Lenzen1 and José M. Rueda-Cantuche2

Abstract

Little attention has so far been paid to the problems inherent in interpreting the meaning of results

from standard impact analyses using symmetric input-output tables. Impacts as well as drivers

of these impacts must be either of the product type or of the industry type. Interestingly, since

supply-use tables distinguish products and industries, they can cope with product impacts driven

by changes in industries, and vice versa. This paper contributes in two ways. Firstly, the demand-

driven Leontief quantity model, both for industry-by-industry as well as for product-by-product

tables, is formalised on the basis of supply-use tables, thus leading to impact multipliers, both for

industries and products. Secondly, we demonstrate how the supply-use formulation can improve

the incorporation of disparate satellite data into input-output models, by offering both industry and

product representation. Supply-use blocks can accept any mix of industry and product satellite

data, as long as these are not overlapping.
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1. Background

An input-output matrix of technical coefficients (A) generally depicts either the direct

requirements of commodity i needed to produce one physical unit of commodity j or,

alternatively, the direct inputs from industry i needed to produce one physical unit of

industry j. The former is built up with a product-by-product input-output table and the

latter, with an industry-by-industry input-output table. Both are called symmetric input-
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output tables for having products or industries in both rows and columns; and the choice

between them has only been addressed so far in detail by Rueda-Cantuche (2011).

Before the SNA-68 (UN, 1968), national statistical institutes almost exclusively

constructed industry-by-industry input-output tables instead of commodity-by-commo-

dity tables1 and they used to set up the so-called transaction tables (ten Raa, 1994).

In such tables, each element displayed the input requirements of industry i per unit of

industry j’s production, as well as the final demand compartments (household and gov-

ernment consumption, investment and exports net of imports). Ten Raa (1994) noted that

an input-output transaction table reduced the construction of a matrix of technical coef-

ficients A just to a matter of dividing each element by their corresponding total output.

However, there were three different problems identified here. Firstly, products and

industries cannot always be classified in the same way. Secondly, in addition to a

multitude of inputs, industries may also have a multitude of outputs. Thirdly, products

contained in each row and column of an industry-by-industry table are not homogeneous

in terms of production (see e.g. Rainer, 1989).

To address these complications, the Systems of National Accounts proposed by the

United Nations (1968, 1993), first established the concepts of use and make matrices

within an input-output framework. Demand (use) and supply (make) of commodities

were described by industries. This new framework provided a more accurate descrip-

tion of product flows and at the same time, made economists face a new problem in

the construction of technical coefficients. Basically, the construction of technical coeffi-

cients was reduced to a matter of treatment of secondary products. Many establishments

produce only one group of commodities, which are the primary products of the indus-

try to which they are classified. However, some establishments produce commodities

that are not among the primary products of the industry to which they belong. As a

result, non-zero off-diagonal elements would appear in the make matrix. Alternative

treatments of secondary products rest upon the separation of outputs and inputs associ-

ated with secondary products so that they can be added to the outputs and inputs of the

industry in which the secondary product is a characteristic output. Assumptions on these

inputs structures imply an A-matrix of technical coefficients as a function of the use and

make matrices. The reader should be aware that a make matrix (industry by product) is

merely the transposition of a supply matrix (product by industry) and we may use both

indistinctly.

The matrix of technical coefficients has been used for economic analysis by means

of the so-called Leontief quantity model and the Leontief price model, which are based

on the following two equations: x = Ax + y and p = pA + v.

Here, x is a column vector of total output; y, a column vector of final demand; p,

a row vector of prices; and v, a row vector of value-added coefficients. The standard

1. In what follows, we will refer to the “commodity-by-commodity input-output tables” and “product-by-product
input-output tables” as fully equivalent.
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Leontief quantity model would be given by x = (I−A )−1y, and the standard Leontief

price model as p = v(I−A )−1.

The first equation is used for national or regional economic planning; in accordance,

there will be a direct effect over the output levels which will depend on the final demand

variations (∆y) and additional indirect effects that will be determined by the so called

Leontief inverse matrix, (I−A)−1. The second equation can be used to assess the price

effects resulting from an energy shock, which surely will bring about variations in the

value-added shares of a product, to mention an example. For the time being and for

the sake of clarification, we have deliberately omitted the identification of the outputs as

products or industries. We will introduce this distinction later on.

Within this context, two major trade-offs were recently indentified concerning the

choice of type of symmetric input-output tables to be used in input-output analyses

(Rueda-Cantuche, 2011). The main limitation of these tables relates to their underlying

symmetry, which implies that they must be defined as either product-by-product or

industry-by-industry.

On the one hand, the Leontief quantity model, which is driven by demand for

products, presents a trade-off whenever the impact analysis relates to external accounts

(environment, employment, etc) pre-multiplying the Leontief inverse matrix and which

are only available at industry detail. Then, either one could incorrectly assume that these

external accounts reflect product detail, and employ a product–by-product input-output

table in order to assess the effects of a unit change in final demand of a single product;

or, alternatively, correctly take the external accounts as industry-specific information and

use industry-by-industry tables. The latter practice, however, would preclude calculating

effects of changes in the final demand of single products, because in an industry-

by-industry table, final demand only exists as mixed bundles of goods and services

produced by particular industries.

On the other hand, the Leontief price model, which is driven by industry supply,

imposes trade-offs whenever the impact analysis relates to external accounts that are

only available at industry detail. In this case, key questions such as the fuel price effects

generated by an increase in the labour costs of the petroleum refining industry cannot

really be answered by input-output price models as it may be generally thought. Either

one could incorrectly assume that variations in the primary costs (labour) happen within

homogenous branches of activity rather than in industries and thus, employ product-by-

product tables or instead, one could correctly assume that price changes of labour costs

effectively occur within entire industries and therefore, use industry-by-industry tables.

In the latter case, the reported price impacts will refer to the fuel industry rather than to

the fuel product itself.

Rueda-Cantuche (2011) proposed the use of supply and use tables instead of input-

output tables for resolving the different trade-offs efficiently. Indeed, supply and use

tables are defined and compiled at product-by-industry detail and do not require the

symmetries causing the trade-offs described above. However, this author did not go

beyond the mere statement and discussion of the convenience of extending the use
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of supply and use tables in input-output analysis. Therefore, this paper is aimed at

formalizing Rueda-Cantuche’s argument concerning the trade-offs that he identified.

In the next section, we will introduce the basics of the construction of symmetric

input-output tables, which will be further described under a common schematic rep-

resentation in Section 3. In what follows, Section 4 will generalize the calculation of

impact multipliers for industries and commodities, separately. Section 5 describes the

main empirical findings for the Brazilian economy in 2005 and finally, the last section

will draw the main conclusions of this paper.

2. Introduction

Amongst other textbooks, the United Nations Handbook on Input-Output Table Com-

pilation (UN 1999) distinguishes two basic technology assumptions for the construc-

tion of symmetric product-by-product input-output tables: in the industry technology

assumption, the production recipe is unique to an industry, while products’ input recipe

is a weighted sum over industries’ production recipes; in the commodity technology as-

sumption2, the input recipe is unique to a product, while industries’ production recipes

are a weighted sum over their primary and secondary outputs.

In practice, both assumptions are known to have drawbacks: Applying the commod-

ity technology assumption can lead to negative elements during table construction, and

requires the supply matrix to be square, which could lead to loss of detail in rectangular

accounts.3 The commodity technology assumption has proven to be theoretically supe-

rior while the industry technology assumption has been shown to be implausible (Kop

Jansen and Ten Raa 1990). Comparative advantages of these perspectives are however

not the concern of this work.

The construction of industry-by-industry input-output tables4 requires two main as-

sumptions stating that when product output is translated into industry output, the pattern

2. In what follows, we will refer to the “commodity technology assumption” and the “product technology assumption”
as fully equivalent.

3. Konijn and Steenge (1995), Almon (2000), Bohlin and Widell (2006) and Smith and McDonald (2011) suggest
ways of getting around the problems associated with the technology assumption. Konijn and Steenge (1995) suggest an
input allocation procedure that uses activities of industries in their production of products. However, the data necessary
to make this method operational are generally not available. Almon (2000) suggests a balancing algorithm that explicitly
deals with cases where the subtraction of inputs of from a secondary production recipe would generate negative entries.
Bohlin and Widell (2006) (extended by Smith and McDonald, 2011) apply an optimisation calculus, where they define
the technology assumptions in terms of process coefficients that are both industry- and product-specific (see Ten Raa and
Rueda-Cantuche 2007), and then minimize the variance of these process coefficients subject to summation rules.

4. In this context, Yamano and Ahmad (2006) argue that the “description of the conversion (industry-technology
assumption) is inaccurate where industry-by-industry tables are concerned, and is better described as a fixed product

sales structure assumption. In other words the conversion merely assumes that the proportion of domestically produced
commodity A bought by industry B from industry C is proportional to industry C’s share of the total (domestic) economy
production of commodity A. Put this way, it is clear that this is a far less demanding assumption than that implied by the
equivalent, but differently named, “industry technology” assumption.
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of sales will remain the same. This is the so-called sales structure approach that only

admits two options: 1) where industry supply is independent of the products delivered

(fixed industry sales structure), and 2) where industry supply is independent of the pro-

ducing industry (fixed product sales structure). Employing arguments similar to those

used in discussing the industry and product technology assumptions for the construc-

tion of product-by-product input-output tables (Ten Raa and Rueda-Cantuche 2007),

Rueda-Cantuche and Ten Raa (2009) proved that the fixed industry sales approach is

theoretically superior.

Notwithstanding the above theoretical considerations, statistical offices construct na-

tional input-output tables based on hybrid technology or combined fixed sales structure

assumptions. So, in what follows, we will simply take what statistical office publish as

given, and start with a formulation of their different assumptions using a supply-use

framework; then, we will show how the supply-use blocks can be useful in simultane-

ously generating multipliers both for industries and for products (and thus solving the

trade-offs caused by the symmetry of input-output tables).

We will show in the next sections how the industry technology and the fixed product

sales structure assumptions can be jointly formulated in a common framework that

allows carrying out impact analyses simultaneously in terms of products and industries.

The same will apply for the product technology and the fixed industry sales structure

assumptions.

3. Schematic representation of the assumptions made in

the construction of input-output tables

In the United Nations Handbook on Input-Output Table Compilation (UN 1999) and

the Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 2008), there are

various assumptions to be used for the construction of industry by industry or product-

by-product symmetric input-output tables.5 In the following, we will show that at least

the ones referred to in the last section can be represented in one unified supply-use

formulation. We will use the standard Eurostat Manual notation (UN 1999). Notice that

the supply matrix, which we will denote VT corresponds to the transposition of the so

called “make matrix”.

5. A number of authors suggest further alternatives such as mixed technology and activity technology assumptions
(see Gigantes (1970); Schinnar (1978); Konijn and Steenge (1995) but for a comprehensive list, see also Ten Raa and
Rueda-Cantuche (2003)) For a generalized formulation of the industry and product technology assumptions, see Ten Raa
and Rueda-Cantuche (2007).
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3.1. Industry-related assumptions

Let a single-region supply-use transaction block T be represented by:

T =

[
0 U

V 0

]
, (1)

with U being a product-by-industry use matrix, showing the input Ui j of product i into

industry j, and V being a industry-by-product make matrix, with Vi j showing the output

by industry i of product j. This block formulation is well known in the input-output

literature6 and it is already proposed as an example by Eurostat (2008).

Let T satisfy the national accounting identity:

[
0 U

V 0

] [
ec

ei

]
+

[
yc

0

]
=

[
q

g

]
, (2)

where [ec ei]
T is the row summation vector formed by two summation sub-vectors cor-

responding to commodities (ec) and industries (ei), superscript T denotes transposition,

yc is a vector of final demand of products, and q and g are vectors of total product and

industry outputs, respectively. Equation 2 includes the product balance Uei + yc = q,

and the industry balance Vec = g. Therefore, it can be transformed into:

[
yc

0

]
=

[
q

g

]
−
[

0 U

V 0

] [
ec

ei

]
=

{[
q̂ 0

0 ĝ

]
−
[

0 U

V 0

]} [
ec

ei

]
=

{[
q̂ 0

0 ĝ

][
q̂−1 0

0 ĝ−1

]
−
[

0 U

V 0

][
q̂−1 0

0 ĝ−1

]}[
q̂ 0

0 ĝ

] [
ec

ei

]
=

{[
Ic 0

0 Ii

]
−
[

0 U

V 0

][
q̂−1 0

0 ĝ−1

]} [
q

g

]

⇔
[

q

g

]
=

{
I−
[

0 U

V 0

][
q̂−1 0

0 ĝ−1

]}−1[
yc

0

]
=

{
I−
[

0 B

D 0

]}−1[
yc

0

]

, (3)

where D and B7 form the supply and use coefficient matrices, I is an identity matrix, and

the hat symbol (ˆ) denotes a diagonalised vector. B = Uĝ−1 is called the (product-

by industry) use coefficients matrix (input structures), and D = Vq̂−1 is called the

(industry-by-product) market share matrix.

6. Note that the supply-use-block formulation requires the make matrix V to be defined as industry-by-product, and
not as product-by-industry.

7. Our B matrix is equivalent to the Z matrix in Eurostat (2008).
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Using the supply-use-block formulation in Equation (3), a compound Leontief

inverse can be written as:

L∗
I =

[
I −B

−D I

]−1

. (4)

Applying the partitioned inverse of Miyazawa (1968), Equation (4) can be written as:

L∗
I =

[
I+BLI,iiD BLI,ii

LI,iiD LI,ii

]
, (5)

where LI,ii = (I−DB)−1
is precisely the Leontief inverse of the industry-by-industry

type of a technical coefficient matrix constructed on the basis of the fixed product

sales structure (see Eurostat, 2008, p. 349). Considering the series expansion of LI,ii =

(I+DB+(DB)(DB)+ · · ·), we find:

BLI,iiD = B
(

I+DB+(DB)2 + · · ·
)

D = BD+B(DB)D+B(DBDB)D+ · · ·=

= BD+(BD)(BD)+(BD)(BD)(BD)+ · · · ,

which leads to:

I+BLI,iiD = I+BD+(BD)(BD)+ · · ·= (I−BD)−1 = LI,cc,

and which is identical to the series expansion of the Leontief inverse of a product-

by-product type technical coefficients matrix constructed with the industry technology

model (see Eurostat, (2008), p. 349). Equation (5) can be simplified to

L∗
I =

[
LI,cc LI,ccB

LI,iiD LI,ii

]
. (6)

Regarding the off-diagonal elements, the reader may find easily that LI,iiD = DLI,cc

and BLI,ii =LI,ccB. The matrices of market shares D and of input structures B are clearly

used to convert the resulting impacts of industries into those of products, and impacts of

products into those of industries, respectively.

Hence, and this is the first result of this paper, when supply and use matrices are

handled under an integrated supply-use framework, the compound Leontief inverse

elegantly reproduces the product-by-product type model under the industry technology

assumption and the industry-by-industry model under the fixed product sales structure

assumption.
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3.2. Product-related assumptions

Product technology assumes an input recipe that is characteristic for a certain product.

Here, we use the relationships Vec = ĝ ei = g and VT ei = q, and re-write the national

accounting identity in Equation (2) as:

[
0 U

V 0

] [
ec

ei

]
+

[
yc

0

]
=

[
Uei +yc

Vec

]
=

[
Uei +yc

ĝ ei

]
= (7)

=

[
0 U

ĝ 0

] [
ei

ei

]
+

[
yc

0

]
=

[
VT ei

g

]
=

[
q

g

]
,

Then, Equation (7) can be transformed into:

[
yc

0

]
=

[
VT ei

g

]
−
[

0 U

ĝ 0

] [
ei

ei

]
=

{[
VT 0

0 ĝ

]
−
[

0 U

ĝ 0

]} [
ei

ei

]
=

{[ (
VT
)

0

0 ĝ

][ (
VT
)−1

0

0 ĝ−1

]
−
[

0 U

ĝ 0

][ (
VT
)−1

0

0 ĝ−1

]}[ (
VT
)

0

0 ĝ

] [
ei

ei

]
=

{[
Ii 0

0 Ii

]
−
[

0 U

ĝ 0

][ (
VT
)−1

0

0 ĝ−1

]} [
VT ei

g

]
(8)

⇔
[

VT ei

g

]
=

{
I−
[

0 U

ĝ 0

][ (
VT
)−1

0

0 ĝ−1

]}−1[
yc

0

]
=

{
I−
[

0 B

C−1 0

]}−1[
yc

0

]
,

where C = VT ĝ−1 and B form the supply and use coefficients blocks, respectively.

Using the supply-use-block formulation in Equation (8), a new compound Leontief

inverse can be written as:

L∗
C =

[
I −B

−C−1 I

]−1

. (9)

Applying the partitioned inverse of Miyazawa 1968), Equation (9) can be written as:

L∗
C =

[
I+BLC,ii C

−1 BLC,ii

LC,ii C
−1 LC,ii

]
, (10)

where LC,ii =
(
I−C−1 B

)−1
is the Leontief inverse of the industry-by-industry technical

coefficient matrix constructed on the basis of the fixed industry sales structure (Eurostat,

(2008), p. 349). Considering the series expansion of LC,ii =
(
I+C−1 B+

(
C−1 B

)
(
C−1 B

)
+ · · ·

)
, we find:
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BLC,ii C
−1 = B

(
I+C−1 B+

(
C−1 B

)2
+ · · ·

)
C−1 =

= BC−1 +B
(
C−1 B

)
C−1 +B

(
C−1 B

)(
C−1 B

)
C−1 + · · ·=

= BC−1 +
(
BC−1

)(
BC−1

)
+
(
BC−1

)(
BC−1

)(
BC−1

)
+ · · ·

and yields:

I+BLC,ii C
−1 = I+BC−1 +

(
BC−1

)(
BC−1

)
+ · · ·=

(
I−BC−1

)−1
= LC,cc,

which is the series expansion of the Leontief inverse of a product-by-product technical

coefficient matrix using the product technology model (see Eurostat, (2008), p. 349).

Then, Equation (10) can be reduced to:

L∗
C =

[
LC,cc LC,cc B

LC,ii C
−1 LC,ii

]
. (11)

It is easy to show that the off-diagonal terms transform as LC,ii C
−1 = C−1 LC,cc and

BLC,ii = LC,cc B. The matrices C−1 and B are used to convert impacts of industries into

those of products, and impacts of products into those of industries, respectively.

Hence, as the second result of this paper, when supply and use matrices are integrated

in a supply-use framework, the compound Leontief inverse elegantly reproduces the

product-by-product type model assuming the product technology assumption and the

industry-by-industry model assuming the fixed industry sales structure assumption.

It is interesting to note that these two models provide negative elements in the

resulting technical coefficient matrices, while the models dealt with in the subsection

3.1 always provide non-negative terms.

4. Generalized input-output calculations

It was always the intention of Leontief to combine the input-output table with external,

physical information, for example in order to examine questions relating to environ-

mental impacts or the labour market (Leontief and Ford, 1970; Leontief and Duchin,

1986). Since Leontief’s work there have been numerous publications of what Miller

and Blair (2009) call generalized input-output analyses. For example, Kagawa and Suh

(2009), and Suh et al. (2010) (see also references therein) use make and use matrices

in environmental Life Cycle Assessment. When applied to a supply-use framework, the

generalised calculus elegantly reproduces industry and product multipliers in one single

shot. Assume for example that external physical information fi is available only at the

industry level. Invoking the industry technology assumption, as in Equation (6), multi-

pliers can be written as:
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[
0 fi

]
L∗

I =
[

fi LI,ii D fi LI,ii

]
, (12)

with fi LI,ii representing industries, and fi LI,ii D representing commodities. This feature

was applied in a generalized multi-region analyses of embodied CO2 for Denmark and

its trading partners (Lenzen et al. 2004). Alternatively, if physical information fc is

available only for products, multipliers are then defined as:

[
fc 0

]
L∗

I =
[

fc LI,cc fc LI,cc B
]
. (13)

In a study on Brazil by Wachsmann et al. (2009), physical information on energy

consumption was generally available for industries as fi, but for some industries, detailed

commodity information was available as fc. Hence, a vector
[

fc f∗i
]

was constructed

with f∗i representing the industry data fi and setting the industries represented in fc to

zero. The industry and product multipliers are then:

[
fc f∗i

]
L∗

I =
[

f∗i LI,ii D+ fc LI,cc f∗i LI,ii + fc LI,cc B
]
. (14)

In Equations (12–14), the matrices D and B are used to convert industry data into

product data (fi LI,ii), and vice versa (fc). Similar relationships can be derived for models

assuming product-related assumptions.

5. Empirical application

Provided rectangular supply-use frameworks with more products than industries, the

calculation of total energy intensities (energy multipliers) can differentiate between

products and industries, and thus add value over conventional mutlipliers based on

input-output tables. Take for instance, the petrol and coke refining industry, which may

produce petrol, fuel oil and diesel oil, amongst other products.

In order to prove the utility of supply-use tables in impact analysis and the theoretical

framework presented before, we will run two experiments aiming to compare supply-

use-based with input-output-based energy multipliers for the Brazilian economy in

2005. In particular, we will first determine simultaneously industry and commodity

multipliers as in (12), assuming that energy data are only available at the industry

level (fi). Second, we will discuss the difference between supply-use-based commodity

multipliers and input-output-based industry multipliers when a mix of energy industry

data fi and energy commodity data fc is used.

The Brazilian supply-use tables for 2005 issued by the Instituto Brasileiro de Ge-

ografia e Estatı́stica (IBGE, 2008) distinguish 110 commodities, but only 55 industries.

Commodity detail is higher than industry detail especially for agriculture, food manu-

facturing, and refining. Whilst energy data are not available at the high commodity detail
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Table 1: Energy multipliers (in units of kt oil equivalent per million 2005 Reais–ktoe/mR$, where

1 ktoe/mR$ = 102 terajoules per million US$) for Brazilian cropping and forestry industries and com-

modities.

Industry data only Industry & commodity data

SUT industry multipliers fi LI,ii f∗i LI,ii + fc LI,cc B

Cropping and forestry 0.1999 0.1595

Grazing and fishing 0.1024 0.1051

SUT commodity multipliers fi LI,ii D f∗i LI,ii D+ fc LI,cc

Rice in the husk 0.1960 0.1136

Corn 0.1721 0.1114

Wheat 0.1999 0.1140

Sugar cane 0.1981 0.1138

Soy beans 0.1972 0.1136

Other crops 0.1910 0.1129

Manioc 0.1948 0.1135

Tobacco 0.1992 0.1139

Cotton 0.1956 0.1136

Citrus fruit 0.1974 0.1137

Coffee 0.1970 0.1137

Forestry products 0.1973 1.3943

for the agriculture and food manufacturing sectors, energy data on refining distinguishes

diesel oil, fuel oil, petrol, and LPG (EPE 2011).

In a first experiment, we re-classified the Brazilian raw energy data into the 55-

industry classification fi. As (12) shows, supply-use-based and input-output-based in-

dustry multipliers are the same: fi LI,ii. However, the supply-use framework allows the

simultaneous determination of commodity multipliers fi LI,ii D (see (12)). Except for

wheat, which is solely produced by the ‘Cropping and forestry’ industry, commodity

multipliers are lower than industry multipliers for all crops (Table 1, industry data only

column). This is because some crops are partly produced by mixed-business broadacre

farms in the less energy-intensive ‘Grazing and fishing’ sector. Such co-product detail is

only available in supply-use tables, and lost in input-output tables. The error associated

with this loss of detail is 16% for corn, and 1-3% for other crops.8

In a second experiment, we re-classified only the raw energy data for the petroleum

and coke refining sector into the 110-commodity classification fc, and deleted the entry

for petroleum and coke refining in the industry data f∗i . As Equation (14) shows, both

supply-use-based industry and commodity multipliers are now different from input-

output-based industry multipliers. Once again, the supply-use framework allows the

simultaneous determination of commodity multipliers. Only now, the distinction of

‘Forestry products’ as an energy-intensive industry becomes apparent (Table 1, industry

and commodity data column). This is because wood charcoal operations that are only

8. Relative errors are calculated as | fi LI,ii D− f∗i LI,ii D+ fc LI,cc|/fi LI,ii D, in this case |0.1721− 0.1114|/0.1721 ≈
16%.
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Table 2: Energy multipliers (in units of kt oil equivalent per million 2005 Reais–ktoe/mR$) for Brazilian

petroleum and coke refining industries and commodities.

Industry & commodity data

IO industry multipliers SUT multipliers

Petroleum and coke refining 0.9859 0.8406

LPG 1.1012

Petrol 0.4727

Gasoalcohol 0.4693

Fuel oil 1.6410

Diesel oil 1.2405

Other petroleum and coke refining products 0.8804

part of the ‘Forestry products’ sub-sector consume much more energy than cropping.

Once, again, such detail is only available in supply-use tables, since forestry and

cropping is aggregated in input-output tables. The error associated with this aggregation

is in the order of 80%.

Similar errors between 70% and 90% can be observed when comparing the one

input-output-based multiplier for the ‘Petroleum and coke refining’ industry, and the

supply-use-based commodity multipliers for the six refining sub-sectors (Table 2). Here,

LPG, fuel oil, and diesel oil appear more energy-intensive than petrol and gasoalcohol,

which once again cannot be discerned from input-output industry multipliers.

Our results bear significant implications for real-world policy. Assume for example

that the Brazilian Government debated the impact of a 90 R$/toe energy tax (about

5% on top of the price of petrol, for example) on agricultural commodities, and in

turn on different food products. Such a policy question would be rather mis-informed

by any analysis using only industry-specific energy data (see Table 1). Opponents of

such energy taxes could base their arguments on multipliers derived from industry data,

and warn that if the government went ahead with the tax, households (who consumed

46.5 bR$ of crop sector output in 2008) would be short by 90 R$/toe × 0.19 ktoe/mR$

× 46.5 bR$ = 800 mR$. However, upon using mixed industry and commodity data in

a SUT framework, it would become clear that some of this tax impact would in reality

affect forestry products (charcoal), and not crop-based products, and that the real adverse

impact on households would be significantly lower at 90 R$/toe × 0.11 ktoe/mR$ ×
46.5 bR$ = 450 mR$.

6. Conclusions

We believe that the unnoticed drawback underlying the use of input-output tables

in impact analyses is their symmetry, in the sense that they must be defined either

on a product-by-product or on an industry-by-industry basis. Rueda-Cantuche (2011)

identified two major trade-offs in the calculation of impact multipliers when using
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symmetric input-output tables. However, the author only stated that supply-use tables

would overcome this undesirable effect but without formalising his argument. This

note extends Rueda-Cantuche’s reasoning and shows that the use of supply-use tables

in a common framework concerning product- and industry-related assumptions may

overcome the undesirable limitations of symmetric input-output tables. We show that

the industry technology and the fixed product sales structure assumptions can be

jointly formulated in a common framework that allows us to carry out impact analyses

simultaneously in terms of products and industries. The same applies for the product

technology and the fixed industry sales structure assumptions. As we have proven for the

empirical example of Brazilian energy multipliers, using rectangular supply-use tables

has significant advantages for real-world impact analyses whenever physical satellite

data (environmental, socio-economic, tourism, etc.) are available.
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Fundação IBGE, Diretoria de Pesquisa, Coordenação de Contas Nacionais.

Kagawa, S. and Suh, S. (2009). Multistage Process-Based Make-Use System. In: S. Suh (ed.) Handbook of

Input-Output Analysis in Industrial Ecology, 777–800.

Konijn, P. J. A. and Steenge, A. E. (1995). Compilation of input-output tables from the national accounts.

Economic Systems Research, 7, 31–45.

Kop Jansen, P. S. M. and Ten Raa, T. (1990). The choice of model in the construction of input-output

coefficients matrices. International Economic Review, 31, 213–227.



152 A note on the use of supply-use tables in impact analyses

Lenzen, M., L.-L. Pade and Munksgaard, J. (2004). CO2 multipliers in multi-region input-output models.

Economic Systems Research, 16, 391–412.

Leontief, W. and Duchin, F. (1986). The Future Impact of Automation on Workers. Oxford, UK, Oxford

University Press.

Leontief, W. and Ford, D. (1970). Environmental repercussions and the economic structure: an input-output

approach. Review of Economics and Statistics, 52, 262–271.

Miller, R. E. and Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions. Cambridge, UK,

Cambridge University Press.

Miyazawa, K. (1968). Input-output analysis and interrelational income multiplier as a matrix. Hitotsubashi

Journal of Economics, 18, 39–58.

Rainer, N. (1989). Descriptive versus analytical make-use systems: some Austrian experiences, in: R.

Miller, K. Polenske & A. Z. Rose (eds) Frontiers of Input–Output Analysis (New York, Oxford

University Press).

Rueda-Cantuche, J. M. (2011). The choice of type of input-output table revisited: moving towards the use

of supply-use tables in impact analysis. Statistics and Operations Research Transactions, 35, 21–38.

Rueda-Cantuche, J. M. and Ten Raa, T. (2009). The choice of model in the construction of industry coeffi-

cients matrices. Economic Systems Research, 21, 363–376.

Schinnar, A. P. (1978). A method for computing Leontief multipliers from rectangular input-output ac-

counts. Environment and Planning A, 10, 137–143.

Smith, N. and McDonald, G. (2011). Estimation of symmetric input-output tables: An extension to Bohlin

and Widell. Economic Systems Research, 23.

Suh, S., B. Weidema, J. H. Schmidt and Heijungs, R. (2010). Generalized make and use framework for al-

location in life cycle assessment. Journal of Industrial Ecology, 14, 335–353.

Ten Raa, T. (1994). On the methodology of input–output analysis, Regional Science and Urban Economics,

24, 3–27.

Ten Raa, T. and Rueda-Cantuche, J. M. (2003). The construction of input-output coefficients matrices in an

axiomatic context: some further considerations, Economic Systems Research, 15, 439–455.

Ten Raa, T. and Rueda-Cantuche, J. M. (2007). A generalized expression for the commodity and the indus-

try technology models in input-output analysis. Economic Systems Research, 19, 99–104.

United Nations (1968). A System of National Accounts, Studies in Methods Series F, nr. 2, rev. 3. New York,

USA, United Nations.

United Nations (1993). Revised System of National Accounts, Studies in Methods Series F, no. 2, rev. 4.

New York, USA, United Nations.

United Nations Department for Economic and Social Affairs Statistics Division (1999). Handbook of Input-

Output Table Compilation and Analysis. New York, USA, United Nations.

Wachsmann, U., R. Wood, M. Lenzen and Schaeffer, R. (2009). Structural decomposition of energy use in

Brazil from 1970 to 1996. Applied Energy, 86, 578–587.

Yamano, N. and Ahmad, N. (2006). The OECD input-output database: 2006 edition. STI Working Paper

2006/8, DSTI/DOC(2006)8, Paris, France, Directorate for Science, Technology and Industry, Or-

ganisation for Economic Co-operation and Development.



Statistics & Operations Research Transactions

SORT 36 (2) July-December 2012, 153-180

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

The new class of Kummer beta

generalized distributions

R. R. Pescim1, G. M. Cordeiro2, C. G. B. Demétrio3,

E. M. M. Ortega4 and S. Nadarajah5

Abstract
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transformed into the standard beta distribution. In econometrics, quite often the data are

analyzed by using finite-range distributions. Generalized beta distributions have been

widely studied in statistics and numerous authors have developed various classes of

these distributions. Eugene et al. (2002) proposed a general class of distributions based

on the logit of a beta random variable by employing two parameters whose role is to

introduce skewness and to vary tail weights.

Following Eugene et al. (2002), who defined the beta normal (BN) distribution,

Nadarajah and Kotz (2004) introduced the beta Gumbel distribution (BGu), provided

expressions for the moments, examined the asymptotic distribution of the extreme order

statistics and performed maximum likelihood estimation (MLE). Nadarajah and Gupta

(2004) defined the beta Fréchet (BF) distribution and derived analytical shapes of the

probability density and hazard rate functions. Nadarajah and Kotz (2005) proposed the

beta exponential (BE) distribution, derived the moment generating function (mgf), the

first four moments, and the asymptotic distribution of the extreme order statistics and

discussed MLE. Most recently, Pescim et al. (2010) and Paranaı́ba et al. (2011) have

studied important mathematical properties of the beta generalized half-normal (BGHN)

and beta Burr XII (BBXII) distributions. However, those distributions do not offer

flexibility to the extremes (right and left) of the probability density functions (pdfs).

Therefore, they are not suitable for analyzing data sets with high degrees of asymmetry.

Ng and Kotz (1995) proposed the Kummer beta distribution on the unit interval (0,1)

with cumulative distribution function (cdf) and pdf given by

F(x) = K

∫ x

0
ta−1 (1− t)b−1 exp(−ct)dt,

and

f (x) = K xa−1 (1− x)b−1 exp(−cx), 0 < x < 1,

respectively, where a > 0, b > 0 and −∞ < c < ∞. Here,

K−1 =
Γ(a)Γ(b)

Γ(a+b)
1F1(a;a+b;−c) (1)

and

1F1(a;a+b;−c) =
Γ(a+b)

Γ(a)Γ(b)

∫ 1

0
ta−1 (1− t)b−1 exp(−ct)dt =

∞

∑
k=0

(a)k(−c)k

(a+b)k k!

is the confluent hypergeometric function (Abramowitz and Stegun, 1968), Γ(·) is the

gamma function and (d)k = d(d + 1) . . .(d + k − 1) denotes the ascending factorial.

Independently, Gordy (1998) has also defined the Kummer beta distribution in relation
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F(x) = K

∫ G(x)

0
ta−1 (1− t)b−1 exp(−ct)dt, (2)

where a > 0 and b > 0 are shape parameters introducing skewness, and thereby promot-

ing weight variation of the tails. The parameter −∞ < c < ∞ “squeezes” the pdf to the

left or to the right.

The pdf corresponding to (2) can be expressed as

f (x) = K g(x)G(x)a−1 {1−G(x)}b−1
exp{−c G(x)} , (3)

where K is defined in (1).

The KBG family of distributions defined by (3) is an alternative family of models

to the class of distributions proposed by Alexander et al. (2012). The shape parameter

c > 0 in Alexander et al. (2012) together with a > 0 and b > 0 promotes the weight

variation of the tails and adds flexibility. On the other hand, the parameter −∞ < c < ∞

of the proposed family offers flexibility to the extremes (left and/or right) of the pdfs.

Therefore, the new family of distributions is suitable for analyzing data sets with high

degrees of asymmetry.

For each continuous G distribution (here and henceforth “G” denotes the baseline

distribution), we associate the KBG-G distribution with three extra parameters a, b and

c defined by the pdf (3). Setting u = t/G(x) in equation (2), we obtain

F(x) = K G(x)a

∫ 1

0
ua−1 [1−G(x)u]b−1

exp [−cG(x)u] du

=
K

a
G(x)a Φ1 (a;1−b;a+1;−cG(x);G(x)) ,

where Φ1 is the confluent hypergeometric function of two variables defined by (Erdélyi

et al., 1953)

Φ1(a;b;c;x;y) =
∞

∑
j,m=0

(a) j+m (b) j

(c) j+m

x j ym

for |x|< 1 and |y|< 1.

Special generalized distributions can be generated as follow. The KBG-normal

(KBGN) distribution is obtained by taking G(x) in equation (3) to be the normal cdf.

Analogously, the KBG-Weibull (KBGW), KBG-gamma (KBGGa) and KBG-Gumbel

(KBGGu) distributions are obtained by taking G(x) to be the cdf of the Weibull, gamma

and Gumbel distributions, respectively. Hence, each new KBG-G distribution can be

obtained from a specified G distribution. The Kummer beta distribution is clearly a

basic example of the KBG distribution when G is the uniform distribution on [0,1]. The

G distribution corresponds to a = b = 1 and c = 0. For c = 0, the KBG-G distribution
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reduces to the beta-G distribution proposed by Eugene et al. (2002). Further, for b = 1

and c= 0, the KBG-G distribution becomes the exponentiated-G distribution. One major

benefit of the KBG family of distributions is its ability to fit skewed data that cannot be

properly fitted by existing distributions.

We study some mathematical properties of the KBG family of distributions because

it extends several widely-known distributions in the literature. The article is outlined

as follows. Section 2 provides some special cases. In Section 3, we derive general

expansions for the new pdf in terms of the baseline pdf g(x) multiplied by a power series

in G(x). We can easily apply these expansions to several KBG distributions. In Section

4, we derive two simple expansions for moments of the KBG-G distribution as linear

functions of probability weighted moments (PWMs) of the G distribution. The mean

absolute deviations and Rényi entropy are determined in Sections 5 and 6, respectively.

In Section 7, we provide some expansions for the pdf of the order statistics. Extreme

values are obtained in Section 8. Some inferential tools are discussed in Section 9. In

Section 10, we analyze a real data set using a special KBG distribution. Section 11 ends

with some concluding remarks.

2. Special KBG generalized distributions

The KBG pdf (3) allows for greater flexibility of its tails and promotes variation of

the tail weights to the extremes of the distribution. It can be widely applied in many

areas of engineering and biological sciences. The pdf (3) will be most tractable when

the cdf G(x) and the pdf g(x) have simple analytic expressions. We now define some

of the many distributions which arise as special sub-models within the KBG class of

distributions.

2.1. KBG-normal

The KBGN pdf is obtained from (3) by taking G(·) and g(·) to be the cdf and pdf of the

normal distribution, N(µ,σ2), so that

f (x) =
K

σ
φ

(
x−µ
σ

){
Φ

(
x−µ
σ

)}a−1{
1−Φ

(
x−µ
σ

)}b−1

exp

{
−c Φ

(
x−µ
σ

)}
,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, a and b are

positive shape parameters, c ∈ R, and φ(·) and Φ(·) are the pdf and cdf of the standard

normal distribution, respectively. A random variable with the above pdf is denoted

by X ∼ KBGN(a,b,c,µ,σ2). For µ = 0 and σ = 1, we have the standard KBGN

distribution. Further, the KBGN distribution with a = 2, b = 1 and c = 0 is the skew

normal distribution with shape parameter equal to one (Azzalini, 1985).
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2.2. KBG-Weibull

The cdf of the Weibull distribution with parameters β > 0 and α > 0 is G(x) =

1− exp{−(βx)α} for x > 0. Correspondingly, the KBG-Weibull (KGBW) pdf is

f (x) = Kαβα xα−1 [1− exp{−(βx)α}]a−1
exp{−c [1− exp{−(βx)α}]−b(βx)α} ,

where x,a,b,β > 0 and c ∈ R. Let KBGW(a,b,c,α,β) denote a random variable with

this pdf. Forα= 1, we obtain the KBG-exponential (KBGE) distribution. KBGW(1,b,0,1,β)

is an exponential random variable with parameter β∗ = bβ .

2.3. KBG-gamma

Let Y be a gamma random variable with cdf G(y) = Γβy(α)/Γ(α) for y, α, β > 0, where

Γ(·) is the gamma function and Γz(α) =
∫ z

0 tα−1e−tdt is the incomplete gamma function.

The pdf of a random variable X , say X ∼ KBGGa(a,b,c,β ,α), having the KBGGa

distribution can be expressed as

f (x) =
Kβα xα−1 exp(−βx)

Γ(α)a+b−1
exp

{
−c

Γβx(α)

Γ(α)

}
Γβx(α)

a−1
{

Γ(α)−Γβx(α)
}b−1

.

For α = 1 and c = 0, we obtain the KBGE distribution. KBGGa(1,b,0,β ,1) is an

exponential random variable with parameter β∗ = bβ .

2.4. KBG-Gumbel

The pdf and cdf of the Gumbel distribution with location parameter µ > 0 and scale

parameter σ > 0 are given by

g(x) = σ−1 exp

{
x−µ
σ

− exp

(
x−µ
σ

)}
, x > 0,

and

G(x) = 1− exp

{
−exp

(
−x−µ
σ

)}
,

respectively. The mean and variance are equal to µ− γσ and π2σ2/6, respectively,

where γ≈ 0.57722 is the Euler’s constant. By inserting these equations in (3), we obtain

a KBGGu random variable, say KBGGu(a,b,c,µ,σ).

Figure 2 displays some possible shapes of the four KBG pdfs. These plots show the

great flexibility achieved with the new distributions.
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tain some structural properties of the KBG-G distribution, including explicit expressions

for moments, mean absolute deviations, pdf of order statistics and moments of order

statistics.

Using the exponential expansion in (2), we write

F(x) =
∞

∑
i=0

wi Ha+i,b(x), (4)

where wi = [K B(a+ i,b)(−c)i]/i! and

Ha,b(x) =
1

B(a,b)

∫ G(x)

0
ta−1 (1− t)b−1dt

denotes the beta-G cdf with positive shape parameters a and b (Eugene et al., 2002).

Equation (4) reveals that the KBG-G cdf is a linear combination of beta-G cdf’s. This

result is important. It can be used to derive properties of any KBG-G distribution from

those of beta-G distributions.

For b > 0 real non-integer, we have the power series representation

{1−G(x)}b−1 =
∞

∑
j=0

(−1) j

(
b−1

j

)
G(x) j, (5)

where the binomial coefficient is defined for any real. Expanding exp{−cG(x)} in

power series and using (5) in equation (2), the KBG-G cdf can be expressed as

F(x) =
∞

∑
i, j=0

wi, j G(x)a+i+ j, (6)

where

wi, j =
K (−1)i+ j ci

i!(a+ i+ j)

(
b−1

j

)
.

If b is an integer, the index i in the previous sum stops at b− 1. If a is an integer,

equation (6) reveals that the KBG-G pdf can be expressed as the baseline pdf multiplied

by an infinite power series of its cdf.

If a is a real non-integer, we can expand G(x)a+i+ j as follows

G(x)a+i+ j =
∞

∑
k=0

(−1)k

(
a+ i+ j

k

)
[1−G(x)]k .
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Then,

G(x)a+i+ j =
∞

∑
k=0

k

∑
r=0

(−1)k+r

(
a+ i+ j

k

) (
k

r

)
G(x)r.

Further, equation (2) can be rewritten as

F(x) =
∞

∑
i, j,k=0

k

∑
r=0

ti, j,k,r G(x)r, (7)

where

ti, j,k,r = ti, j,k,r(a,b,c) = (−1)k+r

(
a+ i+ j

k

) (
k

r

)
wi, j

and wi, j is defined in (6). Replacing ∑
∞
k=0 ∑

k
r=0 by ∑

∞
r=0 ∑

∞
k=r in equation (7), we obtain

F(x) =
∞

∑
r=0

br G(x)r, (8)

where the coefficient br = ∑
∞
i, j=0 ∑

∞
k=r ti, j,k,r denotes a sum of constants.

Expansion (8), which holds for any real non-integer a, expresses the KBG-G cdf as

an infinite weighted power series of G. If b is an integer, the index i in (7) stops at b−1.

We also note that the cdf of the KBG family can be expressed in terms of exponentiated-

G cdfs. We have

F(x) =
∞

∑
r=0

br Vr(x), (9)

where Vr = G(x)r is an exponentiated-G cdf (Exp-G cdf for short) with power parameter

r.

The corresponding expansions for the KBG pdf are obtained by simple differentia-

tion of (6) for a > 0 integer

f (x) = g(x)
∞

∑
i, j=0

w∗
i, j G(x)a+i+ j−1, (10)

where w∗
i, j = (a+ i+ j)wi, j. Analogously, from equations (8) and (9), for a > 0 real

non-integer, we obtain

f (x) = g(x)
∞

∑
r=0

b∗r G(x)r, (11)
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and

f (x) =
∞

∑
r=0

cr vr+1(x), (12)

where b∗r = (r + 1)br+1 and cr = br+1 for r = 0,1 . . ., and vr+1 = (r + 1)g(x)G(x)r

denotes the Exp-G pdf with parameter r+1. Equation (12) reveals that the KBG-G pdf

is a linear combination of Exp-G pdfs. This result is important to derive properties of

the KBG-G distribution from those of the Exp-G distribution.

Mathematical properties of exponentiated distributions have been studied by many

authors in recent years, see Mudholkar et al. (1995) for exponentiated Weibull, Gupta

et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for exponentiated

exponential and Nadarajah and Gupta (2007) for exponentiated gamma.

Equations (10)-(12) are the main results of this section. They play an important role

in this paper.

4. Moments and generating function

4.1. Moments

The sth moment of the KBG-G distribution can be expressed as an infinite weighted sum

of PWMs of order (s,q) of the parent G distribution from equation (10) for a integer

and from (11) for a real non-integer. We assume that Y and X follow the baseline G and

KBG-G distributions, respectively. The sth moment of X can be expressed in terms of the

(s,q)th PWMs of Y , say τs,q = E[Y s G(Y )q] (for q = 0,1, . . .), as defined by Greenwood

et al. (1979). The moments τ(s,q) can be derived for most parent distributions.

For an integer a, we have

µ′s = E(X s) =
∞

∑
i, j=0

w∗
i, jτs,a+i+ j−1.

For a real non-integer a, we can write from (11)

µ′s =
∞

∑
r=0

b∗r τs,r.

So, we can calculate the moments of any KBG-G distribution as infinite weighted sums

of PWMs of the G distribution.

Alternatively, we can express µ′s from (11) in terms of the baseline quantile function

Q(u) = G−1(u). We have
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µ′s =
∞

∑
r=0

b∗r

∫
xs g(x)G(x)r dx.

Setting u = G(x) in the last equation, we obtain

µ′s =
∞

∑
r=0

b∗r

∫ 1

0
ur Q(u)s dt.

Now, we express moments of KBG distributions from equation (12) in terms of

moments of Exp-G distributions. Let Yr+1 have the Exp-G pdf vr+1 = (r+1)g(x)G(x)r

with power parameter (r+ 1). As a first example, consider G the Weibull distribution

with scale parameter λ > 0 and shape parameter γ > 0. If Yr+1 has the exponentiated

Weibull distribution, its moments are

E(Y s) =
(r+2)

λs
Γ

(
s

γ
+1

)
∞

∑
i=0

(−r)i

i!(i+1)(s+γ)/γ
,

where (a)i = a(a+1) . . .(a+ i−1) denotes the ascending factorial. From this expecta-

tion and equation (12), the sth moment of the KBG-Weibull distribution is

µ′s = λ
−s Γ

(
s

γ
+1

)
∞

∑
r,i=0

(r+2)cr (−r)i

i!(i+1)(s+γ)/γ
.

For a second example, take the Gumbel distribution with cdf G(x) = 1 − exp

{−exp(− x−µ
σ

)}. The moments of Yr+1 having the exponentiated Gumbel distribution

with parameter (r+1) can be obtained from Nadarajah and Kotz (2006) as

E(Y s
r+1) = (r+1)

s

∑
i=0

(
s

i

)
µs−i (−σ)i

(
∂

∂ p

)i [
(r+1)−p Γ(p)

]∣∣∣∣
p=1

.

From the last equation and (12), the sth moment of the KBG-Gumbel (KBGGu)

distribution becomes

µ′s =
∞

∑
r=0

cr (r+1)
s

∑
i=0

(
s

i

)
µs−i (−σ)i

(
∂

∂ p

)i [
(r+1)−p Γ(p)

]∣∣∣∣
p=1

.

Finally, as a third example, consider the standard logistic cdf G(x)= [1+exp(−x)]−1.

We can easily obtain the sth moment of the KBG-logistic (KBGL) distribution as

µ′s =
∞

∑
r=0

cr

(
∂

∂ t

)s

B(t +(r+1),1− t)

∣∣∣∣
t=0

.
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4.2. Generating function

Let X ∼KBG-G(a,b,c). We provide four representations for the mgf M(t)=E[exp(tX)]

of X . Clearly, the first one is

M(t) =
∞

∑
s=0

µ′s
s!

ts,

where µ′s = E(X s). The second one comes from

M(t) = K E
[
exp [t X − cG(X)] Ga−1(X) {1−G(X)}b−1

]

= K
∞

∑
j=0

(−1) j

(
b−1

j

)
E

[
exp(t X −Uc)

U−(a+ j−1)

]
,

where U is a uniform random variable on the unit interval. Note that X and U are not

independent.

A third representation for M(t) is obtained from (12)

M(t) =
∞

∑
i=0

ci Mi+1(t),

where Mi+1(t) is the mgf of Yi+1 ∼ Exp-G(i+ 1). Hence, for any KBG-G distribution,

M(t) can be immediately determined from the mgf of the G distribution.

A fourth representation for M(t) can be derived from (11) as

M(t) =
∞

∑
i=0

b∗i ρ(t, i), (13)

where ρ(t,r) =
∫ ∞
−∞ exp(tx)g(x)G(x)rdx can be expressed in terms of the baseline

quantile function Q(u) as

ρ(t,a) =

∫ 1

0
ua exp [t Q(u)] du. (14)

We can obtain the mgf of several KBG distributions from equations(13) and (14). For

example, the mgfs of the KBG-exponential (KBGE) (with parameter λ), KBGL and

KBG-Pareto (KBGPa) (with parameter ν > 0) are easily calculated as

M(t) =
∞

∑
i=0

b∗i B
(
i+1,1−λ t−1

)
, M(t) =

∞

∑
i=0

b∗i B(i+1,1− t) ,
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and

M(t) = exp(−t)
∞

∑
i,p=0

b∗i t p

p!
B
(
i+1,1− pν−1

)
,

respectively.

Clearly, four representations for the characteristic function (chf) φ(t) = E[exp(i tX)]

of the KBG-G distribution are immediately obtained from the above representations for

the mgf by φ(t) = M(i t), where i =
√
−1.

5. Mean absolute deviations

Let X ∼ KBG-G(a,b,c). The mean absolute deviations about the mean (δ1(X)) and

about the median (δ2(X)) can be expressed as

δ1(X) = E
(∣∣X −µ′1

∣∣)= 2µ′1F (µ′1)−2T (µ′1) ,

δ2(X) = E(|X −M|) = µ′1 −2T (M), (15)

respectively, where µ′1 = E(X), F(µ′1) comes from (2), M = Median(X) denotes the

median determined from the nonlinear equation F(M) = 1/2, and T (z) =
∫ z
−∞ x f (x)dx.

Setting u = G(x) in (11) yields

T (z) =
∞

∑
r=0

b∗r Tr(z), (16)

where the integral Tr(z) can be expressed in terms of Q(u) = G−1(u) by

Tr(z) =
∫ G(z)

0
ur Q(u)du. (17)

The mean absolute deviations of any KBG distribution can be computed from

equations (15)-(17). For example, the mean absolute deviations of the KBGE (with

parameter λ), KBGL and KBGPa (with parameter ν > 0) are immediately calculated

using

Tr(z) = λ
−1 Γ(r+2)

∞

∑
j=0

(−1) j [1− exp(− jλz)]

Γ(r+2− j)( j+1)!
,

Tr(z) =
1

Γ(z)

∞

∑
j=0

(−1) j Γ(r+ j+1) [1− exp(− jz)]

( j+1)!



166 The new class of Kummer beta generalized distributions

and

Tr(z) =
∞

∑
j=0

j

∑
k=0

(−1) j
(

r+1
j

)(
j
k

)

(1− kν)
z1−kν ,

respectively.

An alternative representation for T (z) can be derived from (12) as

T (z) =
∫ z

−∞

x f (x)dx =
∞

∑
r=0

cr Jr+1(z), (18)

where

Jr+1(z) =
∫ z

−∞

x vr+1(x)dx. (19)

Equation (19) is the basic quantity to compute mean absolute deviations of Exp-G

distributions. Hence, the KBG mean absolute deviations depend only on the quantity

Jr+1(z). So, alternative representations for δ1(X) and δ2(X) are

δ1(X) = 2µ′1F (µ′1)−2
∞

∑
r=0

cr Jr+1 (µ
′
1) and δ2(X) = µ′1 −2

∞

∑
r=0

cr Jr+1(M).

A simple application is provided for the KBGW distribution. The exponentiated Weibull

pdf with parameter r+1 is given by

vr+1(x) = (r+1)dβd xd−1 exp
{
−(βx)d

} [
1− exp

{
−(βx)d

}]r

for x > 0. Then,

Jr+1(z) = (r+1)dβd

∫ z

0
xd exp

{
−(βx)d

}[
1− exp

{
−(βx)d

}]r
dx

= r dβd
∞

∑
k=0

(−1)k

(
r

k

) ∫ z

0
xd exp

[
−(k+1)(βx)d

]
dx.

We calculate the last integral using the incomplete gamma function γ(α,x)=
∫ x

0 wα−1 e−wdw

for α> 0. Then,

Jr+1(z) = (r+1)β−1
∞

∑
k=0

(−1)k
(

r
k

)

(k+1)1+d−1
γ
(
1+d−1,(k+1)(βz)d

)
.
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Equations (16) and (18) are the main results of this section. These equations can be

applied to Bonferroni and Lorenz curves defined for a given probability p by

B(p) =
T (q)

pµ′1
and L(p) =

T (q)

µ′1
,

where µ′1 = E(X) and q = F−1(p).

6. Entropies

An entropy is a measure of variation or uncertainty of a random variable X . The most

popular measures of entropy are the Shannon entropy (Shannon, 1951) and the Rényi

entropy.

6.1. Shannon entropy

The Shannon entropy (Shannon, 1951) is defined by E{− log[ f (X)]}. Let X has the pdf

(3). We can write

E{− log [ f (X)]} = − log(K)−E{log [g(X)]}+(1−a)E{log [G(X)]}
+(1−b)E{log [1−G(X)]}+ cE [G(X)]

= − logK −E{log [g(X)]}+(a−1)
∞

∑
k=1

1

k
E
{
[1−G(X)]k

}

+(b−1)
∞

∑
k=1

1

k
E
[
Gk(X)

]
+ cE [G(X)]

= − log(K)−E{log [g(X)]}+(a−1)
∞

∑
k=1

K(a,b+ k,c)

k K(a,b,c)

+(b−1)
∞

∑
k=1

K(a+ k,b,c)

k K(a,b,c)
+

cK(a+1,b,c)

K(a,b,c)
, (20)

where K = K(a,b,c) is given by (1). The only unevaluated term in (20) is E{log[g(X)]}.

6.2. Rényi entropy

The Rényi entropy is given by

JR(ξ) =
1

1−ξ log

[∫ ∞

−∞

f ξ(x)dx

]
, ξ> 0 and ξ 6= 1.
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The integral can be expressed as

∫ ∞

−∞

f ξ(x)dx = Kξ
∫ ∞

−∞

gξ(x)Gξ(a−1)(x) [1−G(x)]ξ(b−1)
exp [−ξcG(x)] dx.

Expanding the exponential and the binomial terms and changing variables, we obtain

∫ ∞

−∞

f ξ(x)dx = Kξ
∞

∑
i, j=0

(−1)i+ j(cξ)i

i!

(
ξ(b−1)

j

)
Ii, j(ξ), (21)

where Ii, j(ξ) denotes the integral

Ii, j(ξ) =

∫ 1

0
gξ−1 (Q(u)) ui+ j+ξ(a−1) du,

to be calculated for each KBG-model. For the KBGE (with parameter λ), KBGL and

KBGPa (with parameter ν), we obtain

Ii, j(ξ) = λ
ξ−1B(i+ j+ξ(a−1)+1,ξ) , Ii, j(ξ) = B(i+ j+ξa , ξ) ,

and

Ii, j(ξ) = ν
ξ−1 B

(
i+ j+ξ(a−1)+1, ν−1(ξ−1)+ξ

)
,

respectively. Equation (21) is the main result of this section.

7. Order statistics

Order statistics have been used in a wide range of problems, including robust statis-

tical estimation and detection of outliers, characterization of probability distributions

and goodness-of-fit tests, entropy estimation, analysis of censored samples, reliability

analysis, quality control and strength of materials.

Suppose X1, . . . ,Xn is a random sample from a continuous distribution and let

X1:n < · · ·<Xi:n denote the corresponding order statistics. There has been a large amount

of work relating to moments of order statistics Xi:n. See Arnold et al. (1992), David and

Nagaraja (2003) and Ahsanullah and Nevzorov (2005) for excellent accounts. It is well-

known that

fi:n(x) =
f (x)

B(i,n− i+1)
F(x)i−1 {1−F(x)}n−i ,
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where B(·, ·) denotes the beta function. Using the binomial expansion in the last

equation, we have

fi:n(x) =
f (x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
F(x)i+ j−1. (22)

We now provide an expression for the pdf of KBG order statistics as a function

of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Based

on this result, we express the ordinary moments of the order statistics of any KBG-G

distribution as infinite weighted sums of the PWMs of the G distribution.

Replacing (8) in equation (22), we have

F(x)i+ j−1 =

(
∞

∑
r=0

br ur

)i+ j−1

, (23)

where u = G(x) is the baseline cdf.

We use the identity (∑∞
k=0 ak xk)n = ∑

∞
k=0 dk,n xk (see Gradshteyn and Ryzhik, 2000),

where

d0,n = an
0 and dk,n = (ka0)

−1
k

∑
m=1

[m(n+1)− k] am dk−m,n

(for k = 1,2, . . .) in equation (23) to obtain

F(x)i+ j−1 =
∞

∑
r=0

dr,i+ j−1 G(x)r, (24)

where

d0,i+ j−1 = bi+k−1
0 and dr,i+ j−1 = (kbr)

−1
r

∑
m=1

[(i+ j)m− r] bm dr−m,i+ j−1.

For real non-integer a, inserting (11) and (24) into equation (22) and changing

indices, we rewrite fi:n(x) for the KBG distribution in the form

fi:n(x) =
g(x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
∞

∑
u,v=0

b∗u du,i+ j−1 G(x)u+v. (25)

For an integer a, we obtain from equations (10), (22) and (24)

fi:n(x) =
g(x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
∞

∑
p,q,u=0

w∗
p,q du,i+ j−1 G(x)a+p+q+u−1. (26)
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Equations (25) and (26) immediately yield the pdf of KBG order statistics as a func-

tion of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Hence,

the moments of KBG-G order statistics can be expressed as infinite weighted sums of

PWMs of the G distribution. Clearly, equation (26) can be expressed as linear combi-

nations of Exp-G pdfs. So, the moments and the mgf of KBG order statistics follow

immediately from linear combinations of those quantities for Exp-G distributions.

8. Extreme values

If X = (X1 + · · ·+Xn)/n denotes the mean of a random sample from (3), then by the

usual central limit theorem
√

n(X −E(X))/
√

Var(X) approaches the standard normal

distribution as n → ∞ under suitable conditions. Sometimes one would be interested in

the asymptotics of the extreme values Mn = max(X1, . . . ,Xn) and mn = min(X1, . . . ,Xn).

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a strictly positive function, say h(t), such that

lim
t→∞

1−G(t + xh(t))

1−G(t)
= exp(−x)

for every x ∈ (−∞,∞). But, using L’Hopital’s rule, we note that

lim
t→∞

1−F (t + xh(t))

1−F(t)
= lim

t→∞

[1+ xh
′
(t)] f (t + xh(t))

f (t)

= lim
t→∞

[1+ xh
′
(t)]g(t + xh(t))

g(t)

[
G(t + xh(t))

G(t)

]a−1

×
[

1−G(t + xh(t))

1−G(t)

]b−1

exp{cG(t)− cG(t + xh(t))}

= exp(−bx)

for every x ∈ (−∞,∞). So, it follows that F also belongs to the max domain of attraction

of the Gumbel extreme value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp{−exp(−bx)}

for some suitable norming constants an > 0 and bn.

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a β > 0 such that
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lim
t→∞

1−G(t x)

1−G(t)
= xβ

for every x > 0. But, using L’Hopital’s rule, we note that

lim
t→∞

1−F(t x)

1−F(t)
= lim

t→∞

x f (t x)

f (t)

= lim
t→∞

xg(t x)

g(t)

[
G(t x)

G(t)

]a−1[
1−G(t x)

1−G(t)

]b−1

exp{cG(t)− cG(t x)}

= xbβ

for every x > 0. So, it follows that F also belongs to the max domain of attraction of the

Fréchet extreme value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp
(
−xbβ

)

for some suitable norming constants an > 0 and bn.

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull

extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist

a α> 0 such that

lim
t→−∞

G(t x)

G(t)
= xα

for every x < 0. But, using L’Hopital’s rule, we note that

lim
t→−∞

F(t x)

F(t)
= lim

t→−∞

x f (t x)

f (t)

= lim
t→∞

xg(t x)

g(t)

[
G(t x)

G(t)

]a−1[
1−G(t x)

1−G(t)

]b−1

exp{cG(t)− cG(t x)}

= xaβ .

So, it follows that F also belongs to the max domain of attraction of the Weibull extreme

value distribution with

lim
n→∞

Pr{an (Mn −bn)≤ x}= exp{−(−x)aα}

for some suitable norming constants an > 0 and bn.

The same argument applies to min domains of attraction. That is, F belongs to the

same min domain of attraction as that of G.
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9. Inference

Let γ be the p-dimensional parameter vector of the baseline distribution in equations

(2) and (3). We consider independent random variables X1, . . . ,Xn, each Xi following a

KBG-G distribution with parameter vector θ = (a,b,c,γ). The log-likelihood function,

ℓ= ℓ(θ ), for the model parameters is

ℓ(θ ) = n log(K)+
n

∑
i=1

logg(xi;γ)− c
n

∑
i=1

G(xi;γ)

+(a−1)
n

∑
i=1

log{G(xi;γ)}+(b−1)
n

∑
i=1

log{1−G(xi;γ)} . (27)

The elements of score vector are given by

∂ℓ(θ )

∂a
=

n

K

∂K

∂a
+

n

∑
i=1

log{G(xi;γ)} ,

∂ℓ(θ )

∂b
=

n

K

∂K

∂b
+

n

∑
i=1

log{1−G(xi;γ)} ,

∂ℓ(θ )

∂c
=

n

K

∂K

∂c
−

n

∑
i=1

G(xi;γ) ,

and

∂ℓ(θ )

∂γ j

=
n

∑
i=1

[
1

g(xi;γ)

∂g(xi;γ)

∂γ j

− c
∂g(xi;γ)

∂γ j

+
(a−1)

G(xi;γ)

∂G(xi;γ)

∂γ j

+
(b−1)

1−G(xi;γ)

∂G(xi;γ)

∂γ j

]

for j = 1, . . . , p, where

∂K

∂a
=−

{
[ψ(a)−ψ(a+b)] 1F1(a,a+b,−c)+ ∂ 1F1(a,a+b,−c)

∂a

}

B(a,b) [1F1(a,a+b,−c)]2
,

∂K

∂b
=−

{
[ψ(b)−ψ(a+b)] 1F1(a,a+b,−c)+ ∂ 1F1(a,a+b,−c)

∂b

}

B(a,b) [1F1(a,a+b,−c)]2
,

∂K

∂c
=

a 1F1(a+1,a+b+1,−c)

(a+b)B(a,b)1F1(a,a+b,−c)
,
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∂ 1F1(a,a+b,−c)

∂a
= − [ψ(a)−ψ(a+b)] 1F1(a,a+b,−c)

−
∞

∑
k=0

(a)k(−c)k

k!(a+b)k

[ψ(a+b+ k)−ψ(a+ k)] ,

and

∂ 1F1(a,a+b,−c)

∂b
=ψ(a+b) 1F1(a,a+b,−c)+

∞

∑
k=0

(a)k(−c)k

k!(a+b)k

ψ(a+b+ k).

These partial derivatives depend on the specified baseline distribution. Numerical maxi-

mization of the log-likelihood above was accomplished by using the RS method (Rigby

and Stasinopoulos, 2005) available in the R contributed gamlss package (Stasinopoulos

and Rigby, 2007; R Development Core Team, 2009).

For interval estimation of each parameter in θ = (a,b,c,γT )T , and tests of hypothe-

ses, we require the expected information matrix. Interval estimation for the model pa-

rameters can be based on standard likelihood theory. The elements of the information

matrix for (27) are given in the Appendix. Under suitable regularity conditions, the

asymptotic distribution of the MLE, θ̂ , is multivariate normal with mean vector θ and

covariance matrix estimated by {−∂ 2ℓ(θ )/∂θ∂θT} at θ = θ̂ . The required second

derivatives were computed numerically.

Consider two nested KBG-G distributions: a KBG-GA distribution with parameters

θ1, . . . ,θr and maximized log-likelihood −2ℓ(θ̂A); and, a KBG-GB distribution contain-

ing the same parameters θ1, . . . ,θr plus additional parameters θr+1, . . . ,θp and maxi-

mized log-likelihood −2ℓ(θ̂B), the models being identical otherwise. For testing the

KBG-GA distribution against the KBG-GB distribution, the likelihood ratio statistic (LR)

is equal to w =−2{ℓ(θ̂A)− ℓ(θ̂B)}. It has an asymptotic χ2
p−r distribution.

We compare non-nested KBG-G distributions by using the Akaike information

criterion given by AIC =−2ℓ(θ̂)+2p∗ and the Bayesian information criterion defined

by BIC = −2ℓ(θ̂) + p∗ log(θ ), where p∗ is the number of model parameters. The

distribution with the smallest value for any of these criteria (among all distributions

considered) is usually taken as the one that gives the best description of the data.

10. Application-Ball bearing fatigue data

In this section, we shall compare the fits of the KBGW, beta Weibul (BW), Birnbaum-

Saunders (BS) and Weibull distributions to the data set studied by Lieblein and Zelen

(1956). They described the data from fatigue endurance tests for deep-groove ball

bearings. The main objective of the study was to estimate parameters in the equation

relating bearing life to load. The data are a subset of n = 23 bearing failure times for

units tested at one level of stress reported by Lawless (1982). Because of the lower
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The same happens for the moments of order statistics of the KBG distributions. We

discuss maximum likelihood estimation and inference on the parameters. We consider

likelihood ratio statistics and goodness-of-fit tests to compare the KBG-G model with

its baseline model. An application to real data shows the feasibility of the proposed class

of models. We hope this generalization may attract wider applications in statistics.
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Appendix: elements of the information matrix

The elements of this matrix for (27) can be worked out as:

E

(
−∂ 2ℓ(θ )

∂a2

)
=− n

K
E

[
1

K

(
∂K

∂a

)
− ∂ 2K

∂a2

]
,

E

(
−∂ 2ℓ(θ )

∂b∂c

)
=− n

K
E

[
1

K

(
∂K

∂b

)(
∂K

∂c

)
− ∂ 2K

∂b∂c

]
,

E

(
−∂ 2ℓ(θ )

∂c2

)
=− n

K
E

[
1

K

(
∂K

∂c

)
− ∂ 2K

∂c2

]
,

E

(
−∂ 2ℓ(θ )

∂a∂b

)
=− n

K
E

[
1

K

(
∂K

∂a

)(
∂K

∂b

)
− ∂ 2K

∂a∂b

]
,

E

(
−∂ 2ℓ(θ )

∂a∂c

)
=− n

K
E

[
1

K

(
∂K

∂a

)(
∂K

∂c

)
− ∂ 2K

∂a∂c

]
,

E

(
−∂ 2ℓ(θ )

∂b2

)
=− n

K
E

[
1

K

(
∂K

∂b

)
− ∂ 2K

∂b2

]
,

E

(
−∂ 2ℓ(θ )

∂a∂γ j

)
=−

n

∑
i=1

E

[
1

G(xi;γ)

∂G(xi;γ)

∂γ j

]
,

E

(
−∂ 2ℓ(θ )

∂b∂γ j

)
=−

n

∑
i=1

E

[
1

1−G(xi;γ)

∂G(xi;γ)

∂γ j

]
,
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E

(
−∂ 2ℓ(θ )

∂c∂γ j

)
=

n

∑
i=1

E

[
∂g(xi;γ)

∂γ j

]
,

E

(
− ∂ 2ℓ(θ )

∂γk∂γ j

)
=

n

∑
i=1

E

[
1

g2 (xi;γ)

∂ 2g(xi;γ)

∂γ j∂γk

]
+ c

n

∑
i=1

E

[
∂ 2g(xi;γ)

∂γ j∂γk

]
+

n

∑
i=1

E

[
(a−1)

G2 (xi;γ)

∂ 2G(xi;γ)

∂γ j∂γk

]
+

n

∑
i=1

E

[
(1−b)

{1−G(xi;γ)}2

∂ 2G(xi;γ)

∂γ j∂γk

]

for j = 1, . . . , p, where

∂ 2K

∂a2
= −

{
[ψ′(a)−ψ′(a+b)]

1F1(a,a+b,−c)
+

[ψ(a)−ψ(a+b)]2

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂a

+
1

[1F1(a,a+b,−c)]2
∂ 2

1F1(a,a+b,−c)

∂a2
+

[ψ(a)−ψ(a+b)]2

1F1(a,a+b,−c)

+
2

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂a

+
1

[1F1(a,a+b,−c)]3

(
∂ 1F1(a,a+b,−c)

∂a

)2
}
,

∂ 2K

∂b2
= −

{
[ψ′(b)−ψ′(a+b)]

1F1(a,a+b,−c)
+

[ψ(b)−ψ(a+b)]2

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂b

+
1

[1F1(a,a+b,−c)]2
∂ 2

1F1(a,a+b,−c)

∂b2
+

[ψ(b)−ψ(a+b)]2

1F1(a,a+b,−c)

+
2

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂b

+
1

[1F1(a,a+b,−c)]3

(
∂ 1F1(a,a+b,−c)

∂b

)2
}
,

∂ 2K

∂c2
=−

{
a(a+1)1F1(a+2,a+b+2,−c)

(a+b)B(a,b)1F1(a,a+b,−c)
+

a2 [1F1(a+1,a+b+1,−c)]2

(a+b)2B(a,b) [1F1(a,a+b,−c)]2

}
,
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∂ 2K

∂a∂b
= −

{
[ψ′(a+b)]

1F1(a,a+b,−c)
+

[ψ(b)−ψ(a+b)]

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂a

+
1

[1F1(a,a+b,−c)]2
∂ 2

1F1(a,a+b,−c)

∂a∂b
+

[
ψ(b)−ψ(a+b)

1F1(a,a+b,−c)

]2

+
2 [ψ(a)−ψ(a+b)]

[1F1(a,a+b,−c)]2
∂ 1F1(a,a+b,−c)

∂a

+
2

[1F1(a,a+b,−c)]3
∂ 1F1(a,a+b,−c)

∂b

∂ 1F1(a,a+b,−c)

∂a

}
,

∂ 2K

∂a∂c
= 1F1(a+1,a+b+1,−c)+

a

(a+b)
+a [ψ′(a)−ψ′(a+b)]

+
a

1F1(a,a+b,−c)

∂ 1F1(a+1,a+b+1,−c)

∂a

+
a

1F1(a+1,a+b+1,−c)

∂ 1F1(a+1,a+b+1,−c)

∂a
,

∂ 2K

∂b∂c
= 1F1(a+1,a+b+1,−c)+

a

(a+b)
+a [ψ′(b)−ψ′(a+b)]

+
a

1F1(a,a+b,−c)

∂ 1F1(a+1,a+b+1,−c)

∂b

+
a

1F1(a+1,a+b+1,−c)

∂ 1F1(a+1,a+b+1,−c)

∂b
,

∂ 2
1F1(a,a+b,−c)

∂a2
= −

[
ψ′(a+b)−ψ′(a)+{ψ(a)−ψ(a+b)}2

]
1F1(a,a+b,−c)

−
∞

∑
k=0

(a)k(−c)k

k!(a+b)k

[−2ψ(a)ψ(a+ k)+2ψ(a+b)ψ(a+ k)

+2ψ(a)ψ(a+b+ k)−2ψ(a+b)ψ(a+b+ k)+ψ2(a+ k)

−2ψ(a+ k)ψ(a+b+ k)+ψ2(a+b+ k)

+ψ′(a+ k)−ψ′(a+b+ k)] ,
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∂ 2
1F1(a,a+b,−c)

∂b2
= −

[
ψ′(a+b)−ψ2(a+b)

]
1F1(a,a+b,−c)

−
∞

∑
k=0

(a)k(−c)k

k!(a+b)k

[−2ψ(a+b)ψ(a+b+ k)

−ψ′(a+b+ k)+ψ2(a+b+ k)
]
,

and

∂ 2
1F1(a,a+b,−c)

∂a∂b
=
[
ψ′(a+b)−ψ2(a+b)−ψ(a)ψ(a+b)

]
1F1(a,a+b,−c)

−
∞

∑
k=0

(a)k(−c)k

k!(a+b)k

[
2ψ(a+b)ψ(a+b+ k)−ψ2(a+b+ k)

−ψ(a+ k)ψ(a+b)+ψ(a+ k)ψ(a+b+ k)

−ψ(a)ψ(a+b+ k)+ψ(a+b+ k)] .
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Abstract

A Poisson model typically is assumed for count data. In many cases because of many zeros in

the response variable, the mean is not equal to the variance value of the dependent variable.

Therefore, the Poisson model is no longer suitable for this kind of data. Thus, we suggest

using a hurdle negative binomial regression model to overcome the problem of overdispersion.

Furthermore, the response variable in such cases is censored for some values. In this paper,

a censored hurdle negative binomial regression model is introduced on count data with many

zeros. The estimation of regression parameters using maximum likelihood is discussed and the

goodness-of-fit for the regression model is examined.
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1. Introduction

Commonly, for the modelling of counts such as the number of reported insurance claims,

the starting point is the Poisson distribution:

fYi
(yi) =

e−λiλ
yi
i

yi!
(1)

where covariates are included in the model by the parameter λi = exp(xT
i β) where xi is

a vector of explanatory variables (Dionne and Vanasse, 1989). The Poisson distribution
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182 Hurdle negative binomial regression model with right censored count data

is equidispersed since its mean and variance are both equal to λi. Because the Poisson

distribution has some severe drawbacks that limit its use, other distributions can be used,

such as hurdle models (Boucher et al., 2007).

Mullahy (1986) has first discussed hurdle count data models. Hurdle models allow

for a systematic difference in the statistical process governing individuals (observations)

below the hurdle and individuals above the hurdle. In particular, a hurdle model is

mixed by a binary outcome of the count being below or above the hurdle (the selection

variable), with a truncated model for outcomes above the hurdle. That is why hurdle

models sometimes are also called two-part models.

The most important usage of a hurdle count data model is the hurdle at zero. The

hurdle at zero formulation can account for excess zeros. It means that this model can

be used in situations where there are many zeros at the response variable. In this case,

the hurdle at zero defines a probability (Pr(Y = 0)) that is the first part of the two part-

models.

The hurdle model is flexible and can handle both under- and overdispersion problem.

A generalized hurdle model is introduced by Gurmu (1998) for the analysis of overdis-

persed or underdispersed count data. Greene (2005) has discussed about the compar-

ison between hurdle and zero-inflated models as two part-models. Some researchers

have discussed the applications of hurdle models, such as Pohlmeier and Ulrich (1995),

Arulampalam and Booth (1997). A hurdle model to the annual number of recreational

boating trips by a family is discussed by Gurmu and Trivedi (1996). Dalrymple, Hud-

son and Ford (2003) applied three mixture models including a hurdle model and argued

its application in the incidence of sudden infant death syndrome (SIDS). Boucher, De-

nuit and Guillen (2007) compared generalized heterogeneous, zero-inflated, hurdle, and

compound frequency models for the annual number of claims reported to the insurer.

Saffari, Adnan and Greene (2011) argued the overdispersion problem on count data us-

ing a right truncated Poisson regression model.

Suppose that g1(0) is the probability value when the value for response variable is

zero and that g2(k),k = 1,2, . . . is a probability function when the response variable is a

positive integer. Therefore, the probability function of the hurdle-at-zero model is given

by:

p(Yi = k) =

{
g1(0), k = 0,

(1−g1(0))g2(k), k = 1,2, . . .
(2)

Mullahy (1986) discussed the hurdle-at-zero model and he believes that both parts

of the hurdle model are based on probability functions for nonnegative integers such

as f1 and f2. In terms of the general model above, let g1(0) = f1(0) and g2(k) =

f2(k)/(1− f2(0)). In the case of g2, normalization is required because f2 has support

over the nonnegative integers (k = 0,1, . . .) whereas the support of g2 must be over

the positive integers (k = 1,2, . . .). This means that we need to truncate the probability

function f2. However, this is a theoretical concept, i.e., truncation on f2 does not mean
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that there is truncation of the population here. All we need to do is to work with a

distribution with positive support, and the second part of a hurdle model can use a

displaced distribution or any distribution with positive support as well.

Under the Mullahy (1986) assumptions, the probability distribution of the hurdle-at-

zero model is given by

f (Y = 0) = f1(0)

f (Y = k) =
1− f1(0)

1− f2(0)
f2(k) = θ f2(k), k = 1,2, . . .

where f2 is referred to as parent-process. The numerator of θ presents the probability

of crossing the hurdle and the denominator gives a normalization that accounts for the

(purely technical) truncation of f2. It follows that if f1 = f2 or, equivalently, θ = 1 then

the hurdle model collapses to the parent model. The expected value of the hurdle model

is given by

E(Y ) = θ
∞

∑
k=1

k f2(k) (3)

and the difference between this expected value and the expected value of the parent

model is the factor θ . In addition, the variance value of the hurdle model is given by

Var(Y ) = θ
∞

∑
k=1

k2 f2(k)−
[
θ

∞

∑
k=1

k f2(k)

]2

(4)

If θ exceeds 1, it means that the probability of crossing the hurdle is greater than the

sum of the probabilities of positive outcomes in the parent model. Therefore, increasing

the expected value of the hurdle model is related to the expected value of the parent

model. Alternatively, if θ is less than 1 (that is the usual case in an application with

excess zeros), it means that the probability of not crossing the hurdle is greater than

the probability of a zero in the parent model, thus decreasing the expected value of

the hurdle model relatively to the expected value of the parent model. Therefore, this

model gives a new explanation of excess zeros as being a characteristic of the mean

function rather than a characteristic of the variance function. The mean function of the

hurdle model provides additional nonlinearities relative to the standard model in order

to account for the corner solution outcome, much as in other corner solution models,

and this is just like as how a Tobit model works.

Consequently, the model can be overdispersed and that depends on the value of the

parent processes. To overcome overdispersion, we would like to cut the values of the

response variable that are very big. In statistics, this is called truncation and because we

want to truncate the values that are bigger than a constant, it is called a right truncation.
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There are many options to choose the processes f1 and f2. Some of the most

popular hurdle model choices are nested models where f1 and f2 come from the

same distribution, such as the Poisson distribution (Mullahy, 1986) or the Negative

Binomial (Pohlmeier and Ulrich, 1995). However, non-nested models (Grootendorst

(1995), (Gurmu, 1998), or Winkelmann (2003)) can also be used. These models do

not nest with a standard count distributions such as the Poisson or the NB types, but are

overlapping with suggested model by Vuong (1989) since models can be equivalent for

certain parameter restrictions.

Maximum likelihood is used to estimate the parameters. The log-likelihood function

of a hurdle model can be expressed as:

ll =
n

∑
i=1

I{yi=0} log f1(0;θi)+ I{yi>0} log(1− f1(0;θi))+
n

∑
i=1

I{yi>0} log
f2(yi;θi)

1− f2(0;θi)
(5)

The interesting aspect of the hurdle model is to estimate the parameters by two

separate steps. In fact, we can estimate the zero-part parameters by using MLE on the

first part of the likelihood function while the other parameters only use the second part,

only composed with non-zero elements. We have used SAS code to implement this

algorithm and this characteristic of the model helps us to save computer time in the

estimation (Chou and Steenhard, 2009).

In this article, the main objective is to explain how we can use hurdle negative bino-

mial regression model in right censored data. In Section 2, the hurdle negative binomial

regression model is defined and the likelihood function of hurdle negative binomial

regression model in right censored data is formulated. In Section 3, the parameter es-

timation is discussed using maximum likelihood. In Section 4, the goodness-of-fit for

the regression model is examined and a test statistic for examining the dispersion of

regression model in right censored data is proposed. An example is conducted for a cen-

sored hurdle negative binomial regression model in terms of the parameter estimation,

standard errors and goodness-of-fit statistic in Section 5.

2. The model

Let Yi(i = 1,2, . . . ,n) be a nonnegative integer-valued random variable and suppose

Yi = 0 is observed with a frequency significantly higher than can be modeled by the

usual model. We consider a hurdle negative binomial regression model in which the

response variable Yi(i = 1, . . . ,n) has the distribution

Pr(Yi = yi) =





w0, yi = 0,

(1−w0)
Γ(yi +α

−1)

Γ(yi +1)Γ(α−1)

(1+αµi)
−α−1−yi αyiµ

yi
i

1− (1+αµi)
−α−1 , yi > 0,

(6)
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or

Pr(Yi = yi) =





w0, yi = 0,

(1−w0)
g

1− (1+αµi)
−α−1 , yi > 0, (7)

where

g = g(yi;µi,α) =
Γ(yi +α

−1)

Γ(yi +1)Γ(α−1)
(1+αµi)

−α−1−yi αyiµ
yi
i (8)

where α(≥ 0) is a dispersion parameter that is assumed not to depend on covariates. In

addition, we suppose 0 < w0 < 1 and w0 = w0(zi) satisfy

logit(w0) = log(
w0

1−w0

) =
m

∑
j=1

zi jδ j (9)

where (zi1 = 1,zi2, . . . ,zim) is the i-th row of covariate matrix Z and (δ1,δ2, . . . ,δm)

is an unknown m-dimensional column vector of parameters. In this set up, the non-

negative function w0 is modeled via logit link function. This function is linear and other

appropriate link functions that allow w0 being negative may be used. In addition, there

is interest in capturing any systematic variation in µi, the value of µi is most commonly

placed within a loglinear model

log(µi) =
k

∑
j=1

xi jβ j (10)

and β j’s are the independent variables in the regression model and m is the number of

these independent variables. Furthermore, in this paper we suppose that w0 and β j are

not related.

The value of response variable, Yi, for some observations in a data set, may be

censored. If censoring occurs for the ith observation, we have Yi ≥ yi (right censoring).

However, if no censoring occurs, we know that Yi = yi. Thus, we can define an indicator

variable di as

di =

{
1 if Yi ≥ yi,

0 otherwise.
(11)

We can now write

Pr(Yi ≥ yi) =
∞

∑
j=yi

Pr(Yi = j) = 1−
yi−1

∑
j=0

Pr(Yi = j) (12)
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Therefore, the log-likelihood function of the censored hurdle regression model can be

written as

logL(θi;yi) =
n

∑
i=1

{
(1−di)

[
Iyi=0 log f (0;θi)+ Iyi>0 f (yi;θi)

]
+di log

( ∞

∑
j=yi

Pr(Yi = j)
)}

(13)

We now obtain the log-likelihood function for the hurdle negative binomial regression

model, we have

LL =
n

∑
i=1

{
(1− di)

[
Iyi=0 logw0 + Iyi>0

{
log(1−w0)+ logg− log

(
1− (1+αµi)

−α−1
)}]

+di log
∞

∑
j=yi

Pr(Yi = j)
}

(14)

3. Parameter estimation

In this section we estimate the parameters by maximum likelihood. By taking the partial

derivatives of the likelihood function and setting them equal to zero, the likelihood

equation for estimating the parameters is obtained. Thus we obtain

∂LL

∂βr

=
k

∑
i=1

{
(1−di)Iyi>0

[
g′µi

g
− (1+αµi)

−α−1−1

1− (1+αµi)−α
−1

]
µixir

+
di

∞

∑
j=yi

Pr(Yi = j)

∂
∞

∑
j=yi

Pr(Yi = j)

∂βr

}
= 0

∂LL

∂α
=

k

∑
i=1

{
(1−di)Iyi>0

[
g′α
g

− α
−1µi/(1+αµi)−α−2 log(1+αµi)

1− (1+αµi)−α
−1

(1+αµi)
−α−1

]

+
di

∞

∑
j=yi

Pr(Yi = j)

∂
∞

∑
j=yi

Pr(Yi = j)

∂α

}
= 0

∂LL

∂δs

=
n

∑
i=1

(1−di)
[
Iyi=0(1−w0)− Iyi>0w0

]
zis = 0
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where

∂
∞

∑
j=yi

Pr(Yi = j)

∂βr

=
∞

∑
j=yi

(1−w0)
g′µi

(1− (1+αµi)
−α−1

)− (1+αµi)
−α−1−1g

(1− (1+αµi)−α
−1)2

µixir

∂
∞

∑
j=yi

Pr(Yi = j)

∂α
=

∞

∑
j=yi

(1−w0)

[
g′α

1− (1+αµi)−α
−1

+
log(1+αµi)

α−2 − α−1µi

1+αµi(
1− (1+αµi)−α

−1
)2

g(1+αµi)
−α−1

]

g′α =

(
Γ′(yi +α

−1)

Γ(yi +α−1)
− Γ′(α−1)

Γ(α−1)
+α−2 log(1+αµi)−

α−1 + yi

1+αµi

µi +α
−1yi

)
g

g′µ =
yi −µi

µi(1+αµi)
g

Since these partial derivative equations cannot be further simplified, we have applied

the Newton-Raphson method with ridging as the optimization algorithm, using code

in SAS given in the Appendix. Furthermore, the Convergence of the algorithm does

not necessarily mean that a global maximum has been found, it just means that the

convergence criteria have been achieved, and thus it can be a local maximum.

4. Goodness-of-fit statistics

For count regression models, a measure of goodness of fit may be based on the deviance

statistic D defined as

D =−2
[

logL(θ̂i; µ̂i)− logL(θ̂i;yi)
]

(15)

where logL(θ̂i; µ̂i) and logL(θ̂i;yi) are the model’s likelihood evaluated respectively

under µ̂i and yi. The log-likelihood functions are given in equation (7).

For an adequate model, the asymptotic distribution of the deviance statistic D is chi-

square distribution with n− k − 1 degrees of freedom. Therefore, if the value for the

deviance statistic D is close to the degrees of freedom, the model may be considered

as adequate. When we have many regression models for a given data set, the regression

model with the smallest value of the deviance statistic D is usually chosen as the best

model for describing the given data.

In many data sets, the µi’s may not be reasonably large and so the deviance

statistic D may not be suitable. Thus, the log-likelihood statistic log(θ̂i;yi) can be used

as an alternative statistic to compare the different models. Models with the largest

log-likelihood value can be chosen as the best model for describing the data under

consideration.
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When there are several maximum likelihood models, one can compare the perfor-

mance of alternative models based on several likelihood measures which have been pro-

posed in the statistical literature. The AIC and BIC are two of the most regularly used

measures. The AIC is defined as

AIC =−2l+2p (16)

where l denotes the log likelihood evaluated for estimated parameters µ and p the

number of parameters. For this measure, the smaller the AIC, the better the model is.

5. An application

The state wildlife biologists want to model how many fish1 are being caught by

fishermen at a state park. Visitors are asked how long they stayed, how many people

were in the group, were there children in the group and how many fish were caught.

Some visitors do not fish, but there are no data on whether a person fished or not. Some

visitors who did fish did not catch any fish so there are excess zeros in the data because

of the people that did not fish. We have data on 250 groups that went to a park. Each

group was questioned about how many fish they caught (count), how many children

were in the group (child), how many people were in the group (persons), and whether

or not they brought a camper to the park (camper).

We will use the variables child, persons and camper in our model. Table 1 shows

the descriptive statistics of using variables and also the camper variable has two values,

zero and one as Table 2. In addition, Figure 1 shows the histogram of the count variable

before censoring.

We have considered the model as follow

log(µ) = b0 +b1 ∗ camper+b2 ∗ persons+b3 ∗ child,

logit(w0) = a0 +a1 ∗ child

Furthermore, we put two censoring points, c1 = 3,c2 = 5. Table 3 shows the estimation

of the parameters according to different censoring constants. Also, the −2logL and AIC

are presented as the goodness-of-fit measures.

Table 1: Descriptive statistics for the fish data.

Variable Mean Std Dev Min Max Variance

count 3.296 11.635028 0 149 135.373880

child 0.684 0.850315 0 3 0.723036

persons 2.528 1.112730 1 4 1.238169

1. The fish dataset is available at the UCLA Academic Technology Services website, http://www.ats.ucla.edu.
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Table 2: camper variable description.

camper Frequency Percent

0 103 41.2

1 147 58.8

Table 3: Parameter estimation.

Parameter c1 = 3 c2 = 5

b0 −1.0922 −0.9616

(0.5998) (0.4764)

b1 0.7043 0.6079

(0.3235) (0.2702)

b2 0.7397 0.7227

(0.2086) (0.1533)

b3 −0.9130 −0.9266

(0.3449) (0.2807)

a0 −0.3843 −0.3843

(0.1703) (0.1703)

a1 1.1110 1.1110

(0.2049) (0.2049)

α 0.5673 0.6225

(0.4388) (0.3412)

−2logL 540.9 618.1

AIC 554.9 632.1

According to the censoring points, there is 22.8% censored data when c1 = 3. It

means that 22.8% of the values of the response variable (count) are 0, 1, 2, 3 and the

remaining 77.2% of values of the response variable are greater than 3, that is censored

in the model. Also the percentage of the censoring for c2 = 5 is 12%. For example, the

25th value of the response variable is count25 = 30, and the values of the independent

variables are as follow

camper25 = 1, persons25 = 3, child25 = 0

So we want to censor only the value of the response variable (count25 > censored point).

The estimated parameter for camper variable of the model is a positive value for

both censoring points, it means that while being a camper (camper = 1), the expected

log(count) will be increased by 0.7043 and 0.6079, respectively when c1 = 3 and c2 = 5.

Also, the effect of persons is positively associated with the number of fish caught for

both censoring points, and the expected log(count) will be increased for a unit increase

in persons for the first and the second censoring point, respectively, by 0.7397 and

0.7227. But, the expected log(count) will be decreased for a unit increase in child for

by 0.9130 and 0.9266, respectively for the first and the second censoring point. Further-
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Appendix:

SAS code to estimate the parameters for Fish data

data fish;

set fish;

bound=3;

if count > bound then count=bound+1; * This is probably

how you would see the data if it was actually censored;

proc nlmixed TECH=NRRIDG;

parms a_0=-0.4 a_1=1 b_0=-1 b_1=1 b_2=1 b_3=-1 alpha=0.5;

bounds alpha>0;

lin = a_0 + a_1* child;

w = exp(lin)/(1+exp(lin));

eta = b_0 + b_1 *camper + b_2* persons + b_3* child;

mu = exp(eta);

phi=1/alpha;

pdf=(gamma(count+phi)/(gamma(count+1)*gamma(phi)))

*((1/(1+alpha*mu))**phi*(alpha*mu/(1+alpha*mu))** count);

l_1 = w;

l_2 = (1-w) * pdf / (1-(1+alpha*mu)**(-phi));

cdf=0;

do t=1 to bound;

cdf=cdf+(gamma(t+phi)/(gamma(t+1)*gamma(phi)))

*((1/(1+alpha*mu))**phi*(alpha*mu/(1+alpha*mu))**t);

end;

l_3= (1-w)*(1-cdf/(1-(1+alpha*mu)**(-phi)));

if count = 0 then ll = log(l_1);

if 0 < count <= bound then ll = log(l_2);

if count <= bound then d=0; else d=1;

ll=(1-d)*ll+d*log(l_3);

model count ˜general(ll);

predict mu out=hnbmu;

predict w out=hnbw;

run;
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Abstract

Non-life insurance companies need to build reserves to meet their claims liability cash flows. They

often work with aggregated data. Recently it has been suggested that better statistical properties

can be obtained when more aggregated data are available for statistical analysis than just the

classical aggregated payments. When also the aggregated number of claims is available one can

define a full statistical model of the nature of the number of claims, their delay until payment and

the nature of these payments. In this paper we provide a new development in this direction by

entering yet another set of aggregated data, namely the number of payments and when they

occurred. A new element of our statistical analysis is that we are able to incorporate inflationary

trends of payments in a direct and explicit way. Our new method is illustrated on a real life data set.
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1. Introduction

Non-life insurance companies need to forecast future payments arising from claims

where the companies already received the insurance premium. The discounted aggre-

gate of these future payments is called the reserve (outstanding liabilities) and is one

of the most important components in the accounts of a non-life company. The reserve

is most often set by actuaries and the reserving problem is omnipresent in the literature

of actuarial science. However, the history of the reserving problem is not a mathematical
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statistical history even though it clearly is a mathematical statistical forecasting problem.

The history is a practical one, where actuaries have had to develop methodologies

to set reserves at a time when mathematical statistics was not well developed. The

most popular reserving method used by almost all insurance companies is called the

chain ladder method by actuaries. Most practical actuaries would talk about chain

ladder as a method rather than as a mathematical statistical model even though the

actuarial literature has shown a close connection between the chain ladder method

and the multiplicative Poisson model. It was only just recently that this multiplicative

Poisson model was identified as belonging to the class of exponential families implying

well defined solutions to the maximum likelihood estimators and it was also only

recently that the explicit expressions of the entering parameters were derived, see

Kuang, Nielsen and Nielsen (2009). While practical actuaries work with chain ladder

forecasts identical to the forecasts provided by a multiplicative Poisson model, they

do not work with the distributional properties of the multiplicative Poisson model.

Other distributional properties are preferred, often based on ad hoc bootstrap type of

procedures. In this paper we build on theory recently derived in three interconnected

papers. The main underlying idea of these three papers is that more data (aggregated

reported number of claims) should be added to classical actuarial data to allow for a

better and more precise formulation of the underlying mathematical statistical model

driving the claims development process defining the reserve. The first of these papers

(Verrall, Nielsen and Jessen, 2010) defines the simplest possible version of such a model,

the second (Martı́nez-Miranda, Nielsen, Nielsen and Verrall, 2011) develops a bootstrap

methodology to assess the distribution of such a model, but the most important of

these three papers is perhaps the third one (Martı́nez-Miranda, Nielsen and Verrall,

2012). This paper shows that a slight modification of Verrall et al. (2010)’s model,

with one particular moment type estimation method, provides us with a well-defined

mathematical statistical model exactly replicating the reserving estimates one would

obtain using the classical chain ladder method. This model has trustable distributional

properties that can be used in practice by actuaries. In this paper we take the ideas of

the above three papers one step further and add yet another piece of data (aggregated

number of payments) to our data set and we show that important insights of the

claim development process result when incorporating this extra piece of information

in our mathematical statistical model. We follow in this paper Martı́nez-Miranda et al.

(2012) and work with moment type of estimators. Our hope is that this paper provides

information to the mathematical statistician wishing to use their excellent tools on

this important real life problem and can perhaps be helpful in bringing mathematical

statisticians into this important field. The notation and vocabulary of this paper are

deliberately closely related to classical actuarial terminology while describing a well-

defined mathematical statistical model. This is a deliberate attempt to bridge the gap

between classical actuarial terminology, often obscure to mathematical statisticians,

and standard mathematical statistical model formulations that might seem unrelated to

classical reserving for many actuaries.
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The general post credit crunch atmosphere in the financial sector emphasizes a

better understanding of outstanding loss liabilities of non-life insurance companies,

with reserving models as one of the essential technical building blocks. However,

the insurance industry is also gaining new territory in new markets, where better

early warning reserving systems are required than that provided by the old chain

ladder methodology. In this paper we introduce a new reserving methodology with

an automatic early warning system to detect important irregularities in the claims

development process. Our methodology requires more detailed data than classical

reserving methods. The point of view taken is that the aggregated payments do not

provide us with sufficient mathematical statistical information, we argue that also the

number of payments and the number of reported claims are needed. This enables us to

embed a variety of new claims inflation type of information in our overall model. We

consider severity inflation, underwriting year inflation and claims delay inflation and

show how to incorporate those in the reserving process. The calendar inflation is not

treated in detail in this paper, but it could have been extracted up front using the Kuang,

Nielsen and Nielsen (2011) methodology of calendar inflation (see also Kuang, Nielsen

and Nielsen 2008a,b) .

In the next section we define the model on the micro-level. The basis of our model is

the compound Poisson processes studied in Norberg (1993, 1999) and Jessen, Mikosch

and Samorodnitsky (2011). We show how we need to structure these compound Poisson

processes on the micro-level so that we obtain a chain ladder claims reserving method

on the aggregate level. Such connection is proved from first moments calculations which

are provided in Appendix A. In Section 3 we provide estimates of the parameters

of the model. From the estimated model, point forecasts for the reserve are given in

Section 4. Using bootstrap methods we provide in Section 6 (together with Appendix B)

an approximation of the full predictive distribution of the outstanding loss liabilities.

The methods proposed in this paper are illustrated using a dataset from the insurance

industry, given in Appendix C. The focus of this application is to provide an estimate of

the claims reserves and to detect irregularities in the data.

2. Model setup

2.1. Data and micro-level structure

In classical reserving methods the data upon which projections of future claims are

usually represented by so called run-off triangles. This format tabulates the claim data

(payments, numbers of reported or paid claims, etc.) according to the period in which

the claim arose (called underwriting or accident period) and the period in which the

payment (or other action) was made. The difference between the payment period and the

accident period is referred to as the development period. The data are usually aggregated

in years or quarters of years, but other time periods can also be used depending on the
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business line. Hereafter we write years as the periods considered in the aggregation.

We denote accident years by i = 1, . . . ,m, and development years by j = 0, . . . ,m− 1,

where m ∈ N denotes the last observed accident year. Then the available data lie in the

triangle Im = {(i, j); i = 1, . . . ,m; j = 0, . . . ,m−1; i+ j ≤ m}. In Appendix C we show

an example of this type of data.

The methods proposed in this paper consider such run-off triangles as input data.

In fact we will need more triangles to provide a more precise formulation of the

mathematical statistical micromodel that underlies the claims development process

defining the reserve. It is a parametric model that is deliberately formulated in such

a way that the entering parameters are identifiable and estimable from three aggregated

data sets: number of reported claims, number of payments and aggregated paid amounts.

These stochastic variables are described in the following:

• Number of reported claims of accident year i with a reporting delay of j years,

denoted by Ni, j.

• Number of payments. Each of these Ni, j reported claims generates a claims

payment cash flow. We denote by Ri, j,l the number of payments generated by these

Ni, j reported claims that have a payment delay of l ≥ 0 years. That is, Ri, j,l is the

number of payments in accounting year i+ j+ l for claims that have occurred in

accounting year i and were reported in accounting year i+ j.

• Individual claims payments. Each of these Ri, j,l claims payments has size Y
(k)

i, j,l , for

k = 1, . . . ,Ri, j,l .

Often, claims payment data is not available on the micro-level structure described by

{Ni, j; (i, j) ∈ Im}∪{Ri, j,l,Y
(k)
i, j,l; (i, j) ∈ Im, i+ j+ l ≤ m, k ≥ 1}. Therefore, we define

the following aggregate claims payment information. The total number of payments in

accounting year i+ j from claims with accident year i is given by

Ri, j =
j

∑
l=0

Ri, j−l,l. (1)

These Ri, j are the number of payments in accounting year i+ j generated by all claims

with accident year i which where reported prior to (and including) accounting year i+ j,

i.e. these are payments from the Ni, j−l reported claims, with l = 0, . . . , j. The payments

(total quantity paid) in accounting year i+ j from claims with accident year i are then

given by

Xi, j =
j

∑
l=0

Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l. (2)

From these definitions we assume that the available information at time m consists

of the following three σ-fields (upper claims development triangles):
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Nm =σ{Ni, j; (i, j) ∈ Im} ,
Rm =σ{Ri, j; (i, j) ∈ Im} ,
Xm =σ{Xi, j; (i, j) ∈ Im} ,

and the aim is to predict the total payments in the future:

Xc
m = {Xi, j; (i, j) ∈ Jm} ,

where Jm = {(i, j); i= 2, . . . ,m, j = 0, . . . ,m−1, i+ j >m} is the lower (inexperienced)

triangle.

Classical reserving methods as the chain ladder method provide predictions for Xc
m.

However, a better description of the reserving problem would be provided if we are able

to separate these future payments in the lower triangle into payments for claims that have

been already reported (prior to and including accounting year m) and claims that will be

reported after accounting year m. The first class of claims is contained in the number of

reported claims Nm, and constitutes what is called the reported but not settled (RBNS)

claims reserves. The latter class contains the so-called incurred but not reported (IBNR)

claims and constitutes the IBNR claims reserves. Such a distinction is often important,

for example, in the calculation of unallocated loss adjustment expenses (ULAE), see

Wüthrich, Bülmann and Furrer (2010, Section 5.6). If we apply the classical chain ladder

method then we predict Xc
m based solely on the information Xm, thus, we predict the

outstanding loss liabilities on a rather aggregate level, which does not allow a distinction

between RBNS and IBNR claims reserves.

2.2. Model assumptions

With the above definitions we assume the following hypotheses about the micro-level

structure.

(A1) All random variables in different accident years i ∈ {1, . . . ,m} are independent.

(A2) The numbers of reported claims Ni,0, . . . ,Ni,m−1 are independent and Poisson

distributed with cross-classified means E[Ni, j] = ϑiβ j, for given parameters ϑi > 0,

β j > 0 with normalization ϑ1 = 1.

(A3) The claims payments

Xi, j,l =

Ri, j,l

∑
k=1

Y
(k)
i, j,l

are, conditionally given Ni,0, . . . ,Ni,m−1, independent (in l ≥ 0) and compound

Poisson distributed with
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• Ri, j,l|{Ni,0,...,Ni,m−1} ∼ Poi(Ni, jπl) with given parameter πl > 0;

• Y
(k)
i, j,l|{Ni,0,...,Ni,m−1}

(d)
= Y

(k)
i, j,l are i.i.d. for k ≥ 1 with the first two moments given

by

E

[
Y
(1)
i, j,l

]
= νi µ j,l and E

[(
Y
(1)
i, j,l

)2
]
= ν2

i s2
j,l,

for parameters νi,µ j,l,s j,l ∈ R+ with normalization ν1 = 1.

One crucial point in assumption (A3) is that the claim size (or severity) distribution of

Y
(k)
i, j,l can be split into an accident year dependent part νi which models claims inflation in

the accident year direction, and a development year dependent part µ j,l which takes care

of reporting delay j ≥ 0 and payment delay l ≥ 0. Note that assumption (A3) implies that

the payments Y
(k)
i, j,l are independent from the number of reported claims Ni, j as well as

from the number of payments Ri, j,l (conditional compound Poisson model assumption).

The choices ϑ1 = ν1 = 1 will make the parameters identifiable in the estimation

procedure. One can also use other normalizations, such as e.g. ∑ jβ j = 1 (normalized

claims reporting pattern). However, our choice is rather simple to implement and other

normalizations are obtained by rescaling.

3. Parameter estimation

The estimation of the model parameters, {ϑi,β j,πl,νi,µ j,l; i = 1, . . . ,m, j, l = 0, . . .,

m − 1}, can be solved just using the simple chain ladder method on the three input

triangles. The only requirement is to demonstrate that the random variables Ni, j, Ri, j

and Xi, j all have the same cross-classified mean structure, which is the chain ladder

mean structure. As was discussed in Martı́nez-Miranda et al. (2012) this can be done

from model specifications about just the first moment of the underlying stochastic

components. Further purposes about deriving the distribution of the future payments

requires conditions on higher order moments and also a more detailed specification

including distributional assumptions (see Martı́nez-Miranda et al. 2012 for further

explanation). Under the distributional model proposed here, we suggest in Section 6

an estimator for the second moment parameters s j,l ( j, l = 0, . . . ,m− 1) to derive then

the predictive distribution.

Therefore we next provide estimates of the parameters based in the first moment

of the random variables, Ni, j, Ri, j and Xi, j. We have deferred such calculations to

Appendix A in order to facilitate the reading of the paper. Specifically in Propositions 2

and 3 we have obtained that the first moments of the three sets of random variables Ni, j,

Ri, j and Xi, j all have the same cross-classified mean structure. Also we have established

connections among the parameters in the model through the following equations:
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αi = ϑi νi, (3)

λ j =
j

∑
l=0

β j−l πl, (4)

γ j =
j

∑
l=0

β j−l πl µ j−l,l , (5)

From these initial steps our aim is to estimate the corresponding parameters based on

the information in Nm, Rm and Xm, and by applying the simple chain ladder method to

each triangle. As an example, we demonstrate the estimation for the observed number

of reported claims Nm and the parameters ϑi and β j. The remaining parameters are

estimated in the same way, but based on Rm and Xm, respectively. In a distribution-

free approach we rely on moment estimators. If we aggregate rows and columns,

respectively, over the set of information Im we obtain the first moment equalities

m−i

∑
k=0

E [Ni,k] = ϑi

m−i

∑
k=0

βk for i = 1, . . . ,m, (6)

m− j

∑
k=1

E [Nk, j] = β j

m− j

∑
k=1

ϑk for j = 0, . . . ,m−1. (7)

Unbiased estimators for the right-hand side of these equalities are obtained by replacing

the moments E [Ni, j], (i, j) ∈ Im, by their observations Ni, j ∈ Nm. Then the resulting

system of linear equations is solved for ϑi and β j, which provides the corresponding

estimators for these parameters. This is in the spirit of the “total marginals” method of

Bailey (1963) and Jung (1968). Kremer (1985) and Mack (1991) have shown that in the

case of triangular data Nm this leads to the chain ladder estimators that can be calculated

in closed form. Thus,

Nm provides the chain ladder estimators ϑ̂
(1)
i and β̂ j for ϑi and β j,

Rm provides the chain ladder estimators ϑ̂
(2)
i and λ̂ j for ϑi and λ j,

Xm provides the chain ladder estimators α̂i and γ̂ j for αi and γ j,

with ϑ̂
(1)
1 = ϑ̂

(2)
1 = α̂1 = 1 (initialization in cross-classified means). Note that we obtain

two different estimators ϑ̂
(1)
i and ϑ̂

(2)
i for the same parameter ϑi. However, their values

should not be too different, otherwise this indicates that the model may not fit to the

claims reserving problem. In order to estimate ϑi we could now take a credibility

weighted average between ϑ̂
(1)
i and ϑ̂

(2)
i . For simplicity we set ϑ̂i as the arithmetic

mean between ϑ̂
(1)
i and ϑ̂

(2)
i . Anyway, the appropriateness of this choice should always

be checked on the data. Using equality (3) we can estimate the accident year inflation

parameter νi by



202 Statistical modelling and forecasting of outstanding liabilities in non-life insurance

ν̂i = α̂i/ϑ̂i for i = 1, . . . ,m. (8)

Thus, it remains to estimate the parameters πl and µ j,l ( j, l = 0, . . . ,m− 1). There are

different ways to estimate these parameters. We start with πl using the equality (4). If

we rewrite this equation in vector notation we have

(λ0, . . . ,λm−1)
T = Bβ (π0, . . . ,πm−1)

T ,

for an appropriate matrix Bβ = Bβ0,...,βm−1
∈ Rm×m. This matrix is estimated by B̂β =

B
β̂0,...,β̂m−1

∈ Rm×m and then we can provide estimates, π̂0, . . . , π̂m−1, by solving the

following system:

(π̂0, . . . , π̂m−1)
T

= B̂
−1

β

(
λ̂0, . . . , λ̂m−1

)T

. (9)

The estimation of µ j,l needs more care because the model is over-parametrized. In order

to reduce the number of parameters we make one of the following two assumptions

µ j,l ≡ µl (10)

or

µ j,l ≡ µ j. (11)

Using the condition (10) and the equality (5) we have that

(γ0, . . . ,γm−1)
T = Bβ (π0µ0, . . . ,πm−1µm−1)

T ,

for matrix Bβ = Bβ0,...,βm−1
∈Rm×m. If this matrix is again estimated by B̂β = B

β̂0,...,β̂m−1

we obtain estimates π̂µ0, . . . , π̂µm−1 as the solution of the following system:

(
π̂µ0, . . . , π̂µm−1

)T
= B̂

−1

β (γ̂0, . . . , γ̂m−1)
T
, (12)

and, finally, the estimator for µ j,l assumption (10) is given by µ̂ j,l = µ̂l = π̂µl/π̂l .

On the other hand, using assumption (11) and rewriting (5) we have the following

system

(γ0, . . . ,γm−1)
T = Bπ (β0µ0, . . . ,βm−1µm−1)

T ,

for matrix Bπ = Bπ0,...,πm−1
∈ Rm×m. And again plugging in the estimated matrix

B̂π = Bπ̂0,...,π̂m−1
∈ Rm×m, we obtain the estimates, β̂µ0, . . . , β̂µm−1, by solving the

system
(
β̂µ0, . . . , β̂µm−1

)T

= B̂
−1

π (γ̂0, . . . , γ̂m−1)
T
. (13)

This yields the estimator µ̂ j,l = µ̂ j = β̂µ j/β̂ j.
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The above procedure provides estimates for all the parameters required for point pre-

diction purposes, under the additional assumption (10) or (11). In the next section we are

going to describe how they are used to predict the outstanding loss liabilities Xc
m at time

m. Moreover, we will also discuss further adjustments to these estimators in practise.

4. Point forecasts

Point predictions for the outstanding loss liabilities can be derived as estimated uncon-

ditional (or conditional) means of the aggregated payments, Xi, j, in the lower triangle,

Jm. In the previous section we have estimated all the parameters in the model from the

observations Nm, Rm and Xm. It only remains to estimate the second moment parame-

ters s j,l ( j, l = 0, . . . ,m−1) of the size of the individual payments. But, as we pointed in

the previous section, such higher order moments are not involved in the point forecasts.

Therefore, we have all that is necessary to predict the outstanding liabilities, Xc
m. At time

m the conditionally expected outstanding loss liability cash flows in Xc
m are given by

Zm =
m

∑
i=2

m−1

∑
j=m−i+1

E [Xi, j|Nm,Rm,Xm] .

If we only rely on the observations Xm, then we can only estimate the parameters αi and

γ j. Thus, in this case we set

ẐCL
m =

m

∑
i=2

m−1

∑
j=m−i+1

α̂i γ̂ j,

which provides an estimator for Zm. The crucial property of this estimator ẐCL
m is that it

provides the chain ladder reserves exactly (see Kremer 1985, Mack 1991 and Section 2.4

in Wüthrich and Merz 2008). Having additional information Nm and Rm we can refine

this estimate. We have

Zm =
m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]

=
m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

E

[
Ri, j−l,l

∑
k=1

Y
(k)

i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]

+
m

∑
i=2

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
.

Note that the decoupling separates RBNS and IBNR claims: if i + j − l ≤ m then

the payment Y
(k)
i, j−l,l belongs to a claim that has been reported prior to (and including)
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accounting year m, and henceforth is an RBNS claim at time m. Therefore, we define

ZRBNS
m =

m

∑
i=2

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
,

ZIBNR
m =

m

∑
i=2

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

E

[
Ri, j−l,l

∑
k=1

Y
(k)
i, j−l,l

∣∣∣∣∣Nm,Rm,Xm

]
.

Using assumptions (A1)–(A3) we obtain the following result.

Proposition 1

ZRBNS
m =

m

∑
i=2

νi

m−1

∑
j=m−i+1

j

∑
l=i+ j−m

Ni, j−l πl µ j−l,l , (14)

ZIBNR
m =

m

∑
i=2

ϑi νi

m−1

∑
j=m−i+1

i+ j−m−1

∑
l=0

β j−l πl νi µ j−l,l. (15)

Using the previous expressions we can estimate the RBNS claims reserve by plugging

estimates of the parameters in (14) and similarly the IBNR reserve using (15). Denote

the resulting predictions by ẐRBNS
m and ẐIBNR

m , respectively. Then the total reserve can be

estimated by Ẑm = ẐRBNS
m + ẐIBNR

m . A straightforward calculation demonstrates that the

model defined in (A1)–(A3) can provide the same reserve as the classical chain ladder

just by making a particular choice. This result is stated in the following corollary.

Corollary 1 Under the additional assumptions that ϑ̂
(1)
i = ϑ̂

(2)
i , for all i = 2, . . . ,m, and

Ni, j = ϑ̂iβ̂ j, for all (i, j) ∈ Im, we have Ẑm = ẐCL
m .

Often claims development goes beyond the latest development period m−1, which

has been observed at time m. Therefore, in practice, one needs to add a tail estimate to

the claims reserves in order to also cover these additionally expected outstanding loss

liability cash flows. The entire tail can be estimated under assumptions (A1)–(A3) if we

additionally assume that β j = π j = 0 for j = 1, . . . ,m− 1. In this particular case, we

know that all claims are reported after development period j = m− 1. Thus, we define

the claims reserves including the tail by (re-arranging the summations)

ẐRBNS+
m =

m

∑
i=1

ν̂i

m−i

∑
j=0

Ni, j

m−1

∑
l=m−(i+ j)+1

π̂l µ̂ j,l,

ẐIBNR+
m =

m

∑
i=2

ϑ̂i ν̂i

m−1

∑
j=m−i+1

β̂ j

m−1

∑
l=0

π̂l µ̂ j,l,

and the total reserves including the tail are defined by Ẑ+
m = ẐRBNS+

m + ẐIBNR+
m .
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uncertainty. In order to apply the bootstrap method there is the parameter s2
j,l that still

needs to be estimated.We do this under calibration (10), i.e. we set

s2
j,l ≡ s2

l (18)

to avoid over-parameterization. In view of Proposition 5 we have

E

[
Xi, j −αi γ j√
αi νi

]
= 0 and Var

(
Xi, j −αi γ j√
αi νi

)
= σ2

j .

The sample estimator then provides estimates

σ̂2
j =

1

m− j−1

m− j

∑
i=1

(
Xi, j − α̂i γ̂ j√
α̂i ν̂i

)
,

for j = 0, . . . ,m − 2 and we set σ̂2
m−1 = σ̂2

m−2. In view of (21) we have a second

description for σ2
j . If we solve this for s2

l and replace all parameters by their estimates

we obtain estimates

((̂πs2)0, . . . , (̂πs2)m−1)
T = B̃−1

β (σ̂2
0, . . . ,σ̂

2
m−1)

T − (π̃2
0 µ̂

2
0, . . . , π̃

2
m−1 µ̂

2
m−1)

T,

and finally we set

ŝ2
l = (̂πs2)l/π̃l, for all l = 0, . . . ,m−1. (19)

If we apply this procedure to Example 1 we obtain the result in Table 2. In order to justify

these estimates we calculate the estimates of the corresponding coefficients of variation

given by v̂co = ŝl/µ̂l . Table 2 shows that these estimated coefficients of variation are

in the interval [1.5,5.5], i.e. the coefficients of variation for single claims payouts Y
(k)
i, j,l

are of order 1.5 to 5.5. These are reasonable values, for instance in the Swiss Solvency

Test (SST) the coefficients of variation for single claim sizes (not payouts) are estimated

between 2.25 and 11 depending on the underlying line of business, see Section 8.4.4 in

FINMA (2006). These estimators now allow for applying bootstrap methods which are

Table 2: Real data example: resulting standard deviation estimates ŝl together with the mean estimates µ̂l

and the corresponding coefficient of variation estimates v̂co.

0 1 2 3 4 5 6 7 8 9 10 11

ŝl 2 862 8 511 11 651 26 688 93 291 28 083 52 846 43 333 104 714 59 276 75 632 104 701

µ̂l 818 1 561 2 534 7 712 21 993 18 435 16 113 22 300 40 529 29 540 28 704 46 764

v̂co 3.50 5.45 4.60 3.46 4.24 1.52 3.28 1.94 2.58 2.01 2.63 2.24
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7. Conclusions

In this paper we have defined the claims reserving model on an individual claims pro-

cesses basis (micro-level). The definition of the model on this micro-level has been

done such that on the aggregate level we re-discover the classical chain ladder reserving

method. Under this model we show how extended data collection can provide us with

more and better information to act in time on unforeseen patterns of outstanding liabil-

ities. In particular we have focused on how various claims delays impact severities and

how to incorporate this information in the reserve. Our approach in this paper shares

the simplicity and intuitive appeal which have popularized the chain ladder method in

claims reserving. But, with a little more effort in calculations and data requirements,

our approach reports several other advantages. Since chain ladder is only based in the

aggregated payments triangles, it cannot provide the split of the claims reserves into

RBNS and IBNR and the tail as we do. Such split is required for the calculation of unal-

located loss adjustment expenses ULAE and it gives valuable information to the insurer.

In addition, to work under a well-defined and firm statistical model provides a suitable

framework to develop consistent bootstrap methods to quantify the uncertainty in the

predictions. In future work we will also consider simulation of coefficients of varia-

tion following the insights of for example Gulhar, Kibria, Albatineh and Ahmed (2012).
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Kremer, E. (1985). Einführung in die Versicherungsmathematik. Vandenhoek & Ruprecht, Göttingen.

Kuang, D., Nielsen, B. and Nielsen, J. P. (2008a). Identification of the age-period-cohort model and the

extended chain-ladder model. Biometrika, 95, 979–986.

Kuang, D., Nielsen, B. and Nielsen, J. P. (2008b). Forecasting with the age-period-cohort model and the

extended chain-ladder model. Biometrika, 95, 987–991.



Marı́a Dolores Martı́nez-Miranda, Jens Perch Nielsen and Mario V. Wüthrich 213
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A. Moments calculations

Here we provide calculations about the two first moments of the stochastic variables in

the triangles Nm, Rm and Xm. Hereafter we work under the model assumptions (A1)–

(A3) formulated in Section 2.2.

A.1. Calculation of means

We start with the claims payments Xi, j,l given in (A3). The conditional and unconditional

means are given by

E [Xi, j,l|Ni,0, . . . ,Ni,m−1] = Ni, j πl νi µ j,l,

E [Xi, j,l] = E [E [Xi, j,l|Ni,0, . . . ,Ni,m−1]] = ϑi β j πl νi µ j,l.

The total number of payments Ri, j of accident year i in accounting year i + j has,

conditionally given {Ni,0, . . . ,Ni,m−1}, a Poisson distribution with conditional mean

E [Ri, j|Ni,0, . . . ,Ni,m−1] =
j

∑
l=0

E [Ri, j−l,l |Ni, j−l] =
j

∑
l=0

Ni, j−l πl.

This implies for the unconditional mean

E [Ri, j] = E [E [Ri, j|Ni,0, . . . ,Ni,m−1]] = ϑi

j

∑
l=0

β j−l πl.

Define λ j = ∑
j
l=0β j−l πl , for j = 0, . . . ,m− 1, then we have just proved the following

proposition.

Proposition 2 E [Ni, j] = ϑi β j and E [Ri, j] = ϑi λ j.

Thus, the pair (Ni, j,Ri, j) satisfies the double chain ladder model of Martı́nez-Miranda et

al. (2012) with inflation parameter set equal to 1. ϑi describes an exposure measure for

accident year i, (β j) j gives the claims reporting pattern and (λ j) j provides the number

of payment count pattern.

The accounting year payments Xi, j for accident year i in accounting year i+ j have,

conditionally given {Ni,0, . . . ,Ni,m−1}, a compound Poisson distribution with conditional

mean

E [Xi, j|Ni,0, . . . ,Ni,m−1] =
j

∑
l=0

Ni, j−l πl νi µ j−l,l.
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This provides the unconditional mean for Xi, j given by

E [Xi, j] = ϑi νi

j

∑
l=0

β j−l πl µ j−l,l .

We define the parameter γ j which only depends on the development period j given by

γ j = ∑
j
l=0β j−l πl µ j−l,l . Thus, we obtain a cross-classified unconditional first moment

for Xi, j which is stated in the following proposition.

Proposition 3 We have for αi = ϑi νi that E [Xi, j] = αi γ j.

This moment property is similar to the Bornhuetter-Ferguson models used by Mack

(2008) and Saluz, Gisler and Wüthrich (2011), Models 4.11 and 4.16. Moreover,

Proposition 3 explains how the claims development reporting pattern (β j) j for Ni, j is

related to the claims development pattern (γ j) j for claims payments Xi, j.

A.2. Calculation of variances

In a similar fashion to the first moments we calculate the variances. First we have under

the conditional compound Poisson assumptions (A3)

Var(Xi, j,l|Ni,0, . . . ,Ni,m−1) = Ni, j πl ν
2
i s2

j,l,

and for the unconditional variance we have

Var(Xi, j,l) = Var(E [Xi, j,l|Ni,0, . . . ,Ni,m−1])+ E [Var(Xi, j,l|Ni,0, . . . ,Ni,m−1)]

= ϑi β j ν
2
i

(
π2

l µ
2
j,l +πl s2

j,l

)
.

The total number of payments Ri, j of accident year i in accounting year i + j has,

conditionally given {Ni,0, . . . ,Ni,m−1}, a Poisson distribution with conditional variance

Var(Ri, j|Ni,0, . . . ,Ni,m−1) =
j

∑
l=0

Var(Ri, j−l,l|Ni, j−l) =
j

∑
l=0

Ni, j−l πl.

This implies for the unconditional variance

Var(Ri, j) = Var(E [Ri, j|Ni,0, . . . ,Ni,m−1])+E [Var(Ri, j|Ni,0, . . . ,Ni,m−1)]

= ϑi

j

∑
l=0

β j−l π
2
l +ϑi

j

∑
l=0

β j−l πl.
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Define for j = 0, . . . ,m−1

t2
j =

j

∑
l=0

β j−l πl (1+πl)≥ λ j, (20)

then we have just proved the following proposition.

Proposition 4 Var(Ni, j) = ϑi β j and Var(Ri, j) = ϑi t2
j .

In view of Proposition 2 we see that for the number of payments Ri, j we obtain over-

dispersion parameter

φ j =
t2

j

λ j

= 1+
∑

j
l=0β j−l π

2
l

∑
j
l=0β j−l πl

≥ 1.

Note that Ri, j has a mixed Poisson distribution which is exactly reflected in this over-

dispersion parameter φ j ≥ 1.

The accounting year payments Xi, j for accident year i in accounting year i+ j have,

conditionally given {Ni,0, . . . ,Ni,m−1}, a compound Poisson distribution with conditional

variance

Var(Xi, j|Ni,0, . . . ,Ni,m−1) =
j

∑
l=0

Ni, j−l πl ν
2
i s2

j−l,l .

This provides the unconditional variances for Xi, j given by

Var(Xi, j) = Var(E [Xi, j|Ni,0, . . . ,Ni,m−1])+E [Var(Xi, j|Ni,0, . . . ,Ni,m−1)]

= ϑi ν
2
i

j

∑
l=0

β j−l π
2
l µ

2
j−l,l +ϑi ν

2
i

j

∑
l=0

β j−l πl s2
j−l,l.

We define the parameter σ2
j which only depends on the development period j given by

σ2
j =

j

∑
l=0

β j−l πl µ j−l,l

(
πl µ j−l,l +

s2
j−l,l

µ j−l,l

)
. (21)

Thus, we obtain a cross-classified model for Xi, j with first moment given by E[Xi, j] =

αi γ j and variance given in the following proposition:

Proposition 5 Var(Xi, j) = αi νi σ
2
j .

Again it is similar to the claims reserving models used in Mack (2008) and Saluz et al.

(2011), Models 4.11 and 4.16, but now the parameters have an explicit meaning.
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B. Resampling schemes

Here we provide the algorithm to derive the predictive distribution of the RBNS and

IBNR cash flow: XRBNS
m and X IBNR

m . We denote by θ = {πl,µl,sl,νi; l = 0, . . . ,m−
1, i = 1, . . . ,m} the set of parameters involved in the model, under calibration (10).

Moreover, let θ̂ denote the parameters estimated from the data (Nm,Rm,Xm) which can

be calculated using the methods described in Section 3 and expression (19).

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the observed data (Nm,

Rm,Xm) estimate the model parameters θ by the estimator θ̂ = {π̂l, µ̂l, ŝl, ν̂i; l =

0, . . . ,m− 1, i = 1, . . . ,m}, as described above. The payment delay distribution is

estimated by a Poisson distribution with estimated parameter, i.e. Ri, j,l|{Ni,0,...,Ni,m−1}

∼ Poi(Ni, jπ̂l). The distribution of the individual payments, Y
(1)

i, j,l is estimated by a

gamma distribution with shape parameter λ̂ = µ̂2
l /(ŝ

2
l − µ̂2

l ) and scale parameter

κ̂= (ŝ2
l − µ̂2

l )ν̂i/µ̂l .

Step 2. Bootstrapping the data. Conditional on the observed number of reported

claims Nm generate new bootstrapped triangles R∗
m = {R∗

i, j; i + j ≤ m} and

X∗
m = {X∗

i, j; i+ j ≤ m} as follows:

(i) Simulate the payment delay: from each Ni, j, i+ j ≤m, generate the number of

payments, R∗
i, j,l from a Poisson distribution with parameter Ni, jπ̂l estimated

in Step 1. Calculate the bootstrapped total number of payments, R∗
m =

{R∗
i, j; i+ j ≤ m} from expression (1).

(ii) Get the bootstrapped aggregated payments, X∗
m = {X∗

i, j; i+ j ≤ m}, from the

gamma distribution estimated in Step 1 and using expression (2) but replace

Ri, j−l,l by R∗
i, j−l,l .

Step 3. Bootstrapping the parameters. From the bootstrap data, (R∗
m,X

∗
m), and the

original Nm, estimate again the parameters and get bootstrapped parameters θ ∗.

Step 4. Bootstrapping the RBNS predictions. Simulate the RBNS cash flow, XRBNS∗
m ,

in the lower triangle using similar specifications to (i) and (ii) in Step 2 but with

bootstrapped parameters θ ∗.

Step 5. Monte Carlo approximation. Repeat Steps 2-4 B times and get the empirical

bootstrap distribution of the RBNS cash flows {XRBNS,b
m ;b = 1, . . . ,B}.

The IBNR algorithm to simulate the IBNR cash flows X IBNR∗
m follows the same steps

as the algorithm RBNS but, in addition, involves the estimation and the simulation

of the number of reported claims Ni, j in the lower triangle Jm. In this case and under

assumption (A1), we simulate N∗
m = {N∗

i, j; (i, j) ∈ Im} from a Poisson distribution with

parameters estimated by the chain ladder estimates {ϑ̂i, β̂ j; i, j+1= 1, . . . ,m} (for more

details we also refer to Martı́nez-Miranda et al. 2011).





Selected article from

XIII Conferencia Española
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Abstract

Knowledge of prognostic factors is an important task for the clinical management of Non Hodgkin

Lymphoma (NHL). In this work, we study the variables affecting survival of NHL in Peru by means

of geoadditive Cox-type structured hazard regression models while accounting for potential spatial
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survival. Some of them are widely known such as age, performance status, clinical stage and lactic
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1. Introduction

Non-Hodgkin lymphomas (NHLs) are a group of lymphoproliferative malignancies

of the lymphatic system defined by different morphological, immunophenotypic and

genetic features. This heterogeneity determines different patterns of prognosis in the

NHL patients that should be considered to optimize their treatment benefit (Friedberg et

al., 2008).
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Traditionally, the International Prognostic Index (IPI) has been used to classify the

NHL patients into four risk groups (low, intermediate low, intermediate high, high)

considering five variables of prognostic significance (age, performance status, clinical

stage, lactic dehydrogenase and extranodal sites) derived from a Cox regression analysis

based on categorical covariates (Shipp et al., 1993). However, a relatively important

group of patients presents poor survival, despite being classified as good prognosis

according to the IPI.

Several aspects can be related to the observed inaccuracy of the IPI. It is possible

that important prognostic factors are not being included in the analysis such as new

genetic and biological markers currently under investigation. Another important issue

that could lead to implausible results refers to the categorization of the continuous

covariates included in the IPI (age and lactic dehydrogenase).

Beyond the IPI, many studies of prognostic factors for NHL have been performed

using the classical Cox’s proportional hazard model. Within this framework, the effect

of the continuous covariates is assumed to have a linear functional form, however it is

important to note that when this assumption is not satisfied, the Cox model may lead

to biased inferences, loss of statistical power and incorrect conclusions (Therneau and

Grambsch, 2000).

In addition, in databases based on hospital records, referral centres, population

studies or multicenter clinical trials, the results may be affected by spatial correlations.

These complexities in the covariates affecting survival are not covered by the Cox model

and hence a more general and flexible regression framework is required.

A variety of flexible methods have been developed in recent years. An up-to-date

review of Cox-type models extensions can be found in Buchholz and Sauerbrei (2011).

In this article we use geoadditive Cox-type structured hazard models to inspect the

functional form of several covariates effects, including a spatial component, on the

overall survival of the patients with NHL.

The rest of the paper is organized as follows. In Section 2 structured geoadditive

Cox-type hazard regression models for modelling survival data are revisited. Section 3

presents the results of the analysis of the data set of NHL in Peru and finally, a discussion

concludes the paper.

2. Methodology

2.1. Geoadditive survival models

In many clinical studies, the common target of analysis is to model the effect of several

covariates (prognostic factors) on the survival time. A classical tool for studying the

effect of a vector of covariates v on continuous survival times is the Cox proportional

hazards model (Cox, 1972):
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λi(t,v) = λ0(t)exp(vT
i
γ) (1)

However, this specification is often not flexible enough for the correct modelling of

variables affecting survival in many applications.

In our analysis, we used structured geoadditive survival models (Hennerfeind et al.,

2006; Kneib and Fahrmeir, 2007), a flexible spatial generalization of the Cox model.

Specifically, the linear predictor of equation (1) was extended to a structured geoadditive

predictor, including a spatial component for geographical effects and nonparametric

terms for modelling unknown functional forms of the log-baseline hazard rate and

nonlinear effects of continuous covariates. Specifically, individual hazard rates are given

by:

λi(t) = exp(ηi(t)), i = 1, . . . ,n (2)

with geoadditive predictor

ηi(t) = g0(t)+ vT
i
γ+

q

∑
k=1

sk(xik)+ fspat(s) (3)

where g0(t) = log(λ0(t)) represents the log-baseline hazard rate, the vector γ contains

the usual linear effects, sk(xk) refers to the nonlinear effect of a continuous covariate xk,

and fspat(s) is the spatial effect in region s ∈ {1, . . . ,S}.

In this representation, all the nonparametric effects, including the log-baseline hazard

are modeled using penalized splines (P-splines, Eilers and Marx, 1996). Thus, the

nonparametric problem is replaced by a parametric equivalent, in which a vector of

regression coefficients is estimated under a smoothness penalty (details are given in

Section 2.2.). The general idea is to approximate the functions g0 and sk by linear

combinations of B-splines basis functions,

sk(x) =
dk

∑
j=1

β jB j(x) (4)

where vector βk = (β1, . . . ,βdk
) is the vector of unknown coefficients corresponding to

the B-splines basis of degree a and defined over a grid of k knots lying on the domain

of x, with dk = a+ k−1. Specifically, we considered B-splines basis of degree 3 and a

grid of 20 equidistant knots in our analyses.

At the same time, the spatial effect of each region s is split up into a structured part

and an unstructured part:

fspat(s) = fstr(s)+ funstr(s) (5)
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With this division of the spatial effects, we aim to distinguish between two types of

geographical influential factors. On the one hand, the structured effect refers to a general

smooth spatial effect along the whole studied area. On the other hand, the unstructured

effect accounts for possible effects that may be present only locally. The structured

spatial effects are modeled by means of Markov random fields, assuming that the

effect of an area s is conditionally Gaussian, where the expectation is the mean of the

effects of neighbouring areas and the variance is inversely proportional to the number of

neighbours, specifically

fstr(s) = β
str
s =

1

Ns
∑

s′εδs

β str
s′ +us, us ∼ N

(
0,

1

λstrNs

)
(6)

where δs denotes the set of neighbouring areas of s and Ns the corresponding number

of areas falling in δs. As for the unstructured spatial effects, a Gaussian region specific

i.i.d. random effect is assumed.

As a result, we can express each of the predictor components as the product

of an appropriate design matrix Z j and a vector β j of regression coefficients, and

consequently we can represent the predictor vector η in a generic matrix notation as
η = Vγ+Z1β1+ · · ·+ Zqβq+Zstrβstr+Zunstrβunstr, where V is the design matrix of

parametric effects.

Interestingly, from equations (2) and (3) we can extend the concept of hazard ratio

with respect to a reference value xref. In contrast to the linear hazard ratios derived from

the Cox model, the structured geoadditive survival specification provides flexible hazard

ratio curves. Hence, for a given smooth effect s associated to a continuous covariate

X , the adjusted hazard ratio for a subject with covariate x compared to a subject with

covariate xref is given by the smooth curve:

HR(x,xref) = exp(s(x)− s(xref)) (7)

2.2. Estimation of the parameters

Under the usual assumptions about non-informative censoring, the log likelihood, given

the vectors of all parametric effects γ and all nonparametric and spatial effects β , is

ℓ(γ,β) = δTη−1T
Λ, where η denotes the linear predictor defined in (3) and δ and Λ

are, respectively, the vector of censoring indicators and cumulative hazard rates.

However, instead of obtaining the estimates of β by means of the unpenalized

likelihood, a penalty term is added to control the level of smoothness by penalizing

wiggly functions. The most commonly used penalization term is based on the integral
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of the second derivative of the smooth functions, sk:

pen(sk) =
1

2
λi

∫ ∞

0
[s′′k (zi)]

2dzi (8)

Since equation (8) is a quadratic form of the corresponding vector of regression

coefficients β j, it can be written as 1
2
λ jβ j K jβ j, where the penalty matrix K j is a

positive semidefinite matrix and λ j a smoothing parameter. Furthermore, the smooth

functions for the nonlinear effects are represented in terms of B-splines and it allows

to approximate the penalty term in terms of the squared differences of coefficients

associated with adjacent basis functions (Eilers and Marx, 1996). As a result, the

difference penalty matrix can be written as K j = DTD, with D the second order

difference matrix of neighbouring coefficients.

A special remark about the spatial smoothing is required. In this case, the smoothing

referees to the intuitive idea that risk in neighbouring areas should be close to each other.

We define as neighbour areas those sharing a common boundary and analogously to the

nonlinear effects, we penalize large deviations between neighbouring coefficients βstr,

where λstr from equation (6) is considered as the corresponding smoothing parameter.

Hence, the corresponding penalty matrix Kstr is defined as an adjacency matrix. For the

unstructured spatial effect, the penalty matrix is simply the identity matrix correspond-

ing to independent and identically distributed random effects for the regions.

As a result, the estimation of the regression effects is based on the penalized log-

likelihood to ensure a compromise between fidelity to data (in terms of the likelihood)

and smoothness (in terms of the penalty terms):

lpen(γ,β) = l(γ,β)−
q

∑
j=1

λ jβ
T
j K jβ j −λstrβ

T
strKstrβ str −λunstrβ

T
unstrKunstrβunstr (9)

Empirical Bayes inference was used to fit the model. This inferential procedure is

based on a mixed model representation of equation (9) where the smoothing parameters

(λ j) are considered as variance components corresponding to the vector of regression

coefficients (β j). It allows for the simultaneous estimation of the regression coefficients

and the smoothing parameters corresponding to each unknown function g0, sk or fspat

using restricted maximum likelihood (REML) estimation. See Kneib and Fahrmeir

(2007) for details.

The analysis was conducted using BayesX statistical software (Brezger et al., 2005)

freely available online from www.bayesx.org. Empirical Bayes inference was per-

formed due to its equivalence to the penalized splines likelihood in the frequentist frame-

work but BayesX also allows for a full Bayesian inference by means of MCMC simula-

tion techniques (Hennerfeind et al., 2006). To check the consistency of our results with

regard to the inference procedure, the corresponding full Bayesian analysis was also

conducted.
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remained alive (censored cases). Figure 1 shows the distribution of survival time of

patients with and without censoring (left) and the Kaplan-Meier estimate of the overall

survival curve (right). According to the structured geoadditive Cox-type hazard analysis,

eight prognostic factors were identified associated with worse survival (Table 1). Three

categorical covariates: male patients, zubrod 2-4 and clinical stage III-IV at diagnosis

were associated with worse prognosis for overall survival. The location of the disease

described as primary nodal or extranodal, and the symptoms B had no significant effect

on the overall survival.

A significant nonlinear relationship was identified for the effects of all continuous co-

variates: age, Hbg, ln(WBC), lymphocytes and ln(DHL). Figure 2 shows the functional

form of the covariate effects in the log hazard ratio. Usual clinical cut-off values were

used as reference points: 60 years (age), 12 g/dL (Hbg), 103 counts/dL (WBC), 40%

(lymphocytes) and 240 UI/L (DHL). Note that a strong nonlinear effect (d f = 5.79)

was found for Lymphocytes with increased hazard ratios for lowest and highest values.

Risk geographical pattern is presented in Figure 3. Although Lima and Apurimac areas

were identified as increased risk areas, the spatial effect was not significant according to

the included variables.

As for the inference procedure, the results obtained from the full Bayesian inference

(not shown) are very similar to the ones derived from REML estimation, hence we can

assess that both inferential methods perform equivalently to our data.

4. Conclusions

The study of new covariates (with possible non-linear functional forms) in a flexible

way and the existence of spatial correlation are examples of new challenges that the

traditional tools of survival analysis do not allow to manage in an efficient way. Recent

development of flexible methods for survival analysis allow for a deeper investigation

of the variables affecting survival.

We used structured geoadditive survival models, a nonparametric approach that

allows for the joint estimation of the baseline and covariates effects by means of

a modelling through P-splines. Specifically, we considered nonlinear effects for the

continuous covariates and we also account for possible geographical correlation.

In this work we identified eight covariates with significant effect for overall survival

by means of the fitted geoadditive Cox-type structured hazard model. Age, zubrod, CS

and DHL are prognostic factors reported in many published series, but we also identified

hemoglobin, leukocytes and lymphocytes as covariates with a significant effect on the

overall survival of patients with NHL.

Besides, the effect of continuous covariates is clearly non linear and hence impos-

sible to detect with the classical Cox method. Nicely, the concept of hazard ratio is

extended to obtain smooth hazard ratio curves for each of the continuous covariates.
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