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On developing ridge regression parameters:
a graphical investigation

Gisela Muniz!, B. M. Golam Kibria2, Kristofer Mansson?® and Ghazi Shukur>**

Abstract

In this paper we review some existing and propose some new estimators for estimating the ridge
parameter. All in all 19 different estimators have been studied. The investigation has been carried
out using Monte Carlo simulations. A large number of different models have been investigated
where the variance of the random error, the number of variables included in the model, the
correlations among the explanatory variables, the sample size and the unknown coefficient vector
were varied. For each model we have performed 2000 replications and presented the results both
in term of figures and tables. Based on the simulation study, we found that increasing the number
of correlated variable, the variance of the random error and increasing the correlation between
the independent variables have negative effect on the mean squared error. When the sample size
increases the mean squared error decreases even when the correlation between the independent
variables and the variance of the random error are large. In all situations, the proposed estimators
have smaller mean squared error than the ordinary least squares and other existing estimators.

MSC: Primary 62J07, Secondary 62F10.

Keywords: Linear model, LSE, MSE, Monte Carlo simulations, multicollinearity, ridge regression.

1. Introduction

In most empirical studies practitioners are often concerned about the specification of
the models under consideration, especially with regards to problems associated with the
residuals, with the aim of assessing white noise errors to judge whether the model is
well specified. Model misspecification can be due to omission of one or several relevant
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variables, inclusion of unnecessary variables, wrong functional form, misspecified dy-
namics, autocorrelation, heteroscedasicity, etc. It is recommended that some diagnostic
tests should be conducted in order to assure the whiteness of the model under consider-
ation, otherwise the estimated results can be inefficient, biased or inconsistent.

However, there are other problems that also might influence the results, e.g. multi-
collinearity. This problem occurs in situations when the explanatory variables are highly
inter-correlated. Empirically the problem of multicollinearity can be observed, for ex-
ample in cement production, when the amount of different compounds in the clinkers
is regressed on the heat evolved of cement (see the classical Portland cement data used
in Muniz and Kibria, 2009). Another examples in economics could be the effect of dif-
ferent amenities that attract visitors and tourists on the gross regional product. A final
example is when the usage of different types of vehicles on the number of injured people
in traffic is analyzed. In these situations it becomes difficult to disentangle the separate
effects of each of the explanatory variables on the response variable. As a result, es-
timated parameters can be wrongly insignificant or have (unexpectedly) wrong signs.
Note that multicollinearity is more a problem with the data than with the model itself,
and hence this kind of problem can not be identified by residual analysis. As a result, a
common deficiency in many applied studies is the absence of paying serious attention to
this problem. Indeed, although model misspecification is an important area in statistical
modelling, multicollinearity is an important issue too.

The history of multicollinearity dates back at least to the paper by Frisch (1934) who
introduced the concept to denote a situation where the variables dealt with are subject
to two or more relations. One way to deal with this problem is called ridge regression,
first introduced by Hoerl and Kennard (1970a,b). At this stage, the main interest lies
in finding a value of the ridge parameter, say k, such that the reduction in the variance
term of the slope parameter is greater than the increase in its squared bias. The authors
proved that there is a nonzero value of such ridge parameter for which the mean squared
error (MSE) for the slope parameter using ridge regression is smaller than the variance
of the ordinary least squares (OLS) estimator of the respective parameter. Many authors
thereafter worked in this area of research and developed and proposed different estimates
for the ridge regression parameter. To mention a few, McDonald and Galarneau (1975),
Lawless and Wang (1976), Saleh and Kibria (1996), Haq and Kibria (1996), Kibria
(2003), Khalaf and Shukur (2005) and Alkhamisi, Khalaf and Shukur (2006). In Kibria
(2003) and Alkhamisi et al. (2006), the authors used simulation techniques to study the
properties of some new proposed estimators and compared their properties with some
popular existing estimators. Under certain conditions, they found that the MSEs of some
of the new proposed estimators are smaller than the corresponding MSE of the OLS
estimator and other existing estimators. Recently, Muniz and Kibria (2009) developed
five new ridge parameters based on Kibria (2003) and Khalaf and Shukur (2005) in
models with two explanatory variables. They found the new parameters outperform the
previous ones in term of smaller MSEs.
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In this paper we aim to extend the study by Muniz and Kibria (2009) by developing
nine more new ridge parameters and to extend the models by including more explanatory
variables. We also study models with four explanatory variables that are more realistic
in empirical work than models with only two variables. Proceeding in this manner, it is
possible to investigate the effect of the additional included variables on the MSEs.

The paper is organized as follows: In Section 2 we present the model we analyze,
and give the formal definition of the ridge regression parameters used in this study.
In Section 3, the design of our Monte Carlo experiment together with the factors that
can affect the small sample properties of these proposed parameters are introduced. In
Section 4 we describe the results concerning the various parameters in term of MSE.
The conclusions of the paper are presented in Section 5.

2. Methodology

In this section we present the proposed ridge regression estimators. This includes a
brief background on the methods suggested by Hoerl and Kennard (1970a), and that
developed by Khalaf and Shukur (2005), Alkhamisi and Shukur (2008), Alkhamisi et
al. (2006) and Muniz and Kibria (2009). Moreover, we present the new ridge parameter,
(denoted by Kugs), together with the other five new versions.

2.1. Notations and some preliminaries

The multiple linear regression model can be expressed as:

y=Xp +e, (2.1)
where y is an n X 1 vector of responses, X is an n X p observed matrix of the regressors,
B is a p x 1 vector of unknown parameters, and e is an n x 1 vector of errors.

The ordinary least squares estimator (OLS) of the regression coefficients f3 is defined
as

. -1

B = (XTX> X'y, (2.2)
Suppose, there exists an orthogonal matrix D such that DTCD = A, where A = diag(Aq,
A2,...,A,) are the eigenvalues of the matrix C = X" X. The orthogonal (canonical form)

version of the multiple regression model (2.1) is

Y=X"a+te
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where X* =X D and @ =D 8. In case the matrix X X is ill-conditioned however (in the
sense of there is a near-linear dependency among the columns of the matrix) the OLS
estimator of 3 has a large variance, and multicollinearity is said to be present. Ridge
regression replaces X' X with X'X + kI, (k > 0). Then the generalized ridge regression
estimator of & are given as follows:

a(k) = <X*TX* +K) TxTy 2.3)

where K = diag(k;,kz,...,k,), ki >0and @ = A'X*TY is the OLS estimator of a.
According to Hoerl and Kennard (1970a) the value of k; which minimizes the
MSE(a(K)) is
2

k=2, 2.4)
a;

where o2 represents the error variance of the multiple regression model, and a; is the
i'" element of a.

2.2. Proposed estimators

In this section, we review some already available ridge estimators and propose some
new ones.

2.2.1. Estimators based on Hoerl and Kennard (1970)

Hocking, Speed and Lynn (1976) showed that for known optimal k;, the generalized
ridge regression estimator is superior to all other estimators within the class of biased
estimators they considered. Nevertheless, the optimal value of k; fully depends on
the unknown o? and a;, which must be estimated from the observed data. Hoerl
and Kennard (1970) suggested to replace o and a? by their corresponding unbiased
estimators in (2.4). That is,

N

ki = (2.5)

&%

where 62 is the residual mean square estimate, which is an unbiased estimator of o
and &; is the i'" element of &, which is an unbiased estimator of a.

Hoerl and Kennard (1970) suggested k to be
@'2

A2
Ahax

kegi = knx = (2.6)
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where Gy is the maximum element of &. Now, when o2 and a are known then IAcHK
will give smaller MSE than the OLS.

Hoerl et al. (1975), proposed a different estimator of k by taking the harmonic mean
of IAcl-. That is

A2 A2
A po po
kpky = kukp = = 2.7)
Y2, a2 a'a

2.2.2. Estimators based on Kibria (2003)

Kibria (2003) proposed some new estimators based on the generalized ridge regression
approach. They are as follows:
By using the geometric mean of ki, which produces the following estimator

A2
A o
ki =key = —— (2.8)
(., &2)
By using the median of ki, which produces the following estimator for p > 3

A 62
kkz—kMED—median{Tz}, i:172,...,p (29)

a;

2.2.3. Estimators based on Khalaf and Shukur (2005)

Khalaf and Shukur (2005) suggested a new method to estimate the ridge parameter k, as
a modification of kyg; as

A2
tmaXO-
(n—p) 62+ tmaxdrznax

ksi = kis = (2.10)

where #,x 1S the maximum eigenvalue of the matrix X TX.
Following Kibria (2003) and Khalaf and Shukur (2005), Alkhamisi et al. (2006)
proposed the following estimators for k:

]}KS 1 & tia'z ;
kS2: arith:‘;Z (n—p)@'2+td2 ) l:1727"‘7p (211)
[ e
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_7KS _ . 16°
ks4 = k,,; = median ((n AP +li&,-2 . (2.13)

2.2.4. Some proposed new estimators

Following Kibria (2003), Khalaf and Shukur (2005), Alkhamisi er al. (2006) and
Alkhamisi and Shukur (2008), we proposed the following estimators. First, following
Kibria (2003) and Khalaf and Shukur (2005), we propose the following estimator

ki1 = kS = f[ ik ' (2.14)
sm (n—p)62+1a2

i=1

In Muniz and Kibria (2009) some ridge parameters that are functions of the optimal
value shown in equation (2.4) was proposed. These functions of the optimal value used
firstly different quantiles such as the median and max just as in Khalaf and Shukur
(2005) and secondly the square root transformation that was shown to work well in
Alkhamisi and Shukur (2008). These ridge parameters correspond to:

kKMZ = max = (215)
A2
ka3 = max < %) (2.16)
v
LA
kgyma = H — (2.17)
i=1 Z_iz
1
P l52\"
kims = | [ 1 = (2.18)
i=1 i
. 1
kxme = median (2.19)

62

2
a;j
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52
kxy7 = median —~ (2.20)
[0k

1

Furthermore, we will propose some new estimators of the ridge parameter. These also
use different quantiles and the square root transformation proposed in Khalaf and Shukur
(2005) and Alkhamisi and Shukur (2008) respectively. However, the base of the different
functions is no longer the optimal value but a modification proposed by Khalaf and
Shukur (2005). This modification, which in general leads to larger values of the ridge
parameters than those derived from the optimal value, was shown to work well in the
simulation study conducted in that paper:

1

kKMg = max > (221)

tmax@'

(n—p)@'2+tmaxdi2
kxpo = max szxaz _ (2.22)
(l’l - p) 02 + tmaxa,z
P 1

ko = | ] 1 (2.23)

i=1 fmax 62

(n—p) 62 +tmax diz

1
P P i
k = e _ (2.24)
] <H\/(rz—p) Uz"'l‘maxal2

1
kxy12 = median (2.25)

tmax@'2
(n—p)62+tmax a2

i

Note that the new proposed estimators: kg; (in 2.10), ksp (in 2.11), kgxp3 (in 2.16), kxar7
(1n 220), kKMg (lIl 221), kKMg (1n 222), kKMlO (lIl 223), kKMll (lIl 224) and ﬁnally
kg2 (in 2.25) were not investigated in Muniz and Kibria (2009).
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3. The Monte Carlo design

The aim of this paper is to compare the performance of our new proposed estimators
and the other estimators together with the OLS. Since a theoretical comparison is not
possible, a simulation study has been conducted using S-plus 8.0 software. The design
of a good simulation study is dependent on (i) what factors are expected to affect the
properties of the estimators under investigation and (ii) what criteria are being used to
judge the results. Since ridge estimators are supposed to have smaller MSE compared
to OLS, the MSE will be used to measure the goodness of an estimator, while the first
question will be treated briefly.

Since the degree of collinearity among the explanatory variable is of central im-
portance, we followed Muniz and Kibria (2009) in generating the explanatory variable
using the following device:

2 . .
Vit vz, i=12,...n, j=12,....p  (3.26)

2

xij=(1-77)

where y? represents the correlation between the explanatory variables, and z; ;j are

independent standard pseudo-random numbers. The n observations for the dependent
variable are then determined by:

yl-:[50+[J’1x,-1+[J’2xi2+...+ﬁpx,»p+e,-, i=1,2,...,n (3.27)

where e; are i.i.d. N (O, 0'2) pseudo-random numbers, and f3 is taken to be zero without
loss of generality.

3.1. Factors that vary in the Monte Carlo simulations

Since our primary interest lies in the performance of our proposed estimators according
to the strength of the multcollinearity, we used different degrees of correlation between
the variables and let y = 0.7, 0.8 and 0.9. We also want to see the effect of the sample
sizes on the performance of the estimators. Therefore, in this study, we considered
n =10, 20, 30, 40, 50 and 100 which will cover models with small, medium and large
sample sizes. The number of the explanatory variables is also of great importance since
the bad impact of the collinearity on the MSE might be stronger when more variables
in the model are correlated. We hence generated models with p = 2 and 4 explanatory
variables. To see whether the magnitude of the error variance has a significant effect
of the performances of the proposed estimators, we used different values of the error
standard deviations o = 0.01, 0.5, 1, 3, and 5. For each set of explanatory variables
we considered the coefficient vector that corresponded to the largest eigenvalue of X' X
matrix subject to the constraint that [3T B = 1. Newhouse and Oman (1971) stated that
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if the mean squared error (MSE) is a function of 3, o2, and k, and if the explanatory
variables are fixed, then the MSE is minimized when we choose this coefficient vector.

For given values of n, p, B, v, and o, the set of explanatory variables was generated.
Then the experiment was repeated 2000 times and the average mean squared error was
calculated for all 15 estimators.

4. Results and discussion

In this section we present the results of our Monte Carlo experiment concerning the
MSE:s of the different proposed estimators compare to the OLS. A conventional way to
report the results of a Monte Carlo experiment is to tabulate the values of these MSEs
under different conditions. When determining the manner of presentation, some account
has to be taken to the results obtained. Our original intention was to start by presenting
results for all the main effects in term of tables. However, since the results are too
extensive, presenting the results in term of tables will make it difficult to follow the
main findings. We hence present our most important findings in the form of figures that
summarize most of the results with respect to the different features under investigation.
More exact results of the simulated MSEs for the 15 estimators are provided in the
appendix (all results are not included in tables, however, but are available on request
from the authors). Simulated MSEs for fixed n, p and y and different values of o are
presented in Table A.1, for fixed n, p and o and different values of y are presented in
Table A.2, for fixed p, y and o and different values of n are presented in Table A.3.

4.1. Performance as a function of o

In Table A.1 we have provided the MSEs of the estimators as a function of the variance
of the errors(c). When the value of o increases, the MSE of the estimators also
increases. For all values of o, the ridge regression estimators have smaller MSE than
the OLS. However, the performance of the proposed estimators kg, kxums, kxwms,
kgm0, kxmi2, and kg, ko is better than the performance of the rest of the analysed
estimators. This behaviour was almost constant for any sample size and number of
variables considered. However, when the standard deviation is large, i.e. (00 =35), the
new kxps, kxpr12 outperform all the other estimators in term of producing less MSE.

For given y = 0.70 and n = 10, the performance of estimators as a function of the
standard deviation of the errors for p = 2 and p = 4 are provided in Figures 1 and 2
respectively. From these figures we observe that as the standard deviation increases, the
MSE also increases. The same is true when shifting from models with 2 variables to
those with 4, especially for the OLS, ky kg, kg, (see Figure 2).
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Figure 1: Performance of the estimators as a function of ¢ when p=2.
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Figure 2: Performance of the estimators as a function of @ when p =4.

4.2. Performance as a function of y

In Table A.2 we have provided the MSEs of the estimators as a function of the correla-
tion between the explanatory variables. For smaller sigma (o = 0.01) the change in the
correlation between the explanatory variables had almost no effect on the MSEs. In all
situations they remained almost the same for any sample size or number of parameters,
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Figure 4: Performance of the estimators as a function of Y when n = 50.

125

and their MSEs are very small. When o increases, the higher correlation between the
independent variables resulted in an increase of the MSE of the k-estimators. In general,
kkma, kxmss kxms, kxano, kganz and kg, kxo performed better than others.

For given 0 = | and p = 4 the performance of estimators as a function of the
correlation between the explanatory variables for n = 20 and n = 50 is provided
in Figures 3 and 4 respectively. From these figures we observe that as correlation
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Figure 6: Performance of the estimators as a function of n when o = 5,

increases, the MSE also increases. However, the MSE decreases when the number of
observations increases from 20 to 50. All of the ridge estimators have smaller MSE
compared with OLS and they are very close to one another.
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4.3. Performance as a function ofn

In Table A.3 we have provided the MSEs of the estimators as a function of the sample
size. We observed that, in general, when the sample size increases the MSE decreases,
or remains the same. Even for the large values of y and o, if we increase the sample
size the MSE of estimators decreases. Again in this situation, as n and p increase the
performance of kkpa, kxms, kxms, kxaio, kxmi2, and kg, kg is better than the rest of
the k estimators.

For given v = 0.90 and p = 2, the performance of the estimators as a function of the
sample size for 0 = 0.5 and o =5 is provided in Figures 5 and 6 respectively. From
these figures, we observe that as the sample size increases, the MSE decreases. Except
for a few situations, this pattern was constant for all of the estimators. Note the huge
increase in the MSE when shifting from o =0.5to o = 5.

5. Concluding remarks

In this paper we have reviewed and proposed some new estimators for estimating the
ridge parameter k. The new proposed estimators are defined based on the work of
Kibria (2003), Khalaf and Shukur (2005) and Alkhamisi ez al. (2006). The performance
of the estimators depends on the variance of the random error (o), the correlations
among the explanatory variables (y), the sample size (n) and the unknown coefficient
vector f3. Based on the simulation study, some conclusions can be drawn. However,
these restrictions may be restricted to the set of experimental conditions that are
investigated. We used the MSE criterion to measure the performance of the estimators.
The increase of the number of correlated variables, of o and of the correlation between
the independent variables have a negative effect in the MSE, in the sense that it also
increases. When the sample size increases the MSE decreases, even when the correlation
between the independent variables and ¢ are large. In all situations, the proposed
estimators have smaller MSE than the ordinary least squared estimators. Five of them,
kxma, kxms, kxms, kgm0, kxamio, and the kg, kx» performed better than the rest in the
sense of smaller MSE. Finally, it appears that the proposed estimators kx4, kxurs, Kxmss
kxwmi0, kxp12 are useful and may be recommended to practitioners. The kxys and kxpr12
estimators are particularly also recommended when working with models with large
residual variances since they outperform all the others in such cases.
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Table A.1: Simulated MSE for fixed n, p, and y and different values of o.
n=10,p=2,y=0.7
o |OLS [HK |[KI |K2 [S3 S4 [KMI |KM2 |KM4 | KM5 | KM6 | KMS8 | KM9 | KMI10 | KMI11 | KMI2
0.01 [ 0.427 | 0.426 | 0.426 | 0.426 | 0.426 | 0.426 | 0.389 | 0.125 | 0.129 | 0.272 | 0.125 | 0.125 | 0.389 | 0.129 | 0.272 |0.125
0.5 10.765 | 0.516 | 0.336 | 0.269 | 0.517 | 0.517 | 0.304 | 0.172 | 0.171 | 0.189 | 0.172 | 0.136 | 0.304 | 0.149 | 0.222 | 0.136
1 1.799 | 1.051 | 0.438 | 0.297 | 1.042 | 1.042 | 0.479 | 0.270 | 0.223 | 0.215 | 0.270 | 0.143 | 0.479 | 0.163 | 0.291 0.143
5 36.39 | 18.75 | 3.898 | 1.701 | 18.36 | 18.36 | 6.025 | 2.733 | 1.446 | 1.204 | 2.733 | 0.317 | 6.025 | 0.547 | 2.373 | 0.317
n=10,p=2,vy=0.8
o |OLS |HK |KI |K2 [S3 S4 | KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 | KM11 | K12
0.01 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.057 | 0.121 | 0.094 | 0.025 | 0.121 | 0.121 | 0.057 | 0.095 | 0.025 | 0.120
0.5 [ 0.438|0.244 | 0.117 | 0.084 | 0.243 | 0.243 | 0.087 | 0.065 | 0.053 | 0.047 | 0.065 | 0.084 | 0.087 | 0.063 | 0.048 | 0.084
1 1.608 | 0.866 | 0.254 | 0.133 | 0.840 | 0.840 | 0.271 | 0.121 | 0.084 | 0.082 | 0.121 | 0.089 | 0.271 | 0.075 | 0.115 |0.089
5 38.59 | 20.17 | 4.069 | 1.577 | 20.19 | 20.19 | 6.265 | 2.712 | 1.384 | 1.138 | 2.712 | 0.271 | 6.265 | 0.477 |3.325 |0.271
n=10,p=2,y=09
o OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 | KM 11 | K12
0.01 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.052 | 0.120 | 0.094 | 0.020 | 0.120 | 0.052 | 0.094 | 0.020 | 0.121 | 0.052.
0.5 10.618 [ 0.329 | 0.125 [ 0.076 | 0.313 | 0.313 | 0.087 | 0.063 | 0.051 | 0.043 | 0.063 | 0.085 | 0.087 | 0.063 | 0.042 | 0.085
1 2.44511.267 | 0.296 | 0.137 | 1.191 | 1.191 | 0.301 | 0.133 | 0.195 | 0.081 | 0.133 | 0.094 | 0.301 | 0.074 | 0.109 | 0.090
5 61.65 | 31.81 | 4.630 | 1.542 | 30.49 | 30.49 | 7.311 | 2.890 | 1.224 | 1.222 | 2.890 | 0.256 | 7.311 | 0.438 | 2.203 | 0.256
n=20,p=2,y=0.7
o |OLS [HK |[KI |K2 [S3 S4 [KMI |KM2 |KM4 [ KM5 | KM6 | KM8 | KM9 | KMI10 [ K12 [ KI2
0.01 | 0.035 ] 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.030 | 0.032 | 0.032 | 0.020 | 0.032 | 0.032 | 0.030 | 0.032 | 0.020 | 0.032
0.5 1 0.090 | 0.061 | 0.045 | 0.041 | 0.072 | 0.072 | 0.043 | 0.029 | 0.025 | 0.025 | 0.029 | 0.038 | 0.043 | 0.029 | 0.028 | 0.038
1 0.264 | 0.152 | 0.080 | 0.064 | 0.209 | 0.209 | 0.119 | 0.059 | 0.047 | 0.043 | 0.059 | 0.040 | 0.119 | 0.035 | 0.068 | 0.040
5 5.529 1 2.823 | 1.010 | 0.645 | 4.299 | 4.299 | 2.393 | 1.198 | 0.853 | 0.524 | 0.198 | 0.116 | 2.393 | 0.246 | 1.293 | 0.116
n=20,p=2,vy=0.8
o |OLS |HK |KI |K2 [S3 S4 | KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KMI10 [ K12 [ KI2
0.010.189 [ 0.189 | 0.189 | 0.189 | 0.189 | 0.189 | 0.174 | 0.055 | 0.057 | 0.123 | 0.055 | 0.055 | 0.174 | 0.057 | 0.123 | 0.057
0.5 [0.334]0.225 | 0.149 | 0.20 | 0.255 | 0.255 | 0.156 | 0.077 | 0.077 | 0.086 | 0.077 | 0.05 | 0.156 | 0.065 | 0.107 | 0.059
1 0.776 | 0.444 | 0.182 | 0.127 | 0.535 | 0.535 | 0.265 | 0.117 | 0.099 | 0.098 | 0.117 | 0.061 | 0.265 | 0.071 | 0.146 | 0.061
5 13.77 | 6.66 | 1.312]0.619 | 896 |8.96 |3.500 | 1.265|0.703 | 0.521 | 1.265 | 0.113 | 3.500 | 0.217 | 1.280 |[0.113
n=20,p=2,y=09
o OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KMI10 | K12 K12
0.01 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.025 | 0.032 | 0.032 | 0.011 | 0.032 | 0.032 | 0.025 | 0.032 | 0.011 | 0.032
0.5 |1 0.190 | 0.104 | 0.049 | 0.035 | 0.121 | 0.121 | 0.047 | 0.028 | 0.023 | 0.020 | 0.028 | 0.040 | 0.047 | 0.029 | 0.022 | 0.040
1 0.666 | 0.340 | 0.094 | 0.056 | 0.419 | 0.419 | 0.155 | 0.050 | 0.037 | 0.037 | 0.050 | 0.042 | 0.155 | 0.034 | 0.058 | 0.042
5 15.76 | 7.692 | 1.441 | 0.599 | 9.601 | 9.601 | 3.440 | 1.303 | 0.635 | 0.457 | 1.303 | 0.093 | 3.440 | 0.176 | 1.141 | 0.093
n=50,p=2,y=0.7
o OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KMI10 | K12 K12
0.01 [ 0.013]0.012 [ 0.012 | 0.012 { 0.012 | 0.012 | 0.011 | 0.012 | 0.013 | 0.008 | 0.012 | 0.012 | 0.011 | 0.011 | 0.008 | 0.012
0.5 10.027 | 0.020 | 0.016 | 0.015 | 0.025 | 0.025 | 0.018 | 0.011 | 0.010 | 0.010 | 0.011 | 0.016 | 0.018 | 0.012 | 0.016 |0.016
1 0.076 | 0.046 | 0.027 | 0.023 | 0.071 | 0.071 | 0.049 | 0.023 | 0.020 | 0.017 | 0.023 | 0.016 | 0.049 | 0.014 | 0.030 | 0.016
5 1.561 [ 0.783 | 0.323 | 0.231 | 1.444 | 1.444 | 0.994 | 0.434 | 0.329 | 0.204 | 0.434 | 0.029 | 0.994 | 0.075 | 0.578 | 0.029
n=50,p=2,vy=0.38
o |OLS |HK |KI |K2 [S3 S4 | KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KMI10 [ K12 [ KI2
0.01 | 0.073 | 0.071 | 0.071 | 0.071 | 0.071 | 0.071 | 0.068 | 0.020 | 0.022 | 0.054 | 0.020 | 0.020 | 0.068 | 0.022 | 0.054 | 0.020
0.5 [ 0.096 | 0.070 | 0.053 | 0.047 | 0.089 | 0.089 | 0.067 | 0.033 | 0.032 | 0.035 | 0.033 | 0.022 | 0.067 | 0.025 | 0.048 |0.022
1 0.172 | 0.107 | 0.061 | 0.049 | 0.156 | 0.156 | 0.106 | 0.050 | 0.043 | 0.039 | 0.050 | 0.022 | 0.106 | 0.026 | 0.067 | 0.022
5 2.381 | 1.184 | 0.388 | 0.250 | 2.099 | 2.099 | 1.246 | 0.467 | 0.322 | 0.217 | 0.467 | 0.035 | 1.246 | 0.081 | 0.616 |0.035
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n=50,p=2,y=09
o |oLs [HK |K1 [K2 [S3 [s4 [KMI [KM2|KM4 [KM5 [KM6 |KMS | KM9 | KMIO | KI2 |KI2
0.01 [ 0.013 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.009 | 0.020 | 0.015 | 0.004 | 0.012 | 0.012 | 0.009 | 0.015 | 0.004 | 0.012
0.5 |0.072 [ 0.039 | 0.017 | 0.012 | 0.054 | 0.054 | 0.023 | 0.010 | 0.008 | 0.007 | 0.010 | 0.016 | 0.023 | 0.012 | 0.009 | 0.016
1 [0.248]0.123 [ 0.033 | 0.019 | 0.189 | 0.189 | 0.079 | 0.020 | 0.013 | 0.013 | 0.020 | 0.016 | 0.079 | 0.012 | 0.025 | 0.016
5 [6.132[2.978 | 0464 | 0.199 | 4572 | 4.572 | 1.858 | 0.452 | 0.225 | 0.169 | 0.452 | 0.026 | 1.858 | 0.052 | 0.539 | 0.026
n=100,p=2,y=0.7
o |oLs [HK [K1 [K2 [S3 [s4 [KMI |[KM2][KM4 [KM5 [KM6 [KMS8 [ KM9 [ KMI0[KI2 [KI2
0.01 | 0.010 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.005 | 0.009 | 0.008 | 0.004 | 0.009 | 0.009 | 0.005 | 0.008 | 0.004 | 0.009
0.5 | 0.014 | 0.010 | 0.008 | 0.007 | 0.013 | 0.013 | 0.010 | 0.005 | 0.005 | 0.005 | 0.005 | 0.008 | 0.010 | 0.006 | 0.006 | 0.008
1 [0.0390.023[0.013 ] 0.011 [ 0.038 | 0.038 | 0.028 [ 0.011 [ 0.009 [ 0.008 [ 0.011 | 0.008 | 0.028 | 0.007 |0.017 | 0.008
5 [0812]0412]0.163[0.113[0.779 [ 0.779 [ 0.572 | 0.221 [ 0.165 | 0.102 [ 0.221 | 0.012 | 0.572 | 0.031 [ 0.326 [ 0.012
n=100,p=2,vy=0.8
o |oLs [HK |[K1 [K2 [S3 [s4 [KMI |[KM2|KM4 [KM5 |KM6 |KMS | KM9 | KMIO | K12 |KI2
0.01 | 0.010 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.005 | 0.009 | 0.007 | 0.003 | 0.009 | 0.009 | 0.005 | 0.007 | 0.003 | 0.009
0.5 | 0.016 | 0.010 | 0.008 | 0.007 | 0.015 | 0.015 | 0.010 | 0.005 | 0.004 | 0.004 | 0.005 | 0.008 | 0.010 | 0.006 | 0.006 | 0.008
1 [0.048[0.027 [ 0.013 | 0.011 | 0.045 | 0.045 | 0.031 | 0.010 | 0.008 | 0.008 | 0.010 | 0.008 | 0.031 | 0.006 | 0.016 | 0.008
5 [1.026]0.518]0.178 [ 0.114 | 0.968 | 0.968 | 0.653 | 0.212 | 0.150 | 0.096 | 0.212 | 0.011 | 0.653 | 0.028 | 0.033 | 0.011
n=100,p=2,y=0.9
o |oLs [HK |K1 [K2 [S3 [s4 [KMI [KM2|KM4 [KM5 [KM6 |KMS | KM9 | KMIO | KI2 |KI2
0.01 | 0.036 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.032 | 0.010 | 0.010 | 0.023 | 0.010 | 0.010 | 0.032 | 0.010 | 0.023 | 0.010
0.5 | 0.058 [ 0.039 | 0.026 | 0.021 | 0.053 | 0.053 | 0.036 | 0.014 | 0.014 | 0.016 | 0.014 | 0.010 | 0.036 | 0.011 | 0.023 | 0.010
1 [0.118]0.067 | 0.029 | 0.021 | 0.106 | 0.106 | 0.064 | 0.021 | 0.018 | 0.017 | 0.021 | 0.010 | 0.064 | 0.012 | 0.032 | 0.010
5 [2.115]1.005 | 0.222 | 0.118 | 1.861 | 1.861 | 0.960 | 0.226 | 0.132 | 0.099 | 0.226 | 0.013 | 0.960 | 0.029 | 0.013 | 0.013
n=10,p=4,y=0.7
o [oLs [HK [K1 [K2 [S3 [s4 [KMI |[KM2][KM4 [KM5 [KM6 |KMS8 [KM9 [KMI0[KI2 [KI2
0.01 [ 0.184 [ 0.183 [ 0.183 | 0.183 | 0.183 [ 0.183 [ 0.071 [ 0.159 [ 0.103 [ 0.063 | 0.159 [ 0.159 [ 0.133 | 0.103 | 0.063 | 0.159
0.5 [ 1.482]0.847 [ 0.190 | 0.171 | 0.664 | 0.664 | 0.133 [ 0.140 | 0.104 [ 0.105 | 0.140 | 0.124 [ 0.234 [ 0.103 [ 0.111 [ 0.124
I |5.5643.0880.392]0.359 [ 2.278 [ 2.278 [ 0.329 | 0.327 [ 0.185 [ 0.188 | 0.327 [ 0.139 | 0.701 [ 0.151 [0.233 [ 0.139
5 [129.0]70.10 [ 6.667 | 6.191 | 50.63 | 50.63 | 6.225 | 6.286 | 2.659 | 2.616 | 6.286 | 0.568 | 14.72 | 1.587 [3.912 ] 0.568
n=10,p=4,y=0.8
o |oLs [HK |[K1 [K2 [S3 [s4 [KMI |[KM2|KM4 [KM5 |KM6 |KMS | KM9 | KMIO | K12 |KI2
0.01]0.170 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.192 | 0.169 | 0.190 | 0.193 | 0.169 | 0.169 | 0.193 | 0.190 | 0.193 | 0.169
0.5 | 12.04 [ 6365 | 0.341 | 0.289 | 3.308 | 3.308 | 0.264 | 0.217 | 0.213 | 0.223 | 0.217 | 0.183 | 0.409 | 0.205 | 0.234 | 0.183
1 [47.61]24.49|0.661 | 0.495 | 11.43 | 11.43 | 0.485 | 0.384 | 0.514 | 0.283 | 0.306 | 0.384 | 0.196 | 0.247 | 0.359 | 0.196
5 [ 1190.|613.5[10.40 | 6.984 | 292.0 | 292.0 | 7.455 | 5.690 | 2.463 | 2.868 | 5.690 | 0.582 | 21.58 | 1.507 | 4.237 | 0.582
n=10,p=4,y=09
o |oLs [HK |K1 [K2 [S3 [s4 [KMI |[KM2|KM4 [KM5 |KM6 |KMS | KM9 | KMIO | K12 |KI2
0.01]0.188 [ 0.177 [ 0.179 | 0.179 | 0.179 | 0.179 | 0.209 | 0.164 | 0.160 | 0.184 | 0.164 | 0.164 [ 0.243 | 0.159 | 0.184 | 0.164
0.5 | 23.17 [ 11.50 | 0.405 | 0.321 | 5.521 | 5.521 | 0.270 | 0.190 | 0.182 | 0.197 | 0.190 | 0.164 | 0.480 | 0.173 | 0.215 | 0.164
1 [94.17 | 48.44 | 0.865 | 0.627 | 22.26 | 22.26 | 0.517 | 0.406 | 0.241 | 0.275 | 0.406 | 0.173 | 1.278 | 0.205 | 0.336 | 0.173
5 [2313 [ 1174 | 13.87 [ 9.616 | 553.3 | 553.3 [ 8.052 | 6.160 | 2.021 | 2.583 | 6.160 | 0.452 | 26.49 | 1.187 | 3.965 | 0.452
n=20,p=4,y=0.7
o |oLs [HK [KI [K2 [S3 [s4 [KMI [KM2][KM4 [KM5 [KM6 [KMS8 [ KM9 [KMI0[KI2 [KI2
0.01 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.060 | 0.060 | 0.047 | 0.054 | 0.060 | 0.060 | 0.062 | 0.047 | 0.054 | 0.060
0.5 [0.359 [ 0.223 [ 0.082 [ 0.079 [ 0.221 | 0.221 [ 0.081 | 0.067 [ 0.059 | 0.060 | 0.067 | 0.052 | 0.117 | 0.053 | 0.068 | 0.052
1 [1.185[0.646 [ 0.121 [ 0.114 [ 0.673 [ 0.673 [ 0.160 | 0.145 | 0.097 [ 0.093 | 0.145 | 0.057 | 0.288 | 0.075 | 0.121 | 0.057
5 [28.52]14.95] 1.624 | 1.495 [ 1552 1552 2.851 [ 2599 [ 1.390 | 1.208 [ 2.599 | 0.209 | 5.958 | 0.785 | 1.921 [ 0.209
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n=20,p=4,vy=0.8

o OLS |HK K1 K2 S3 S4 KM1 | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KMIO0 | K12 K12

0.01 | 0.064 |0.064 |0.064 |0.064 | 0.064 | 0.064 |0.064 | 0.064 | 0.063 | 0.064 | 0.064 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063

0.5 [0.367 |0.241 |0.111 |0.1100.280 [ 0.280 | 0.102 | 0.087 | 0.080 | 0.082 | 0.087 | 0.067 | 0.154 | 0.076 |0.088 |0.067

1 1.295 |0.756 [0.182]0.196 | 0.936 | 0.936 |0.198|0.154 | 0.109 | 0.110 | 0.154 | 0.069 | 0.419 | 0.090 | 0.139 | 0.069

5 30.56 |16.70 [2.512]3.022|21.69 | 21.69 |3.336 |2.627 | 1.147 | 1.041 | 2.627 | 0.169 | 8.985 | 0.588 | 1.850 | 0.169

n=20,p=4,v=09

o OLS |HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KMS5 | KM6 | KM8 | KM9 | KMIO | K12 K12

0.01 | 0.0630 | 0.0620 | 0.062 | 0.062 | 0.062 | 0.062 | 0.049 | 0.061 | 0.057 | 0.022 | 0.061 | 0.061 | 0.054 | 0.057 |0.052 |0.061

0.5 |0.579 [0.344 |0.112]0.113 [ 0.419 | 0.419 | 0.085 | 0.070 | 0.063 | 0.064 | 0.070 | 0.059 | 0.171 |0.060 | 0.070 |0.059

1 2.099 |1.170 {0.210]0.248 | 1.500 | 1.500 |0.179|0.136 | 0.083 | 0.087 | 0.136 | 0.061 | 0.530 | 0.070 |0.112 | 0.061

5 51.09 |27.72 |3.112]35.62|35.62 | 3.155 [2.742|8.514 | 0.835 | 0.820 | 2.742| 0.129 | 11.745 | 0.416 | 1.478 | 0.129

n=50,p=4,v=0.7

o OLS |HK K1 K2 S3 S4 KM1 | KM2 | KM4 | KMS5 | KM6 | KM8 | KM9 | KMI0 | KMII | KMI12

0.01]0.023 [0.022 |0.0220.022 | 0.022 | 0.022 | 0.018 | 0.021 | 0.016 | 0.016 | 0.021 | 0.021 | 0.022 | 0.016 | 0.016 | 0.021

0.5 [0.071 |0.049 |0.026 | 0.027 | 0.066 | 0.066 | 0.030 | 0.023 | 0.020 | 0.020 | 0.023 | 0.019 | 0.047 | 0.018 |0.0241 | 0.019

1 0.210 |0.124 [0.040|0.043 [ 0.191 [ 0.191 |0.069 | 0.047 | 0.034 | 0.031 | 0.047 | 0.019 | 0.126 | 0.024 | 0.046 | 0.019

5 4.868 |2.686 |0.489 [0.552|4.413 |4.413 | 1.386 [ 0.969 [ 0.517 | 0.408 [ 0.969 | 0.042 | 2.817 |0.225 | 0.810 |0.042

n=50,p=4,vy=0.8

o OLS |HK K1 K2 S3 S4 KM1 | KM2 [ KM4 | KMS5 | KM6 | KM8 | KM9 | KMI10 | KMI1 | KM12

0.01{0.021 |0.020 |0.020 | 0.020 | 0.020 | 0.020 |0.020 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.020 | 0.021 | 0.021 | 0.020

0.5 [0.112 |0.073 |0.0350.035|0.098 | 0.098 |0.037 | 0.029 | 0.028 | 0.028 | 0.029 | 0.023 | 0.061 |0.026 |0.031 |0.023

1 0.374 |0.214 |0.056|0.059 | 0.319 [ 0.319 | 0.078 | 0.053 | 0.037 | 0.037 | 0.053 | 0.023 | 0.176 | 0.030 |0.050 |0.023

5 9.112 |4.978 [0.698|0.911 | 7.735 | 7.735 | 1.481 | 0.924 | 0.394 | 0.356 | 0.924 | 0.040 | 4.065 | 0.176 |0.730 | 0.040

n=50,p=4,vy=09

o OLS HK K1 K2 S3 S4 KMI | KM2 | KM4 | KM5 | KM6 | KM8 [ KM9 | KMI10 | KM11 | KMI12

0.01]0.023 [0.022 |0.022]0.022 | 0.022 | 0.022 | 0.015|0.021|0.017 | 0.015| 0.021 | 0.021 | 0.019 | 0.017 | 0.015 |0.021

0.5 {0.166 |0.099 |0.0320.033|0.138 |0.138 | 0.030 | 0.021 [ 0.019 | 0.019 | 0.021 | 0.020 | 0.071 |0.018 | 0.022 |0.020

1 0.600 |0.335 [0.063]0.071 | 0.494 [ 0.494 |0.074 | 0.045|0.027 |{ 0.028 | 0.045| 0.020 | 0.235 | 0.022 | 0.040 | 0.020

5 14.84 [8.068 |0.999 | 1.504 | 12.04 | 12.04 | 1.516 | 1.023 | 0.314 | 0.301 | 1.023 [ 0.035| 5.570 |0.139 | 0.635 |0.035

n=100,p=4,y=0.7

o OLS |HK K1 K2 S3 S4 KM1 | KM2 | KM4 | KMS5 | KM6 | KM8 | KM9 | KMI0 | KMII | KMI12

0.01{0.010 |{0.010 |0.0100.010|0.010 | 0.010 |0.008 | 0.010 | 0.008 | 0.008 | 0.010 | 0.010 | 0.010 | 0.008 | 0.008 | 0.010

0.5 {0.030 |0.021 |0.012|0.0120.029 | 0.029 |0.015 | 0.011 | 0.010 | 0.010 | 0.011 | 0.009 | 0.023 | 0.009 |0.012 | 0.009

1 0.089 |0.053 [0.019]0.020 | 0.085 [ 0.085 |0.037 | 0.024 | 0.018 [ 0.016 | 0.024 | 0.010 | 0.063 | 0.012 |0.024 | 0.010

5 1.966 | 1.067 [0.213|0.245|1.879 | 1.879 |0.727 | 0.440 | 0.253 | 0.199 | 0.440 | 0.016 | 1.365 | 0.103 | 0.423 |0.016

n=100,p=4,y =08

o OLS |HK K1 K2 S3 S4 KM1 | KM2 [ KM4 | KMS5 | KM6 | KM8 | KM9 | KMI10 | KMI1 | KM12

0.01{0.010 |0.010 |0.010|0.010|0.010|0.010 |0.009 |0.010|0.010 |0.010|0.010 | 0.010 | 0.010 |0.010 | 0.010 |0.010

0.5 [0.040 |0.027 |0.0150.015|0.038 | 0.038 |0.018 [ 0.013 | 0.012 | 0.012 | 0.013 | 0.010 | 0.028 |0.011 |0.014 |0.010

1 0.131 |0.077 [0.023]0.025|0.123 [ 0.123 | 0.041 | 0.026 | 0.018 | 0.017 | 0.026 | 0.010 | 0.083 | 0.013 |0.025 | 0.010

5 3.065 |1.679 [0.278]0.330 | 2.869 | 2.869 |0.816 | 0.458|0.219 | 0.180 | 0.458 | 0.015 | 1.889 | 0.084 |0.409 |0.015

n=100,p=4,y =09

o OLS HK K1 K2 S3 S4 KMI | KM2 | KM4 | KM5 | KM6 | KM8 [ KM9 | KMI0 | KM11 | KMI12

0.01{0.010 {0.010 |0.0100.010|0.010|0.010 |0.010{0.010|0.010 | 0.010| 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |0.010

0.5 {0.069 |0.043 |0.018 |0.018|0.063|0.063 |0.019 [ 0.013 [ 0.012|0.012 [ 0.013 | 0.010 | 0.040 |0.011 |0.014 |0.010

1 0.236 |0.132 | 0.029]0.035|0.213 [ 0.213 | 0.045 | 0.026 | 0.016 | 0.016 | 0.026 | 0.010 | 0.125 | 0.013 |0.024 | 0.010

5 5.757 |3.139 [0.420]0.599 | 5.195 [ 5.195 [ 0.913 | 0.432| 0.165 | 0.158 | 0.432| 0.015 | 2.967 | 0.068 |0.369 | 0.015
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Table A.2: Simulated MSE for fixed n, p, and o and different values of y.

n=10,p=2,0=0.01

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KM5

KM6

KMS8

KM9

KM10

K11

K12

0.70

0.427

0.426

0.426

0.426

0.426

0.426

0.389

0.125

0.129

0.272

0.125

0.125

0.389

0.129

0.272

0.125

0.80

0.073

0.073

0.073

0.073

0.073

0.073

0.057

0.121

0.094

0.025

0.121

0.121

0.057

0.095

0.025

0.120

0.90

0.073

0.073

0.073

0.073

0.073

0.073

0.052

0.120

0.094

0.020

0.120

0.052

0.094

0.020

0.121

0.052.

n=10,p=2,0=1

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K11

K12

0.70

1.799

1.051

0.438

0.297

1.042

1.042

0.479

0.270

0.223

0.215

0.270

0.143

0.479

0.163

0.291

0.143

0.80

1.608

0.866

0.254

0.133

0.840

0.840

0.271

0.121

0.084

0.082

0.121

0.089

0.271

0.075

0.115

0.089

0.90

2.445

1.267

0.296

0.137

1.191

1.191

0.301

0.133

0.195

0.081

0.133

0.094

0.301

0.074

0.109

0.090

n=10,p=2,0=5

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K11

K12

0.70

36.39

18.75

3.898

1.701

18.36

18.36

6.025

2.733

1.446

1.204

2.733

0.317

6.025

0.547

2.373

0.317

0.80

38.59

20.17

4.069

1.577

20.19

20.19

6.265

2712

1.384

1.138

2712

0.271

6.265

0.477

3.325

0.271

0.90

61.65

31.81

4.630

1.542

30.49

30.49

7311

2.890

1.224

1.222

2.890

0.256

7.311

0.438

2.203

0.256

n=10

p=4,

o =0.01

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KM5

KM6

KMS8

KM9

KM10

K11

K12

0.70

0.184

0.183

0.183

0.183

0.183

0.183

0.071

0.159

0.103

0.063

0.159

0.159

0.133

0.103

0.063

0.159

0.80

0.170

0.169

0.169

0.169

0.169

0.169

0.192

0.169

0.190

0.193

0.169

0.169

0.193

0.190

0.193

0.169

0.90

0.188

0.177

0.179

0.179

0.179

0.179

0.209

0.164

0.160

0.184

0.164

0.164

0.243

0.159

0.184

0.164

n=1

0,p=4,0=1

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KMS

KM9

KM10

K11

K12

0.70

5.564

3.088

0.392

0.359

2.278

2.278

0.329

0.327

0.185

0.188

0.327

0.139

0.701

0.151

0.233

0.139

0.80

47.61

24.49

0.661

0.495

11.43

11.43

0.485

0.384

0.514

0.283

0.306

0.384

0.196

0.247

0.359

0.196

0.90

94.17

48.44

0.865

0.627

22.26

22.26

0.517

0.406

0.241

0.275

0.406

0.173

1.278

0.205

0.336

0.173

n=10,p=4,0=5

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K11

K12

0.70

129

70.10

6.667

6.191

50.63

50.63

6.225

6.286

2.659

2.616

6.286

0.568

14.72

1.587

3912

0.568

0.80

1190

613.5

10.40

6.984

292

292

7.455

5.690

2.463

2.868

5.690

0.582

21.58

1.507

4.237

0.582

0.90

2313.

1174

13.87

9.616

553.3

553.3

8.052

6.160

2.021

2.583

6.160

0.452

26.49

1.187

3.965

0.452

n =20

p=2,

o =0.01

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KM5

KM6

KM8

KM9

KM10

K11

K12

0.70

0.035

0.032

0.032

0.032

0.032

0.032

0.030

0.032

0.032

0.020

0.032

0.032

0.030

0.032

0.020

0.032

0.80

0.189

0.189

0.189

0.189

0.189

0.189

0.174

0.055

0.057

0.123

0.055

0.055

0.174

0.057

0.123

0.057

0.90

0.032

0.032

0.032

0.032

0.032

0.032

0.025

0.032

0.032

0.011

0.032

0.032

0.025

0.032

0.011

0.032

n=20,p=2,0=1

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KMS

KM9

KM10

K12

K12

0.70

0.264

0.152

0.080

0.064

0.209

0.209

0.119

0.059

0.047

0.043

0.059

0.040

0.119

0.035

0.068

0.040

0.80

0.776

0.444

0.182

0.127

0.535

0.535

0.265

0.117

0.099

0.098

0.117

0.061

0.265

0.071

0.146

0.061

0.90

0.666

0.340

0.094

0.056

0.419

0.419

0.155

0.050

0.037

0.037

0.050

0.042

0.155

0.034

0.058

0.042

n=20,p=2,0=5

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K12

K12

0.70

5.529

2.823

1.010

0.645

4.299

4.299

2.393

1.198

0.853

0.524

0.198

0.116

2.393

0.246

1.293

0.116

0.80

13.77

6.66

1.312

0.619

8.96

8.96

3.500

1.265

0.703

0.521

1.265

0.113

3.500

0.217

1.280

0.113

0.90

15.76

7.692

1.441

0.599

9.601

9.601

3.440

1.303

0.635

0.457

1.303

0.093

3.440

0.176

1.141

0.093
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n=20,p=4,0=00l1
v loLs |[HK [KI [K2 [S3 |[s4 |KMI|[KM2|KM4 |KM5 |[KM6 [KM8 |KM9 |KMIO|KI2 |KI2
0.70 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.060 | 0.060 | 0.047 | 0.054 | 0.060 | 0.060 | 0.062 | 0.047 |0.054 | 0.060
0.80 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.063 | 0.064 | 0.064 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063
0.90 [ 0.063 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.049 | 0.061 | 0.057 | 0.022 | 0.061 | 0.061 | 0.054 | 0.057 | 0.052 | 0.061
n=20,p=4,0=1
v ToLs [HK [KI [K2 [S3 [s4 [KMI[KM2][KM4 [KM5 [KM6 [KM8 [KM9 [KMI0|[KI2 [KI2
0.70 | 1.185 [ 0.646 | 0.121 [ 0.114 [ 0.673 | 0.673 | 0.160 | 0.145 | 0.097 | 0.093 | 0.145 | 0.057 | 0.288 | 0.075 | 0.121 | 0.057
0.80 | 1.295 [ 0.756 | 0.182 [ 0.196 | 0.936 | 0.936 | 0.198 | 0.154 | 0.109 | 0.110 | 0.154 | 0.069 | 0.419 | 0.090 | 0.139 | 0.069
0.90 [ 2.099 | 1.170 [ 0.210 | 0.248 | 1.500 | 1.500 | 0.179 | 0.136 | 0.083 | 0.087 | 0.136 | 0.061 | 0.530 | 0.070 | 0.112 | 0.061
n=20,p=4,0=>5
r loLs [HK [KI [K2 [s3 |[s4 |KMI|[KM2|KM4 |KM5 |[KM6 [KM8 |[KM9 |[KMIO0|KI2 |KI2
0.70 | 28.52 | 14.95 | 1.624 | 1.495 | 15.52 | 15.52 | 2.851 | 2.599 | 1.390 | 1.208 | 2.599 | 0.209 | 5.958 | 0.785 | 1.921 | 0.209
0.80 | 30.56 | 16.70 | 2.512 [ 3.022 [ 21.69 | 21.69 | 3.336 | 2.627 | 1.147 | 1.041 | 2.627 | 0.169 | 8.985 | 0.588 | 1.850 | 0.169
0.90 | 51.09 | 27.72 [ 3.112 [ 35.62 [ 35.62 | 3.155 | 2.742 | 8.514 | 0.835 | 0.820 | 2.742 | 0.129 | 11.745 | 0.416 | 1.478 | 0.129
n=>50,p=2,0=00l1
v loLs [HK [KI [K2 [s3 [s4 |KMI|[KM2|KM4 |KM5 |[KM6 [KM8 |KM9 |[KMIO|KI2 |KI2
0.70 | 0.013 | 0.012 [ 0.012 [ 0.012 [ 0.012 | 0.012 | 0.011 | 0.012 | 0.013 | 0.008 | 0.012 | 0.012 | 0.011 [ 0.011 | 0.008 | 0.012
0.80 | 0.073 [ 0.071 [ 0.071 | 0.071 | 0.071 | 0.071 | 0.068 | 0.020 | 0.022 | 0.054 | 0.020 | 0.020 | 0.068 |0.022 | 0.054 | 0.020
0.90 [ 0.013 [ 0.012 [ 0.012 [ 0.012 [ 0.012 | 0.012 | 0.009 | 0.020 | 0.015 | 0.004 | 0.012 | 0.012 | 0.009 | 0.015 | 0.004 | 0.012
n=50,p=2,0=1
v ToLs [HK [KI [K2 [S3 [s4 [KMI[KM2][KM4 |[KM5|[KM6 [KM8 [KM9 [KMIO|KI2 [KI2
0.70 | 0.076 | 0.046 | 0.027 | 0.023 [ 0.071 | 0.071 | 0.049 | 0.023 | 0.020 | 0.017 | 0.023 | 0.016 | 0.049 | 0.014 | 0.030 | 0.016
0.80 [ 0.172 | 0.107 | 0.061 | 0.049 | 0.156 | 0.156 | 0.106 | 0.050 | 0.043 | 0.039 | 0.050 | 0.022 | 0.106 | 0.026 | 0.067 | 0.022
0.90 [ 0.248 | 0.123 [ 0.033 [ 0.019 [ 0.189 | 0.189 | 0.079 | 0.020 | 0.013 | 0.013 | 0.020 | 0.016 | 0.079 | 0.012 | 0.025 | 0.016
n=50,p=2,0=>5
r loLs [HK [KI [K2 [s3 |[s4 |KMI|[KM2|KM4 |KM5 |[KM6 [KM8 |[KM9 |[KMI0|KI2 |KI2
0.70 | 1.561 | 0.783 [ 0.323 [ 0.231 | 1.444 | 1.444 | 0.994 | 0.434 | 0.329 | 0.204 | 0.434 | 0.029 | 0.994 | 0.075 | 0.578 | 0.029
0.80 | 2.381 | 1.184 [ 0.388 [ 0.250 | 2.099 | 2.099 | 1.246 | 0.467 | 0.322 | 0.217 | 0.467 | 0.035 | 1.246 | 0.081 | 0.616 | 0.035
0.90 | 6.132 [ 2.978 [ 0.464 [ 0.199 | 4.572 | 4572 | 1.858 | 0.452 | 0.225 | 0.169 | 0.452 | 0.026 | 1.858 | 0.052 |0.539 | 0.026
n=>50,p=4,0=00l1
r loLs |[HK [KI [K2 [S3 [s4 |KMI|[KM2|KM4 |KM5 |[KM6 [KM8 |KM9 |[KMIO|KI2 |KI2
0.70 [ 0.023 | 0.022 [ 0.022 | 0.022 | 0.022 | 0.022 | 0.018 | 0.021 | 0.016 | 0.016 | 0.021 | 0.021 [ 0.022 | 0.016 | 0.016 | 0.021
0.80 | 0.021 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.020 | 0.021 |0.021 | 0.020
0.90 [ 0.023 { 0.022 [ 0.022 | 0.022 | 0.022 | 0.022 | 0.015 | 0.021 | 0.017 | 0.015 | 0.021 | 0.021 [ 0.019 | 0.017 | 0.015 | 0.021
n=50,p=4,0=1
v ToLs [HK [KI [K2 [S3 [s4 [KMI[KM2][KM4 [KM5 |[KM6 [KM8 [KM9 [KMIO[KI2 [KI2
0.70 | 0.210 | 0.124 | 0.040 | 0.043 | 0.191 | 0.191 | 0.069 | 0.047 | 0.034 | 0.031 | 0.047 | 0.019 | 0.126 | 0.024 | 0.046 | 0.019
0.80 | 0.374 | 0.214 | 0.056 | 0.059 | 0.319 | 0.319 | 0.078 | 0.053 | 0.037 | 0.037 | 0.053 | 0.023 | 0.176 | 0.030 | 0.050 | 0.023
0.90 | 0.600 | 0.335 [ 0.063 | 0.071 | 0.494 | 0.494 | 0.074 | 0.045 | 0.027 | 0.028 | 0.045 | 0.020 | 0.235 |0.022 | 0.040 | 0.020
n=50,p=4,0=>5
r loLs [HK [KI [K2 [s3 [s4 |KMI|[KM2|KM4|KM5 |[KM6 [KM8 |KM9 |[KMIO0|KI2 |KI2
0.70 | 4.868 | 2.686 | 0.489 | 0.552 | 4.413 | 4.413 | 1.386 | 0.969 | 0.517 | 0.408 | 0.969 | 0.042 | 2.817 |0.225 | 0.810 | 0.042
0.80]9.112 [ 4.978 [ 0.698 | 0.911 | 7.735 | 7.735 | 1.481 | 0.924 | 0.394 | 0.356 | 0.924 | 0.040 | 4.065 |0.176 |0.730 | 0.040
0.90 | 14.84 | 8.068 [ 0.999 | 1.504 | 12.04 | 12.04 | 1.516 | 1.023 | 0.314 | 0.301 | 1.023 | 0.035 | 5.570 | 0.139 | 0.635 | 0.035
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n=100,p=2,0 =0.01

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K12

K12

0.70

0.010

0.006

0.006

0.006

0.006

0.006

0.005

0.009

0.008

0.004

0.009

0.009

0.005

0.008

0.004

0.009

0.80

0.010

0.006

0.006

0.006

0.006

0.006

0.005

0.009

0.007

0.003

0.009

0.009

0.005

0.007

0.003

0.009

0.90

0.036

0.034

0.034

0.034

0.034

0.034

0.032

0.010

0.010

0.023

0.010

0.010

0.032

0.010

0.023

0.010

n=100,p=2,0=1

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KM5

KM6

KMS8

KM9

KMI10

K12

K12

0.70

0.039

0.023

0.013

0.011

0.038

0.038

0.028

0.011

0.009

0.008

0.011

0.008

0.028

0.007

0.017

0.008

0.80

0.048

0.027

0.013

0.011

0.045

0.045

0.031

0.010

0.008

0.008

0.010

0.008

0.031

0.006

0.016

0.008

0.90

0.118

0.067

0.029

0.021

0.106

0.106

0.064

0.021

0.018

0.017

0.021

0.010

0.064

0.012

0.032

0.010

n=100,p=2,0=>5

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K12

K12

0.70

0.812

0.412

0.163

0.113

0.779

0.779

0.572

0.221

0.165

0.102

0.221

0.012

0.572

0.031

0.326

0.012

0.80

1.026

0.518

0.178

0.114

0.968

0.968

0.653

0.212

0.150

0.096

0.212

0.011

0.653

0.028

0.033

0.011

0.90

2.115

1.005

0.222

0.118

1.861

1.861

0.960

0.226

0.132

0.099

0.226

0.013

0.960

0.029

0.013

0.013

n=100,p=4,

o =0.01

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K12

K12

0.70

0.010

0.010

0.010

0.010

0.010

0.010

0.008

0.010

0.008

0.008

0.010

0.010

0.010

0.008

0.008

0.010

0.80

0.010

0.010

0.010

0.010

0.010

0.010

0.009

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.90

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

n=100,p=4,0=1

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KM5

KM6

KMS8

KM9

KMI10

K12

K12

0.70

0.089

0.053

0.019

0.020

0.085

0.085

0.037

0.024

0.018

0.016

0.024

0.010

0.063

0.012

0.024

0.010

0.80

0.131

0.077

0.023

0.025

0.123

0.123

0.041

0.026

0.018

0.017

0.026

0.010

0.083

0.013

0.025

0.010

0.90

0.236

0.132

0.029

0.035

0.213

0.213

0.045

0.026

0.016

0.016

0.026

0.010

0.125

0.013

0.024

0.010

n=100,p=4,0=>5

OLS

HK

K1

K2

S3

S4

KM1

KM2

KM4

KMS5

KM6

KM8

KM9

KM10

K12

K12

0.70

1.966

1.067

0.213

0.245

1.879

1.879

0.727

0.440

0.253

0.199

0.440

0.016

1.365

0.103

0.423

0.016

0.80

3.065

1.679

0.278

0.330

2.869

2.869

0.816

0.458

0.219

0.180

0.458

0.015

1.889

0.084

0.409

0.015

0.90

5.757

3.139

0.420

0.599

5.195

5.195

0.913

0.432

0.165

0.158

0.432

0.015

2.967

0.068

0.369

0.015
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Table A.3: Simulated MSE for fixed p, vy and o and different values of n.
p=2,y=07,0 =00l
= |oLs [HK |[K1 |[K2 |[s3 S4 KMI | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 | K12 | K12
10 | 0.427 | 0.426 | 0.426 | 0.426 | 0.426 | 0.426 | 0.389 | 0.125 | 0.129 | 0.272 | 0.125 | 0.125 | 0.389 | 0.129 | 0.272 | 0.125
20 | 0.035]0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.030 | 0.032 | 0.032 | 0.020 | 0.032 | 0.032 | 0.030 | 0.032 | 0.020 | 0.032
30 [0.122 ] 0.121 | 0.121 | 0.121 | 0.121 | 0.121 | 0.117 | 0.035 | 0.037 | 0.093 | 0.035 | 0.035 | 0.117 | 0.037 | 0.093 | 0.035
40 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.086 | 0.026 | 0.028 | 0.071 | 0.026 | 0.026 | 0.086 | 0.028 | 0.071 | 0.026
50 |0.013 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.011 | 0.012 | 0.013 | 0.008 | 0.012 | 0.012 | 0.011 | 0.011 | 0.008 | 0.012
100 | 0.010 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.005 | 0.009 | 0.008 | 0.004 | 0.009 | 0.009 | 0.005 | 0.008 | 0.004 | 0.009
p=2,y=0.7,0=0.5
" |OLS |HK |KlI |[K2 |[S3 S4 KMI | KM2 | KM4 | KM5 | KM6 | KM8 [ KM9 | KMI10 | K12 | KI2
10 | 0.765 | 0.516 | 0.336 | 0.269 | 0.517 | 0.517 | 0.304 | 0.172 | 0.171 | 0.189 | 0.172 | 0.136 | 0.304 | 0.149 | 0.222 | 0.136
20 | 0.090 | 0.061 | 0.045 | 0.041 | 0.072 | 0.072 | 0.043 | 0.029 | 0.025 | 0.025 | 0.029 | 0.038 | 0.043 | 0.029 | 0.028 | 0.038
30 |0.161 | 0.118 | 0.089 | 0.078 | 0.145 | 0.145 | 0.107 | 0.056 | 0.055 | 0.060 | 0.056 | 0.038 | 0.107 | 0.044 | 0.079 | 0.038
40 | 0.114 | 0.086 | 0.067 | 0.059 | 0.107 | 0.107 | 0.083 | 0.043 | 0.042 | 0.046 | 0.043 | 0.028 | 0.083 | 0.032 | 0.063 | 0.028
50 | 0.027 | 0.020 | 0.016 | 0.015 | 0.025 | 0.025 | 0.018 | 0.011 | 0.010 | 0.010 | 0.011 | 0.016 | 0.018 | 0.012 | 0.016 | 0.016
100 | 0.014 | 0.010 | 0.008 | 0.007 | 0.013 | 0.013 | 0.010 | 0.005 | 0.005 | 0.005 | 0.005 | 0.008 | 0.010 | 0.006 | 0.006 | 0.008
p=2,y=070=1
" OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KM5 [ KM6 | KM8 | KM9 | KMI10 | K12 | K12
10 | 1.799 | 1.051 | 0.438 | 0.297 | 1.042 | 1.042 | 0.479 | 0.270 | 0.223 | 0.215 | 0.270 | 0.143 | 0.479 | 0.163 | 0.291 | 0.143
20 | 0.264 | 0.152 | 0.080 | 0.064 | 0.209 | 0.209 | 0.119 | 0.059 | 0.047 | 0.043 | 0.059 | 0.040 | 0.119 | 0.035 | 0.068 | 0.040
30 |0.279 | 0.171 | 0.098 | 0.080 | 0.240 | 0.240 | 0.158 | 0.083 | 0.073 | 0.066 | 0.083 | 0.039 | 0.158 | 0.047 | 0.104 | 0.039
40 |0.194 | 0.124 | 0.073 | 0.059 | 0.177 | 0.177 | 0.126 | 0.066 | 0.058 | 0.051 | 0.066 | 0.029 | 0.126 | 0.035 | 0.084 | 0.029
50 |0.076 | 0.046 | 0.027 | 0.023 | 0.071 | 0.071 | 0.049 | 0.023 | 0.020 | 0.017 | 0.023 | 0.016 | 0.049 | 0.014 | 0.030 | 0.016
100 | 0.039 | 0.023 | 0.013 | 0.011 | 0.038 | 0.038 | 0.028 | 0.011 | 0.009 | 0.008 | 0.011 | 0.008 | 0.028 | 0.007 | 0.017 | 0.008
p=2,y=07,0=5
" OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KMS5 [ KM6 | KM8 | KM9 | KMI10 | K12 | K12
10 |36.39 | 18.75 | 3.898 | 1.701 | 18.36 | 18.36 | 6.025 | 2.733 | 1.446 | 1.204 | 2.733 | 0.317 | 6.025 | 0.547 | 2.373 | 0.317
20 | 5.529]2.823 | 1.010 | 0.645 | 4.299 | 4.299 | 2.393 | 1.198 | 0.853 | 0.524 | 0.198 | 0.116 | 2.393 | 0.246 | 1.293 | 0.116
30 | 4417|2277 | 0.757 | 0.465 | 3.654 | 3.654 | 2.041 | 0.795 | 0.553 | 0.402 | 0.795 | 0.072 | 2.041 | 0.160 | 1.022 | 0.072
40 |2.685 | 1.378 | 0.534 | 0.358 | 2.373 | 2.373 | 1.470 | 0.587 | 0.426 | 0.295 | 0.587 | 0.049 | 1.470 | 0.114 | 0.786 | 0.049
50 | 1.561 | 0.783 | 0.323 | 0.231 | 1.444 | 1.444 | 0.994 | 0.434 | 0.329 | 0.204 | 0.434 | 0.029 | 0.994 | 0.075 | 0.578 | 0.029
100 | 0.812 | 0.412 | 0.163 | 0.113 | 0.779 | 0.779 | 0.572 | 0.221 | 0.165 | 0.102 | 0.221 | 0.012 | 0.572 | 0.031 | 0.326 | 0.012
p=2,y=0.8,0=001
» |oLs [HK |[K1 |[K2 |[s3 S4 KMI | KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 | K12 | K12
10 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.073 | 0.057 | 0.121 | 0.094 | 0.025 | 0.121 | 0.121 | 0.057 | 0.095 | 0.025 | 0.120
20 | 0.035 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.030 | 0.032 | 0.032 | 0.020 | 0.032 | 0.032 | 0.030 | 0.032 | 0.020 | 0.032
30 | 0.021 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.018 | 0.034 | 0.027 | 0.009 | 0.034 | 0.034 | 0.034 | 0.027 | 0.009 | 0.034
40 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.086 | 0.026 | 0.028 | 0.071 | 0.026 | 0.026 | 0.086 | 0.028 | 0.071 | 0.026
50 |0.073 | 0.071 | 0.071 | 0.071 | 0.071 | 0.071 | 0.068 | 0.020 | 0.022 | 0.054 | 0.020 | 0.020 | 0.068 | 0.022 | 0.054 | 0.020
100 | 0.010 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.005 | 0.009 | 0.007 | 0.003 | 0.009 | 0.009 | 0.005 | 0.007 | 0.003 | 0.009
p=2,y=08,0=05
" OLS | HK K1 K2 S3 S4 KMI1 | KM2 | KM4 | KM5 [ KM6 | KM8 | KM9 | KMI10 | K12 | K12
10 | 0.438 | 0.244 | 0.117 | 0.084 | 0.243 | 0.243 | 0.087 | 0.065 | 0.053 | 0.047 | 0.065 | 0.084 | 0.087 | 0.063 | 0.048 | 0.084
20 |0.334 | 0.225 | 0.149 | 0.20 | 0.255 | 0.255 | 0.156 | 0.077 | 0.077 | 0.086 | 0.077 | 0.05 | 0.156 | 0.065 | 0.107 | 0.059
30 | 0.084 | 0.051 | 0.031 | 0.025 | 0.065 | 0.065 | 0.032 | 0.017 | 0.014 | 0.013 | 0.017 | 0.026 | 0.032 | 0.019 | 0.016 | 0.026
40 | 0.045 | 0.029 | 0.020 | 0.018 | 0.039 | 0.039 | 0.023 | 0.013 | 0.011 | 0.011 | 0.013 | 0.019 | 0.023 | 0.014 | 0.013 | 0.019
50 | 0.096 | 0.070 | 0.053 | 0.047 | 0.089 | 0.089 | 0.067 | 0.033 | 0.032 | 0.035 | 0.033 | 0.022 | 0.067 | 0.025 | 0.048 | 0.022
100 | 0.016 | 0.010 | 0.008 | 0.007 | 0.015 | 0.015 | 0.010 | 0.005 | 0.004 | 0.004 | 0.005 | 0.008 | 0.010 | 0.006 | 0.006 | 0.008




136 On developing ridge regression parameters: a graphical investigation
p=2,y=080=1
» |oLs [HK [K1 [K2 [S3 [s4 |[KMI [KM2|KM4 |[KM5 |KM6 |KMS [ KM9 [ KMI0 [KI2 |KI2
10 | 1.608 | 0.866 | 0.254 | 0.133 { 0.840 | 0.840 | 0.271 | 0.121 | 0.084 | 0.082 | 0.121 | 0.089 | 0.271 | 0.075 | 0.115 | 0.089
20 [0.776 | 0.444 | 0.182 | 0.127 | 0.535 | 0.535 [ 0.265 | 0.117 | 0.099 | 0.098 | 0.117 | 0.061 | 0.265 | 0.071 | 0.146 | 0.061
30 |0.273 | 0.143 | 0.053 | 0.037 | 0.207 | 0.207 | 0.099 | 0.038 | 0.027 | 0.025 | 0.038 | 0.027 | 0.099 | 0.043 | 0.027 | 0.099
40 |0.140 | 0.076 | 0.036 | 0.027 | 0.120 | 0.120 | 0.068 | 0.028 | 0.021 | 0.019 | 0.028 | 0.020 | 0.068 | 0.016 | 0.034 | 0.020
50 |0.172 ] 0.107 | 0.061 | 0.049 | 0.156 | 0.156 | 0.106 | 0.050 | 0.043 | 0.039 | 0.050 | 0.022 | 0.106 | 0.026 | 0.067 | 0.022
100 | 0.048 | 0.027 | 0.013 | 0.011 | 0.045 | 0.045 | 0.031 | 0.010 | 0.008 | 0.008 | 0.010 | 0.008 | 0.031 | 0.006 | 0.016 | 0.008
p=2,y=08,0=5
* JoLs [HK [K1 [K2 [S3 [s4 [KMI [KM2[KM4 |[KM5 [KM6 [KMS [KM9 [KMI0[KI2 [KI2
10 [38.59 [20.17 [ 4.069 | 1.577 [ 20.19 [ 20.19 [ 6.265 [ 2.712 ] 1.384 | 1.138 | 2.712 [ 0.271 | 6.265 | 0.477 |3.325 [ 0.271
20 [1377]6.66 | 1.312]0.619[896 [896 [3.500]1.265]0.703 [ 0.521]1.265[0.113 [3.500 [ 0.217 |1.280 [ 0.113
30 [6.236 [3.051 | 0.788 | 0.430 | 4.653 | 4.653 | 2.168 | 0.762 | 0.469 | 0.329 | 0.762 | 0.058 | 2.168 | 0.124 | 0.898 | 0.058
40 [3.133 ] 1.549 | 0.480 | 0.294 | 2.660 | 2.660 | 1.490 [ 0.559 [ 0.371 | 0.252 | 0.559 | 0.038 | 1.490 [ 0.08 [ 0.711 | 0.038
50 [2.381 [ 1.184 [ 0.388 | 0.250 | 2.099 | 2.099 | 1.246 | 0.467 | 0.322 ] 0.217 | 0.467 | 0.035 | 1.246 [ 0.081 | 0.616 | 0.035
100 | 1.026 [ 0.518 [ 0.178 [ 0.114 [ 0.968 | 0.968 | 0.653 [ 0.212] 0.150 | 0.096 | 0.212 [ 0.011 [ 0.653 | 0.028 | 0.033 | 0.011
p=2,y=09,0=001
» |oLs [HK |[K1 |[K2 [S3 [S4 |[KMI [KM2|KM4 |KM5 |KM6 |KMS8 | KM9 | KMI10 [ K12 |KI2
10 [0.073 0.073 [ 0.073 | 0.073 | 0.073 | 0.073 | 0.052 | 0.120 | 0.094 | 0.020 | 0.120 | 0.052 | 0.094 | 0.020 | 0.121 | 0.052.
20 |0.032[0.032 [ 0.032 | 0.032 | 0.032 | 0.032 | 0.025 | 0.032 | 0.032 | 0.011 | 0.032 | 0.032 | 0.025 | 0.032 | 0.011 | 0.032
30 | 0.021 [0.020 [ 0.020 | 0.020 | 0.020 | 0.020 | 0.016 | 0.034 | 0.027 | 0.007 | 0.034 | 0.034 | 0.016 | 0.027 | 0.007 | 0.034
40 |0.090 | 0.089 | 0.089 | 0.089 | 0.089 | 0.089 | 0.079 | 0.026 | 0.027 | 0.053 | 0.026 | 0.026 | 0.079 | 0.027 | 0.054 | 0.026
50 |0.013[0.012 [ 0.012 | 0.012 [ 0.012 | 0.012 | 0.009 | 0.020 | 0.015 | 0.004 | 0.012 | 0.012 | 0.009 | 0.015 | 0.004 | 0.012
100 | 0.036 | 0.034 | 0.034 | 0.034 | 0.034 [ 0.034 [ 0.032 [ 0.010 [ 0.010] 0.023 | 0.010 | 0.010 | 0.032 | 0.010 |0.023 | 0.010
p=2,y=09,0=05
» |oLs [HK [K1 |[K2 [S3 [s4 |[KMI [KM2|KM4 |[KM5 |KM6 |KMS8 [ KM9 [ KM10 [KI2 |KI2
10 [0.618]0.329 | 0.125 [ 0.076 | 0.313 | 0.313 | 0.087 | 0.063 | 0.051 | 0.043 | 0.063 | 0.085 | 0.087 | 0.063 | 0.042 | 0.085
20 |0.190 [ 0.104 | 0.049 | 0.035 | 0.121 | 0.121 | 0.047 | 0.028 | 0.023 | 0.020 | 0.028 | 0.040 | 0.047 | 0.029 | 0.022 | 0.040
30 [0.123 | 0.066 | 0.030 | 0.022 | 0.087 | 0.087 | 0.035 | 0.017 | 0.014 | 0.013 | 0.017 | 0.027 | 0.035 | 0.019 | 0.015 | 0.027
40 |0.195[0.125 [ 0.070 | 0.053 | 0.151 | 0.151 | 0.084 | 0.035 | 0.035 | 0.039 | 0.035 | 0.027 | 0.084 | 0.029 | 0.050 | 0.027
50 |0.072[0.039 [ 0.017 | 0.012 | 0.054 | 0.054 | 0.023 | 0.010 | 0.008 | 0.007 | 0.010 | 0.016 | 0.023 | 0.012 | 0.009 | 0.016
100 | 0.058 | 0.039 | 0.026 | 0.021 | 0.053 | 0.053 | 0.036 | 0.014 | 0.014 | 0.016 | 0.014 | 0.010 | 0.036 | 0.011 | 0.023 | 0.010
p=2,vy=09,0=1
» JoLs [HK [K1 [K2 [S3 [s4 [KMI [KM2[KM4 |[KM5 |[KM6 [KMS8 [KM9 [ KMI0[KI2 [KI2
10 [2.445 [ 1.267 [ 0.296 | 0.137 | 1.191 | 1.191 [ 0301 [ 0.133 [ 0.195 | 0.081 | 0.133 | 0.094 | 0.301 | 0.074 | 0.109 | 0.090
20 [0.666 | 0.340 | 0.094 | 0.056 | 0.419 [ 0.419 [ 0.155 | 0.050 | 0.037 [ 0.037 | 0.050 | 0.042 | 0.155 | 0.034 | 0.058 | 0.042
30 [0.449 | 0.230 | 0.061 | 0.034 | 0.304 | 0.304 | 0.116 | 0.034 | 0.023 | 0.023 | 0.034 | 0.027 | 0.116 | 0.022 | 0.039 | 0.027
40 |0.499 | 0.275 | 0.093 | 0.057 | 0.358 | 0.358 | 0.160 | 0.052 | 0.044 | 0.045 | 0.052 | 0.027 | 0.160 | 0.031 |0.071 | 0.027
50 [0.248 [ 0.123 [ 0.033 [ 0.019 | 0.189 | 0.189 | 0.079 | 0.020 | 0.013 | 0.013 | 0.020 | 0.016 | 0.079 | 0.012 | 0.025 | 0.016
100 | 0.118 | 0.067 | 0.029 | 0.021 | 0.106 | 0.106 | 0.064 | 0.021 | 0.018 | 0.017 | 0.021 | 0.010 | 0.064 | 0.012 | 0.032 | 0.010
p=2,y=09,0=5
» |oLs [HK |[K1 |[K2 [S3 [s4 |[KMI [KM2|KM4 |KM5 |KM6 |KMS8 | KM9 | KM10 [ K12 |KI2
10 | 61.65[31.81 |4.630 | 1.542 | 30.49 | 30.49 | 7.311 | 2.890 | 1.224 | 1.222 | 2.890 | 0.256 | 7.311 | 0.438 |2.203 | 0.256
20 [15.76 | 7.692 | 1.441 | 0.599 | 9.601 | 9.601 | 3.440 | 1.303 | 0.635 | 0.457 | 1.303 | 0.093 | 3.440 | 0.176 | 1.141 | 0.093
30 |10.65[5.177 | 0.686 | 0382 | 7.235 | 7.235 | 2.718 | 0.754 | 0.385 | 0.301 | 0.754 | 0.052 | 2.718 | 0.101 | 0.826 | 0.052
40 |9.842 | 4.804 | 0.761 | 0.301 | 6.910 | 6.910 | 2.565 | 0.538 | 0.288 | 0.256 | 0.538 | 0.042 | 2.565 | 0.085 | 0.698 | 0.042
50 |6.132 2978 | 0.464 | 0.199 | 4572 | 4572 | 1.858 | 0.452 | 0.225 | 0.169 | 0.452 | 0.026 | 1.858 | 0.052 | 0.539 | 0.026
100 | 2.115 | 1.005 | 0.222 [ 0.118 | 1.861 | 1.861 | 0.960 | 0.226 | 0.132 | 0.099 | 0.226 | 0.013 | 0.960 | 0.029 | 0.013 | 0.013




Gisela Muniz, B. M. Golam Kibria, Kristofer Mansson and Ghazi Shukur 137
p=4,y=07,0=0.01
" |OLS |[HK |[KI [K2 [S3 S4 [KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 [ K12 |KI2
10 [0.184 | 0.183 [ 0.183 | 0.183 | 0.183 | 0.183 | 0.071 | 0.159 | 0.103 | 0.063 | 0.159 | 0.159 | 0.133 | 0.103 | 0.063 | 0.159
20 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.060 | 0.060 | 0.047 | 0.054 | 0.060 | 0.060 | 0.062 | 0.047 |0.054 | 0.060
30 |0.379 [ 0.378 | 0.378 | 0.378 | 0.378 | 0.378 | 0.031 | 0.037 | 0.033 | 0.030 | 0.037 | 0.037 | 0.036 | 0.033 | 0.030 | 0.037
40 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.015 | 0.025 | 0.016 | 0.012 | 0.025 | 0.025 | 0.022 | 0.016 |0.012 | 0.025
50 |0.023 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.018 | 0.021 | 0.016 | 0.016 | 0.021 | 0.021 | 0.022 | 0.016 | 0.016 | 0.021
100 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.008 | 0.010 | 0.008 | 0.008 | 0.010 | 0.010 | 0.010 | 0.008 | 0.008 | 0.010
p=4,y=07,0=05
» |OoLS [HK |[K1I [K2 |[s3 S4 |[KMI1 |[KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 [ K12 |KI2
10 | 1.482]0.847 [ 0.190 | 0.171 | 0.664 | 0.664 | 0.133 | 0.140 | 0.104 | 0.105 [ 0.140 | 0.124 | 0.234 [ 0.103 [ 0.111 | 0.124
20 [0.359 [ 0.223 | 0.082 | 0.079 | 0.221 | 0.221 | 0.081 | 0.067 | 0.059 | 0.060 | 0.067 | 0.052 | 0.117 | 0.053 | 0.068 | 0.052
30 [0.143 | 0.097 | 0.051 [ 0.051 |0.123 | 0.123 | 0.052 | 0.043 | 0.038 | 0.039 | 0.043 | 0.035 | 0.084 | 0.036 | 0.043 | 0.035
40 |0.089 | 0.057 [ 0.027 [ 0.027 [ 0.078 | 0.078 | 0.028 | 0.022 | 0.018 | 0.018 | 0.022 | 0.021 | 0.049 | 0.016 |0.021 | 0.021
50 [0.071 | 0.049 | 0.026 | 0.027 | 0.066 | 0.066 | 0.030 | 0.023 | 0.020 | 0.020 | 0.023 | 0.019 | 0.047 | 0.018 | 0.024 | 0.019
100 | 0.030 | 0.021 [ 0.012 | 0.012 | 0.029 | 0.029 | 0.015 | 0.011 | 0.010 | 0.010 | 0.011 | 0.009 | 0.023 | 0.009 | 0.012 | 0.009
p=4y=070=1
" |OLS |[HK |[KI |K2 [S3 S4 [KMI1 |KM2 [ KM4 | KM5 | KM6 | KM8 | KM9 | KM10 | K12 |KI12
10 |5.564 | 3.088 | 0.392 | 0.359 | 2.278 | 2.278 | 0.329 | 0.327 | 0.185 | 0.188 | 0.327 | 0.139 | 0.701 | 0.151 |0.233 | 0.139
20 | 1.185 [ 0.646 | 0.121 | 0.114 | 0.673 | 0.673 | 0.160 | 0.145 | 0.097 | 0.093 | 0.145 | 0.057 | 0.288 | 0.075 | 0.121 | 0.057
30 |0.455 | 0.266 | 0.083 | 0.087 | 0.383 | 0.383 | 0.119 | 0.091 | 0.063 | 0.060 | 0.091 | 0.037 | 0.225 | 0.048 | 0.083 | 0.037
40 |0.291 | 0.167 | 0.047 | 0.050 | 0.253 | 0.253 | 0.077 | 0.055 | 0.036 | 0.033 | 0.055 | 0.022 | 0.150 | 0.025 | 0.050 | 0.022
50 |0.210 | 0.124 | 0.040 | 0.043 [ 0.191 | 0.191 | 0.069 | 0.047 | 0.034 | 0.031 | 0.047 | 0.019 | 0.126 | 0.024 | 0.046 | 0.019
100 | 0.089 | 0.053 | 0.019 | 0.020 | 0.085 | 0.085 | 0.037 | 0.024 | 0.018 | 0.016 | 0.024 | 0.010 | 0.063 | 0.012 [ 0.024 | 0.010
p=4y=070=5
" |OLS |[HK |[KI [K2 [S3 S4 [KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 [ K12 |KI2
10 | 129.0 | 70.10 | 6.667 | 6.191 | 50.63 | 50.63 | 6.225 | 6.286 | 2.659 | 2.616 | 6.286 | 0.568 | 14.72 | 1.587 |3.912 | 0.568
20 |[28.52(14.95 | 1.624 | 1.495 | 15.52 | 15.52 | 2.851 | 2.599 | 1.390 | 1.208 | 2.599 | 0.209 | 5.958 | 0.785 | 1.921 | 0.209
30 | 10.56 [ 5.809 | 1.060 | 1.178 | 8.725 | 8.725 [ 2.214 | 1.668 | 0.849 | 0.709 | 1.668 | 0.096 | 4.821 | 0.410 | 1.304 | 0.096
40 |6.643 | 3.564 | 0.639 | 0.723 | 5.760 | 5.760 | 1.634 | 1.154 | 0.629 | 0.518 | 1.154 | 0.056 | 3.380 | 0.292 | 0.978 | 0.056
50 |4.868 | 2.686 | 0.489 | 0.552 | 4.413 | 4.413 | 1.386 | 0.969 | 0.517 | 0.408 | 0.969 | 0.042 | 2.817 | 0.225 | 0.810 | 0.042
100 | 1.966 | 1.067 | 0.213 | 0.245 | 1.879 | 1.879 | 0.727 | 0.440 | 0.253 | 0.199 | 0.440 | 0.016 | 1.365 | 0.103 | 0.423 | 0.016
p=4,7y=080=001
» |OoLS |[HK |[K1I [K2 |[s3 S4 |[KMI1 |[KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 [ K12 |KI2
10 [0.170 [ 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.192 | 0.169 | 0.190 | 0.193 [ 0.169 | 0.169 | 0.193 | 0.190 | 0.193 | 0.169
20 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0.063 | 0.064 | 0.064 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063
30 | 0.040 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.038 | 0.037 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.037 | 0.038
40 |0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.016 | 0.026 | 0.017 | 0.013 | 0.026 | 0.026 | 0.023 | 0.017 |0.013 | 0.026
50 |0.021 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.021 | 0.021 | 0.021 | 0.021 | 0.021 | 0.020 | 0.021 | 0.021 | 0.020
100 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.009 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010
p=4,y=080=05
" |OLS |[HK |[KI |K2 [S3 S4 [KMI |KM2 | KM4 | KM5 | KM6 | KM8 | KM9 | KM10 [ K12 |KI2
10 | 12.04 [ 6.365 | 0.341 | 0.289 | 3.308 | 3.308 | 0.264 | 0.217 | 0.213 | 0.223 [ 0.217 | 0.183 | 0.409 | 0.205 | 0.234 | 0.183
20 [0.367 [ 0.241 [ 0.111 [0.110 | 0.280 | 0.280 | 0.102 | 0.087 | 0.080 | 0.082 | 0.087 | 0.067 | 0.154 | 0.076 | 0.088 | 0.067
30 [0.184 [ 0.121 [ 0.059 | 0.059 | 0.154 | 0.154 | 0.059 | 0.047 | 0.044 | 0.044 | 0.047 | 0.038 | 0.094 | 0.041 |0.049 | 0.038
40 | 0.113 [ 0.071 | 0.029 | 0.029 | 0.097 | 0.097 | 0.030 | 0.023 | 0.018 | 0.019 | 0.023 | 0.024 | 0.058 | 0.017 |0.022 | 0.022
50 | 0.112{0.073 [ 0.035 | 0.035 | 0.098 | 0.098 | 0.037 | 0.029 | 0.028 | 0.028 | 0.029 | 0.023 | 0.061 | 0.026 |0.031 | 0.023
100 | 0.040 | 0.027 | 0.015 | 0.015 | 0.038 | 0.038 | 0.018 | 0.013 | 0.012 | 0.012 | 0.013 [ 0.010 | 0.028 [ 0.011 | 0.014 [ 0.010
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p=4,7y=080=1
» |oLs [HK [K1 [K2 [S3 [s4 |[KMI [KM2|KM4 |[KM5 |KM6 |KMS [ KM9 [ KMI0 [KI2 |KI2
10 |47.61(24.49 [ 0.661 | 0.495 | 11.43 | 11.43 | 0.485 | 0.384 | 0.514 | 0.283 | 0.306 | 0.384 | 0.196 | 0.247 | 0.359 | 0.196
20 [1.295[0.756 | 0.182 | 0.196 | 0.936 | 0.936 | 0.198 | 0.154 | 0.109 | 0.110 | 0.154 | 0.069 | 0.419 | 0.090 | 0.139 | 0.069
30 |0.653 |0.385 [ 0.101 | 0.109 | 0.532 | 0.532 | 0.129 | 0.093 | 0.064 | 0.063 | 0.093 | 0.040 | 0.282 | 0.050 | 0.085 | 0.040
40 |0.378 [ 0.215 | 0.055 | 0.059 | 0.322 | 0.322 | 0.083 | 0.057 | 0.035 | 0.033 | 0.057 | 0.023 | 0.182 | 0.024 | 0.050 | 0.023
50 |0.374 [ 0.214 | 0.056 | 0.059 | 0.319 | 0.319 | 0.078 | 0.053 | 0.037 | 0.037 | 0.053 | 0.023 | 0.176 | 0.030 | 0.050 | 0.023
100 | 0.131 | 0.077 | 0.023 | 0.025 | 0.123 | 0.123 | 0.041 | 0.026 | 0.018 | 0.017 | 0.026 | 0.010 | 0.083 | 0.013 | 0.025 | 0.010
p=4y=080=5
* JoLs [HK [K1 [K2 [S3 [s4 [KMI [KM2[KM4 |[KM5 [KM6 [KMS [KM9 [KMI0[KI2 [KI2
10 [ 1190 [ 613 [10.40 | 6.984 [292.0 [292.0 | 7.455 | 5.690 | 2.463 | 2.868 | 5.690 | 0.582 | 21.58 | 1.507 | 4.237 | 0.582
20 [30.56 [ 16.70 [ 2.512 [ 3.022 [ 21.69 | 21.69 | 3.336 | 2.627 | 1.147 | 1.041 | 2.627 [ 0.169 | 8.985 [ 0.588 | 1.850 | 0.169
30 [14.29 [ 7.724 [ 1.260 | 1.633 | 11.44 | 11.44 [ 2.190 | 1.643 | 0.703 | 0.606 | 1.643 [ 0.083 | 5.743 [ 0.328 | 1.159 | 0.083
40 [8.662[4.724 0.760 | 0.890 [ 7.315 | 7.315 | 1.701 | 1.283 | 0.579 | 0.473 | 1.283 | 0.056 | 4.022 | 0.257 |0.933 | 0.056
50 [9.112[4.978 [0.698 [ 0.911 | 7.735 [ 7.735 | 1.481 | 0.924 [ 0.394 [ 0.356 | 0.924 | 0.040 | 4.065 | 0.176 | 0.730 | 0.040
100 [ 3.065 | 1.679 [ 0.278 | 0.330 [ 2.869 | 2.869 | 0.816 | 0.458 [ 0.219 ] 0.180 | 0.458 | 0.015 | 1.889 | 0.084 | 0.409 | 0.015
p=4,7y=09,0=001
» |oLs [HK |[K1 |[K2 [S3 [S4 |[KMI [KM2|KM4 |KM5 |KM6 |KMS8 | KM9 | KMI10 [ K12 |KI2
10 |0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.032 | 0.037 | 0.033 | 0.032 | 0.037 | 0.037 | 0.035 | 0.033 | 0.032 | 0.037
20 | 0.063 | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | 0.049 | 0.061 | 0.057 | 0.022 | 0.061 | 0.061 | 0.054 | 0.057 |0.052 | 0.061
30 |0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.032 | 0.037 | 0.033 | 0.032 | 0.037 | 0.037 | 0.035 | 0.033 | 0.032 | 0.037
40 |0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.024 | 0.027 | 0.024 | 0.023 | 0.027 | 0.027 | 0.026 | 0.024 | 0.024 | 0.027
50 |0.023[0.022 [ 0.022 | 0.022 | 0.022 | 0.022 | 0.015 | 0.021 | 0.017 | 0.015 | 0.021 | 0.021 | 0.019 | 0.017 |0.015 | 0.021
100 | 0.010 [ 0.010 | 0.010 | 0.010 [ 0.010 [ 0.010 | 0.010 [ 0.010 [ 0.010] 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |0.010 | 0.010
p=4,y=090=05
» |oLs [HK [K1 |[K2 [S3 [s4 |[KMI [KM2|KM4 |[KM5 |KM6 |KMS8 [ KM9 [ KM10 [KI2 |KI2
10 [ 0.308 | 0.184 | 0.065 | 0.066 | 0.247 | 0.247 | 0.053 | 0.040 | 0.036 | 0.037 | 0.040 | 0.035 | 0.118 | 0.035 | 0.041 | 0.035
20 0579 [0.344 [ 0.112 | 0.113 [ 0.419 | 0.419 | 0.085 | 0.070 | 0.063 | 0.064 | 0.070 | 0.059 | 0.171 | 0.060 | 0.070 | 0.059
30 [0.308 | 0.184 | 0.065 | 0.066 | 0.247 | 0.247 | 0.053 | 0.040 | 0.036 | 0.037 | 0.040 | 0.035 | 0.118 | 0.035 | 0.041 | 0.035
40 |0.171 [ 0.105 | 0.043 | 0.044 | 0.144 | 0.144 | 0.042 | 0.030 | 0.027 | 0.028 | 0.030 | 0.026 | 0.080 | 0.025 | 0.032 | 0.026
50 |0.166 | 0.099 | 0.032 | 0.033 | 0.138 | 0.138 | 0.030 | 0.021 | 0.019 | 0.019 | 0.021 | 0.020 | 0.071 | 0.018 | 0.022 | 0.020
100 | 0.069 | 0.043 | 0.018 | 0.018 | 0.063 | 0.063 | 0.019 | 0.013 | 0.012 | 0.012 | 0.013 | 0.010 | 0.040 | 0.011 | 0.014 | 0.010
p=4,7v=09,0=1
» JoLs [HK [K1 [K2 [S3 [s4 [KMI [KM2[KM4 |[KM5 |[KM6 [KMS8 [KM9 [ KMI0[KI2 [KI2
10 | 1.149 [ 0.651 | 0.123 [ 0.147 [ 0.900 | 0.900 [ 0.121 [ 0.091 [ 0.051 | 0.051 | 0.091 | 0.036 | 0.383 | 0.041 | 0.070 | 0.036
20 [2.099 | 1.170 [ 0.210 | 0.248 | 1.500 | 1.500 [ 0.179 | 0.136 | 0.083 | 0.087 [ 0.136 | 0.061 | 0.530 | 0.070 | 0.112 | 0.061
30 | 1.149 [ 0.651 [ 0.123 | 0.147 | 0.900 | 0.900 | 0.121 | 0.091 | 0.051 | 0.051 | 0.091 | 0.036 | 0.383 | 0.041 | 0.070 | 0.036
40 | 0.600 | 0.336 | 0.073 | 0.084 | 0.490 | 0.490 | 0.092 | 0.067 | 0.039 | 0.039 | 0.067 | 0.026 | 0.241 | 0.030 | 0.055 | 0.026
50 [ 0.600 [ 0.335 [ 0.063 | 0.071 | 0.494 | 0.494 | 0.074 | 0.045 | 0.027 | 0.028 | 0.045 | 0.020 | 0.235 | 0.022 | 0.040 | 0.020
100 | 0.236 | 0.132 | 0.029 | 0.035 | 0.213 | 0.213 | 0.045 | 0.026 | 0.016 | 0.016 | 0.026 | 0.010 | 0.125 | 0.013 | 0.024 | 0.010
p=4y=090=5
» |oLs [HK |[K1 |[K2 [S3 [s4 |[KMI [KM2|KM4 |KM5 |KM6 |KMS8 | KM9 | KM10 [ K12 |KI2
10 |27.93 | 15.14 | 1.876 | 2.760 | 21.46 | 21.46 | 2.269 | 1.690 | 0.509 | 0.507 | 1.690 | 0.068 | 8.729 | 0.246 | 0.987 | 0.068
20 [51.09[27.72(3.112 | 35.62 | 35.62 | 3.155 | 2.742 | 8.514 | 0.835 | 0.820 | 2.742 [ 0.129 | 11.74 | 0.416 | 1.478 | 0.129
30 [27.93 | 15.14 | 1.876 | 2.760 | 21.46 | 21.46 | 2.269 | 1.690 | 0.509 | 0.507 | 1.690 | 0.068 | 8.729 | 0.246 | 0.987 | 0.068
40 |9.842 | 4.804 | 0.761 | 0.301 | 6.910 | 6.910 | 2.565 | 0.538 | 0.288 | 0.256 | 0.538 | 0.042 | 2.565 | 0.085 | 0.698 | 0.042
50 | 14.84 | 8.068 [ 0.999 | 1.504 | 12.04 | 12.04 | 1.516 | 1.023 | 0.314 | 0.301 | 1.023 | 0.035 | 5.570 | 0.139 | 0.635 | 0.035
100 | 5.757 | 3.139 | 0.420 | 0.599 | 5.195 | 5.195 | 0.913 | 0.432 | 0.165 | 0.158 | 0.432 | 0.015 | 2.967 | 0.068 | 0.369 | 0.015




SORT 36 (2) July-December 2012, 139-152

A note on the use of supply-use tables
in impact analyses*
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Abstract

Little attention has so far been paid to the problems inherent in interpreting the meaning of results
from standard impact analyses using symmetric input-output tables. Impacts as well as drivers
of these impacts must be either of the product type or of the industry type. Interestingly, since
supply-use tables distinguish products and industries, they can cope with product impacts driven
by changes in industries, and vice versa. This paper contributes in two ways. Firstly, the demand-
driven Leontief quantity model, both for industry-by-industry as well as for product-by-product
tables, is formalised on the basis of supply-use tables, thus leading to impact multipliers, both for
industries and products. Secondly, we demonstrate how the supply-use formulation can improve
the incorporation of disparate satellite data into input-output models, by offering both industry and
product representation. Supply-use blocks can accept any mix of industry and product satellite
data, as long as these are not overlapping.

MSC: 91B76—-Environmental economics (natural resource models, harvesting, pollution, etc.)

Keywords: Technology assumptions, supply-use framework, multipliers.

1. Background

An input-output matrix of technical coefficients (A) generally depicts either the direct
requirements of commodity i needed to produce one physical unit of commodity j or,
alternatively, the direct inputs from industry i needed to produce one physical unit of
industry j. The former is built up with a product-by-product input-output table and the
latter, with an industry-by-industry input-output table. Both are called symmetric input-
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output tables for having products or industries in both rows and columns; and the choice
between them has only been addressed so far in detail by Rueda-Cantuche (2011).

Before the SNA-68 (UN, 1968), national statistical institutes almost exclusively
constructed industry-by-industry input-output tables instead of commodity-by-commo-
dity tables! and they used to set up the so-called transaction tables (ten Raa, 1994).
In such tables, each element displayed the input requirements of industry i per unit of
industry j’s production, as well as the final demand compartments (household and gov-
ernment consumption, investment and exports net of imports). Ten Raa (1994) noted that
an input-output transaction table reduced the construction of a matrix of technical coef-
ficients A just to a matter of dividing each element by their corresponding total output.

However, there were three different problems identified here. Firstly, products and
industries cannot always be classified in the same way. Secondly, in addition to a
multitude of inputs, industries may also have a multitude of outputs. Thirdly, products
contained in each row and column of an industry-by-industry table are not homogeneous
in terms of production (see e.g. Rainer, 1989).

To address these complications, the Systems of National Accounts proposed by the
United Nations (1968, 1993), first established the concepts of use and make matrices
within an input-output framework. Demand (use) and supply (make) of commodities
were described by industries. This new framework provided a more accurate descrip-
tion of product flows and at the same time, made economists face a new problem in
the construction of technical coefficients. Basically, the construction of technical coeffi-
cients was reduced to a matter of treatment of secondary products. Many establishments
produce only one group of commodities, which are the primary products of the indus-
try to which they are classified. However, some establishments produce commodities
that are not among the primary products of the industry to which they belong. As a
result, non-zero off-diagonal elements would appear in the make matrix. Alternative
treatments of secondary products rest upon the separation of outputs and inputs associ-
ated with secondary products so that they can be added to the outputs and inputs of the
industry in which the secondary product is a characteristic output. Assumptions on these
inputs structures imply an A-matrix of technical coefficients as a function of the use and
make matrices. The reader should be aware that a make matrix (industry by product) is
merely the transposition of a supply matrix (product by industry) and we may use both
indistinctly.

The matrix of technical coefficients has been used for economic analysis by means
of the so-called Leontief quantity model and the Leontief price model, which are based
on the following two equations: X = AX 4+ yand p = pA + v.

Here, x is a column vector of total output; y, a column vector of final demand; p,
a row vector of prices; and v, a row vector of value-added coefficients. The standard

1. In what follows, we will refer to the “commodity-by-commodity input-output tables” and “product-by-product
input-output tables” as fully equivalent.
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Leontief quantity model would be given by x = (I— A )"y, and the standard Leontief
price model asp =v(I—A )L

The first equation is used for national or regional economic planning; in accordance,
there will be a direct effect over the output levels which will depend on the final demand
variations (Ay) and additional indirect effects that will be determined by the so called
Leontief inverse matrix, (— A)~!. The second equation can be used to assess the price
effects resulting from an energy shock, which surely will bring about variations in the
value-added shares of a product, to mention an example. For the time being and for
the sake of clarification, we have deliberately omitted the identification of the outputs as
products or industries. We will introduce this distinction later on.

Within this context, two major trade-offs were recently indentified concerning the
choice of type of symmetric input-output tables to be used in input-output analyses
(Rueda-Cantuche, 2011). The main limitation of these tables relates to their underlying
symmetry, which implies that they must be defined as either product-by-product or
industry-by-industry.

On the one hand, the Leontief quantity model, which is driven by demand for
products, presents a trade-off whenever the impact analysis relates to external accounts
(environment, employment, etc) pre-multiplying the Leontief inverse matrix and which
are only available at industry detail. Then, either one could incorrectly assume that these
external accounts reflect product detail, and employ a product-by-product input-output
table in order to assess the effects of a unit change in final demand of a single product;
or, alternatively, correctly take the external accounts as industry-specific information and
use industry-by-industry tables. The latter practice, however, would preclude calculating
effects of changes in the final demand of single products, because in an industry-
by-industry table, final demand only exists as mixed bundles of goods and services
produced by particular industries.

On the other hand, the Leontief price model, which is driven by industry supply,
imposes trade-offs whenever the impact analysis relates to external accounts that are
only available at industry detail. In this case, key questions such as the fuel price effects
generated by an increase in the labour costs of the petroleum refining industry cannot
really be answered by input-output price models as it may be generally thought. Either
one could incorrectly assume that variations in the primary costs (labour) happen within
homogenous branches of activity rather than in industries and thus, employ product-by-
product tables or instead, one could correctly assume that price changes of labour costs
effectively occur within entire industries and therefore, use industry-by-industry tables.
In the latter case, the reported price impacts will refer to the fuel industry rather than to
the fuel product itself.

Rueda-Cantuche (2011) proposed the use of supply and use tables instead of input-
output tables for resolving the different trade-offs efficiently. Indeed, supply and use
tables are defined and compiled at product-by-industry detail and do not require the
symmetries causing the trade-offs described above. However, this author did not go
beyond the mere statement and discussion of the convenience of extending the use
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of supply and use tables in input-output analysis. Therefore, this paper is aimed at
formalizing Rueda-Cantuche’s argument concerning the trade-offs that he identified.

In the next section, we will introduce the basics of the construction of symmetric
input-output tables, which will be further described under a common schematic rep-
resentation in Section 3. In what follows, Section 4 will generalize the calculation of
impact multipliers for industries and commodities, separately. Section 5 describes the
main empirical findings for the Brazilian economy in 2005 and finally, the last section
will draw the main conclusions of this paper.

2. Introduction

Amongst other textbooks, the United Nations Handbook on Input-Output Table Com-
pilation (UN 1999) distinguishes two basic technology assumptions for the construc-
tion of symmetric product-by-product input-output tables: in the industry technology
assumption, the production recipe is unique to an industry, while products’ input recipe
is a weighted sum over industries’ production recipes; in the commodity technology as-
sumption?, the input recipe is unique to a product, while industries’ production recipes
are a weighted sum over their primary and secondary outputs.

In practice, both assumptions are known to have drawbacks: Applying the commod-
ity technology assumption can lead to negative elements during table construction, and
requires the supply matrix to be square, which could lead to loss of detail in rectangular
accounts.® The commodity technology assumption has proven to be theoretically supe-
rior while the industry technology assumption has been shown to be implausible (Kop
Jansen and Ten Raa 1990). Comparative advantages of these perspectives are however
not the concern of this work.

The construction of industry-by-industry input-output tables* requires two main as-
sumptions stating that when product output is translated into industry output, the pattern

2. Inwhat follows, we will refer to the “commodity technology assumption” and the “product technology assumption”
as fully equivalent.

3. Konijn and Steenge (1995), Almon (2000), Bohlin and Widell (2006) and Smith and McDonald (2011) suggest
ways of getting around the problems associated with the technology assumption. Konijn and Steenge (1995) suggest an
input allocation procedure that uses activities of industries in their production of products. However, the data necessary
to make this method operational are generally not available. Almon (2000) suggests a balancing algorithm that explicitly
deals with cases where the subtraction of inputs of from a secondary production recipe would generate negative entries.
Bohlin and Widell (2006) (extended by Smith and McDonald, 2011) apply an optimisation calculus, where they define
the technology assumptions in terms of process coefficients that are both industry- and product-specific (see Ten Raa and
Rueda-Cantuche 2007), and then minimize the variance of these process coefficients subject to summation rules.

4. In this context, Yamano and Ahmad (2006) argue that the “description of the conversion (industry-technology
assumption) is inaccurate where industry-by-industry tables are concerned, and is better described as a fixed product
sales structure assumption. In other words the conversion merely assumes that the proportion of domestically produced
commodity A bought by industry B from industry C is proportional to industry C’s share of the total (domestic) economy
production of commodity A. Put this way, it is clear that this is a far less demanding assumption than that implied by the
equivalent, but differently named, “industry technology” assumption.
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of sales will remain the same. This is the so-called sales structure approach that only
admits two options: 1) where industry supply is independent of the products delivered
(fixed industry sales structure), and 2) where industry supply is independent of the pro-
ducing industry (fixed product sales structure). Employing arguments similar to those
used in discussing the industry and product technology assumptions for the construc-
tion of product-by-product input-output tables (Ten Raa and Rueda-Cantuche 2007),
Rueda-Cantuche and Ten Raa (2009) proved that the fixed industry sales approach is
theoretically superior.

Notwithstanding the above theoretical considerations, statistical offices construct na-
tional input-output tables based on hybrid technology or combined fixed sales structure
assumptions. So, in what follows, we will simply take what statistical office publish as
given, and start with a formulation of their different assumptions using a supply-use
framework; then, we will show how the supply-use blocks can be useful in simultane-
ously generating multipliers both for industries and for products (and thus solving the
trade-offs caused by the symmetry of input-output tables).

We will show in the next sections how the industry technology and the fixed product
sales structure assumptions can be jointly formulated in a common framework that
allows carrying out impact analyses simultaneously in terms of products and industries.
The same will apply for the product technology and the fixed industry sales structure
assumptions.

3. Schematic representation of the assumptions made in
the construction of input-output tables

In the United Nations Handbook on Input-Output Table Compilation (UN 1999) and
the Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 2008), there are
various assumptions to be used for the construction of industry by industry or product-
by-product symmetric input-output tables.® In the following, we will show that at least
the ones referred to in the last section can be represented in one unified supply-use
formulation. We will use the standard Eurostat Manual notation (UN 1999). Notice that
the supply matrix, which we will denote V' corresponds to the transposition of the so
called “make matrix”.

5. A number of authors suggest further alternatives such as mixed technology and activity technology assumptions
(see Gigantes (1970); Schinnar (1978); Konijn and Steenge (1995) but for a comprehensive list, see also Ten Raa and
Rueda-Cantuche (2003)) For a generalized formulation of the industry and product technology assumptions, see Ten Raa
and Rueda-Cantuche (2007).
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3.1. Industry-related assumptions

Let a single-region supply-use transaction block T be represented by:

0 U
T:[vo] , (M

with U being a product-by-industry use matrix, showing the input U;; of product i into
industry j, and V being a industry-by-product make matrix, with V;; showing the output
by industry i of product j. This block formulation is well known in the input-output
literature® and it is already proposed as an example by Eurostat (2008).

Let T satisfy the national accounting identity:

ol el =] >

where [e.e;]" is the row summation vector formed by two summation sub-vectors cor-
responding to commodities (e.) and industries (e;), superscript | denotes transposition,
y. is a vector of final demand of products, and q and g are vectors of total product and
industry outputs, respectively. Equation 2 includes the product balance Ue; +y,. = q,
and the industry balance Ve, = g. Therefore, it can be transformed into:

MEHEER MR MR HE
{Laslls &LV olls el [5]-
{50V ol[s & JHE]

R IR RS A

where D and B” form the supply and use coefficient matrices, 1 is an identity matrix, and
the hat symbol (*) denotes a diagonalised vector. B = Ug ! is called the (product-
by industry) use coefficients matrix (input structures), and D = Vg~ ! is called the
(industry-by-product) market share matrix.

6. Note that the supply-use-block formulation requires the make matrix V to be defined as industry-by-product, and
not as product-by-industry.

7.  Our B matrix is equivalent to the Z matrix in Eurostat (2008).
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Using the supply-use-block formulation in Equation (3), a compound Leontief
inverse can be written as:
1 -B]'

Applying the partitioned inverse of Miyazawa (1968), Equation (4) can be written as:
« _ | I+BLiD BLyj
L= ’ ’ ) 5
! [ LD Ly ] ©)

where Li; = (I— DB)_1 is precisely the Leontief inverse of the industry-by-industry
type of a technical coefficient matrix constructed on the basis of the fixed product
sales structure (see Eurostat, 2008, p. 349). Considering the series expansion of Lj; =
(I+DB+ (DB) (DB) +---), we find:

BL;;D=B (I+DB+(DB)2+~--)D:BD+B(DB)D+B(DBDB)D+... —
— BD+ (BD) (BD) + (BD) (BD) (BD) + - -,

which leads to:
I+BL;;D=I+BD+(BD)(BD)+---=(I— BD)f1 = Licc,

and which is identical to the series expansion of the Leontief inverse of a product-
by-product type technical coefficients matrix constructed with the industry technology
model (see Eurostat, (2008), p. 349). Equation (5) can be simplified to

(6)

Lf — |: LI,cc LLCCB :| )

- LiiD Ly

Regarding the off-diagonal elements, the reader may find easily that L ;D = DL .
and BLj;; = Li.B. The matrices of market shares D and of input structures B are clearly
used to convert the resulting impacts of industries into those of products, and impacts of
products into those of industries, respectively.

Hence, and this is the first result of this paper, when supply and use matrices are
handled under an integrated supply-use framework, the compound Leontief inverse
elegantly reproduces the product-by-product type model under the industry technology
assumption and the industry-by-industry model under the fixed product sales structure
assumption.
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3.2. Product-related assumptions

Product technology assumes an input recipe that is characteristic for a certain product.
Here, we use the relationships Ve, = ge; = g and Ve = q, and re-write the national
accounting identity in Equation (2) as:

PO ()
HIBERRWER
Then, Equation (7) can be transformed into:
HRMIRIHRIAERIITEE
(REBI AR
(EHER A
SECH

T R el )

where C = V' g ! and B form the supply and use coefficients blocks, respectively.
Using the supply-use-block formulation in Equation (8), a new compound Leontief

inverse can be written as:

—1
. I -B
LC - |: _C—l I :| . (9)
Applying the partitioned inverse of Miyazawa 1968), Equation (9) can be written as:
" I+BLc;iC™' BLcj ]
L= — -, 10
¢ [ Lci C! Lcii (19)

where Lcji = (I —-c! B) ! is the Leontief inverse of the industry-by-industry technical
coefficient matrix constructed on the basis of the fixed industry sales structure (Eurostat,
(2008), p. 349). Considering the series expansion of Lcj = (I +C 'B+ (Cf1 B)
(C_IB) +--~), we find:
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BLc;C '=B (I—i-C_]B—i- (C_IB)2+...) Cc =
=BC '+B(C"'B)C"'+B(C'B)(C'B)C '+ .- =
=BC'+(BC ) (BC )+ (BC)(BC")(BC ")+

and yields:
I+BLc;C ' =1+BC '+ (BC ') (BC ') +.-.= I-BC ") =Ly,

which is the series expansion of the Leontief inverse of a product-by-product technical
coefficient matrix using the product technology model (see Eurostat, (2008), p. 349).
Then, Equation (10) can be reduced to:

LC,cc LC,cc B

L. = , 11
¢ LciC' L (ih

It is easy to show that the off-diagonal terms transform as L j; cl=c'! Lcc and
BL(;i = Lcc.B. The matrices C~! and B are used to convert impacts of industries into
those of products, and impacts of products into those of industries, respectively.

Hence, as the second result of this paper, when supply and use matrices are integrated
in a supply-use framework, the compound Leontief inverse elegantly reproduces the
product-by-product type model assuming the product technology assumption and the
industry-by-industry model assuming the fixed industry sales structure assumption.

It is interesting to note that these two models provide negative elements in the
resulting technical coefficient matrices, while the models dealt with in the subsection
3.1 always provide non-negative terms.

4. Generalized input-output calculations

It was always the intention of Leontief to combine the input-output table with external,
physical information, for example in order to examine questions relating to environ-
mental impacts or the labour market (Leontief and Ford, 1970; Leontief and Duchin,
1986). Since Leontief’s work there have been numerous publications of what Miller
and Blair (2009) call generalized input-output analyses. For example, Kagawa and Suh
(2009), and Suh et al. (2010) (see also references therein) use make and use matrices
in environmental Life Cycle Assessment. When applied to a supply-use framework, the
generalised calculus elegantly reproduces industry and product multipliers in one single
shot. Assume for example that external physical information fj is available only at the
industry level. Invoking the industry technology assumption, as in Equation (6), multi-
pliers can be written as:
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[0 £ |L{=[fLiD fLy; |, (12)

with f; Ly ;; representing industries, and fj L;;; D representing commodities. This feature
was applied in a generalized multi-region analyses of embodied CO, for Denmark and
its trading partners (Lenzen et al. 2004). Alternatively, if physical information f. is
available only for products, multipliers are then defined as:

[f. 0] L{=[fLi fLiB]. (13)

In a study on Brazil by Wachsmann et al. (2009), physical information on energy
consumption was generally available for industries as fj, but for some industries, detailed
commodity information was available as f.. Hence, a vector [ f. £ } was constructed
with fi representing the industry data f; and setting the industries represented in f, to
zero. The industry and product multipliers are then:

[ fc f;k ] Lf - [ fj*LI,iiD"’chI,cc fi*LI,ii +chI,ccB ] . (14)

In Equations (12-14), the matrices D and B are used to convert industry data into
product data (f; Ly ), and vice versa (f; ). Similar relationships can be derived for models
assuming product-related assumptions.

5. Empirical application

Provided rectangular supply-use frameworks with more products than industries, the
calculation of total energy intensities (energy multipliers) can differentiate between
products and industries, and thus add value over conventional mutlipliers based on
input-output tables. Take for instance, the petrol and coke refining industry, which may
produce petrol, fuel oil and diesel oil, amongst other products.

In order to prove the utility of supply-use tables in impact analysis and the theoretical
framework presented before, we will run two experiments aiming to compare supply-
use-based with input-output-based energy multipliers for the Brazilian economy in
2005. In particular, we will first determine simultaneously industry and commodity
multipliers as in (12), assuming that energy data are only available at the industry
level (f;). Second, we will discuss the difference between supply-use-based commodity
multipliers and input-output-based industry multipliers when a mix of energy industry
data f; and energy commodity data f. is used.

The Brazilian supply-use tables for 2005 issued by the Instituto Brasileiro de Ge-
ografia e Estatistica (IBGE, 2008) distinguish 110 commodities, but only 55 industries.
Commodity detail is higher than industry detail especially for agriculture, food manu-
facturing, and refining. Whilst energy data are not available at the high commodity detail
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Table 1: Energy multipliers (in units of kt oil equivalent per million 2005 Reais—ktoe/mR$, where
1 ktoe/mR$ = 102 terajoules per million US$) for Brazilian cropping and forestry industries and com-

modities.
Industry data only Industry & commodity data

SUT industry multipliers fiLp; £ Ly +fcLicc B
Cropping and forestry 0.1999 0.1595
Grazing and fishing 0.1024 0.1051

SUT commodity multipliers fiL;D fr Li;iD+f. Ly
Rice in the husk 0.1960 0.1136
Corn 0.1721 0.1114
Wheat 0.1999 0.1140
Sugar cane 0.1981 0.1138

Soy beans 0.1972 0.1136
Other crops 0.1910 0.1129
Manioc 0.1948 0.1135
Tobacco 0.1992 0.1139
Cotton 0.1956 0.1136
Citrus fruit 0.1974 0.1137
Coffee 0.1970 0.1137
Forestry products 0.1973 1.3943

for the agriculture and food manufacturing sectors, energy data on refining distinguishes
diesel oil, fuel oil, petrol, and LPG (EPE 2011).

In a first experiment, we re-classified the Brazilian raw energy data into the 55-
industry classification f;. As (12) shows, supply-use-based and input-output-based in-
dustry multipliers are the same: fjL;;. However, the supply-use framework allows the
simultaneous determination of commodity multipliers fiL;; D (see (12)). Except for
wheat, which is solely produced by the ‘Cropping and forestry’ industry, commodity
multipliers are lower than industry multipliers for all crops (Table 1, industry data only
column). This is because some crops are partly produced by mixed-business broadacre
farms in the less energy-intensive ‘Grazing and fishing’ sector. Such co-product detail is
only available in supply-use tables, and lost in input-output tables. The error associated
with this loss of detail is 16% for corn, and 1-3% for other crops.®

In a second experiment, we re-classified only the raw energy data for the petroleum
and coke refining sector into the 110-commodity classification f., and deleted the entry
for petroleum and coke refining in the industry data f. As Equation (14) shows, both
supply-use-based industry and commodity multipliers are now different from input-
output-based industry multipliers. Once again, the supply-use framework allows the
simultaneous determination of commodity multipliers. Only now, the distinction of
‘Forestry products’ as an energy-intensive industry becomes apparent (Table 1, industry
and commodity data column). This is because wood charcoal operations that are only

8. Relative errors are calculated as |fi Ly D —f Ly; D +fc Ly |/fi Ly D, in this case |0.1721 —0.1114(/0.1721 ~
16%.
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Table 2: Energy multipliers (in units of kt oil equivalent per million 2005 Reais—ktoe/mR$) for Brazilian
petroleum and coke refining industries and commodities.

Industry & commodity data

10 industry multipliers SUT multipliers
Petroleum and coke refining 0.9859 0.8406
LPG 1.1012
Petrol 0.4727
Gasoalcohol 0.4693
Fuel oil 1.6410
Diesel oil 1.2405
Other petroleum and coke refining products 0.8804

part of the ‘Forestry products’ sub-sector consume much more energy than cropping.
Once, again, such detail is only available in supply-use tables, since forestry and
cropping is aggregated in input-output tables. The error associated with this aggregation
is in the order of 80%.

Similar errors between 70% and 90% can be observed when comparing the one
input-output-based multiplier for the ‘Petroleum and coke refining’ industry, and the
supply-use-based commodity multipliers for the six refining sub-sectors (Table 2). Here,
LPG, fuel oil, and diesel oil appear more energy-intensive than petrol and gasoalcohol,
which once again cannot be discerned from input-output industry multipliers.

Our results bear significant implications for real-world policy. Assume for example
that the Brazilian Government debated the impact of a 90 R$/toe energy tax (about
5% on top of the price of petrol, for example) on agricultural commodities, and in
turn on different food products. Such a policy question would be rather mis-informed
by any analysis using only industry-specific energy data (see Table 1). Opponents of
such energy taxes could base their arguments on multipliers derived from industry data,
and warn that if the government went ahead with the tax, households (who consumed
46.5 bR$ of crop sector output in 2008) would be short by 90 R$/toe x 0.19 ktoe/mR$
x 46.5 bR$ = 800 mR$. However, upon using mixed industry and commodity data in
a SUT framework, it would become clear that some of this tax impact would in reality
affect forestry products (charcoal), and not crop-based products, and that the real adverse
impact on households would be significantly lower at 90 R$/toe x 0.11 ktoe/mR$ x
46.5 bR$ = 450 mR$.

6. Conclusions

We believe that the unnoticed drawback underlying the use of input-output tables
in impact analyses is their symmetry, in the sense that they must be defined either
on a product-by-product or on an industry-by-industry basis. Rueda-Cantuche (2011)
identified two major trade-offs in the calculation of impact multipliers when using
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symmetric input-output tables. However, the author only stated that supply-use tables
would overcome this undesirable effect but without formalising his argument. This
note extends Rueda-Cantuche’s reasoning and shows that the use of supply-use tables
in a common framework concerning product- and industry-related assumptions may
overcome the undesirable limitations of symmetric input-output tables. We show that
the industry technology and the fixed product sales structure assumptions can be
jointly formulated in a common framework that allows us to carry out impact analyses
simultaneously in terms of products and industries. The same applies for the product
technology and the fixed industry sales structure assumptions. As we have proven for the
empirical example of Brazilian energy multipliers, using rectangular supply-use tables
has significant advantages for real-world impact analyses whenever physical satellite
data (environmental, socio-economic, tourism, etc.) are available.
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Abstract

Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define
and study a new class of distributions called the Kummer beta generalized family to extend the
normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions.
Some special models are discussed. The ordinary moments of any distribution in the new family
can be expressed as linear functions of probability weighted moments of the baseline distribution.
We examine the asymptotic distributions of the extreme values. We derive the density function
of the order statistics, mean absolute deviations and entropies. We use maximum likelihood
estimation to fit the distributions in the new class and illustrate its potentiality with an application
to a real data set.
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1. Introduction

Beta distributions are very versatile and can be used to analyze different types of
data sets. Many of the finite range distributions encountered in practice can be easily
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transformed into the standard beta distribution. In econometrics, quite often the data are
analyzed by using finite-range distributions. Generalized beta distributions have been
widely studied in statistics and numerous authors have developed various classes of
these distributions. Eugene et al. (2002) proposed a general class of distributions based
on the logit of a beta random variable by employing two parameters whose role is to
introduce skewness and to vary tail weights.

Following Eugene et al. (2002), who defined the beta normal (BN) distribution,
Nadarajah and Kotz (2004) introduced the beta Gumbel distribution (BGu), provided
expressions for the moments, examined the asymptotic distribution of the extreme order
statistics and performed maximum likelihood estimation (MLE). Nadarajah and Gupta
(2004) defined the beta Fréchet (BF) distribution and derived analytical shapes of the
probability density and hazard rate functions. Nadarajah and Kotz (2005) proposed the
beta exponential (BE) distribution, derived the moment generating function (mgf), the
first four moments, and the asymptotic distribution of the extreme order statistics and
discussed MLE. Most recently, Pescim et al. (2010) and Paranaiba et al. (2011) have
studied important mathematical properties of the beta generalized half-normal (BGHN)
and beta Burr XII (BBXII) distributions. However, those distributions do not offer
flexibility to the extremes (right and left) of the probability density functions (pdfs).
Therefore, they are not suitable for analyzing data sets with high degrees of asymmetry.

Ng and Kotz (1995) proposed the Kummer beta distribution on the unit interval (0, 1)
with cumulative distribution function (cdf) and pdf given by

F@) =K [ (10" exp(~cnyr
0
and
fx) =Kx'(1—x)""exp(—cx), 0<x<1,

respectively, where a > 0, b > 0 and —oo < ¢ < 0. Here,

K'= D@)'(b) 1Fi(a;a+b;—c) (D

I'(a+Db)
and

I'(a+Db)

. . _ ! a— _ A\ _ = 3 —(a)k(_c)k
1F1(a’a+b’_c)_W/o t 1(1 [)b lexp( Ct)dt_k;o(a-f—b)kk!

is the confluent hypergeometric function (Abramowitz and Stegun, 1968), I'(-) is the
gamma function and (d); = d(d +1)...(d +k — 1) denotes the ascending factorial.
Independently, Gordy (1998) has also defined the Kummer beta distribution in relation
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Figure 1: Plots of the Kummer beta pdf for some parameter values.

to the problem of common value auction. This distribution is an extension of the beta
distribution. It yields bimodal distributions on finite range for @ < 1 (and certain values
of the parameter c). Plots of the Kummer beta pdf are displayed in Figure 1 for selected
parameter values.

Consider starting from a parent continuous cdf G(x). A natural way of generating
families of distributions from a simple parent distribution with pdf g(x) = dG(x)/dx
is to apply the quantile function to a family of distributions on the interval (0, 1). We
now use the same methodology of Eugene et al. (2002) and Cordeiro and de Castro
(2011) to construct a new class of Kummer beta generalized (KBG) distributions. From
an arbitrary parent cdf G(x), the KBG family of distributions is defined by
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G(x)
F(x) =K /0 1 (1= 1) exp(—ct)d, 2)

where @ > 0 and b > 0 are shape parameters introducing skewness, and thereby promot-
ing weight variation of the tails. The parameter —oo < ¢ < o “squeezes” the pdf to the
left or to the right.

The pdf corresponding to (2) can be expressed as

f(0) =Kg®) G {1-G)} " exp{—c G(x)}, 3)

where K is defined in (1).

The KBG family of distributions defined by (3) is an alternative family of models
to the class of distributions proposed by Alexander et al. (2012). The shape parameter
¢ > 0 in Alexander ef al. (2012) together with @ > 0 and b > 0 promotes the weight
variation of the tails and adds flexibility. On the other hand, the parameter —oo < ¢ < o0
of the proposed family offers flexibility to the extremes (left and/or right) of the pdfs.
Therefore, the new family of distributions is suitable for analyzing data sets with high
degrees of asymmetry.

For each continuous G distribution (here and henceforth “G” denotes the baseline
distribution), we associate the KBG-G distribution with three extra parameters a, b and
¢ defined by the pdf (3). Setting u = ¢ /G(x) in equation (2), we obtain

F(x) = KG(x)* /O L[ GO ul ! exp—cGlx)u] du
_ gG(x)“fbl (@:1—ba+1;—cG(x);G()),

where @, is the confluent hypergeometric function of two variables defined by (Erdélyi
etal., 1953)
= (a)j+m (b)J Jym

Dy (a;b;cy) = Y O Y
jamo (€)jm

for [x| < 1 and |y| < 1.

Special generalized distributions can be generated as follow. The KBG-normal
(KBGN) distribution is obtained by taking G(x) in equation (3) to be the normal cdf.
Analogously, the KBG-Weibull (KBGW), KBG-gamma (KBGGa) and KBG-Gumbel
(KBGGu) distributions are obtained by taking G(x) to be the cdf of the Weibull, gamma
and Gumbel distributions, respectively. Hence, each new KBG-G distribution can be
obtained from a specified G distribution. The Kummer beta distribution is clearly a
basic example of the KBG distribution when G is the uniform distribution on [0, 1]. The
G distribution corresponds to a = b =1 and ¢ = 0. For ¢ = 0, the KBG-G distribution
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reduces to the beta-G distribution proposed by Eugene et al. (2002). Further, for b =1
and ¢ =0, the KBG-G distribution becomes the exponentiated-G distribution. One major
benefit of the KBG family of distributions is its ability to fit skewed data that cannot be
properly fitted by existing distributions.

We study some mathematical properties of the KBG family of distributions because
it extends several widely-known distributions in the literature. The article is outlined
as follows. Section 2 provides some special cases. In Section 3, we derive general
expansions for the new pdf in terms of the baseline pdf g(x) multiplied by a power series
in G(x). We can easily apply these expansions to several KBG distributions. In Section
4, we derive two simple expansions for moments of the KBG-G distribution as linear
functions of probability weighted moments (PWMs) of the G distribution. The mean
absolute deviations and Rényi entropy are determined in Sections 5 and 6, respectively.
In Section 7, we provide some expansions for the pdf of the order statistics. Extreme
values are obtained in Section 8. Some inferential tools are discussed in Section 9. In
Section 10, we analyze a real data set using a special KBG distribution. Section 11 ends
with some concluding remarks.

2. Special KBG generalized distributions

The KBG pdf (3) allows for greater flexibility of its tails and promotes variation of
the tail weights to the extremes of the distribution. It can be widely applied in many
areas of engineering and biological sciences. The pdf (3) will be most tractable when
the cdf G(x) and the pdf g(x) have simple analytic expressions. We now define some
of the many distributions which arise as special sub-models within the KBG class of
distributions.

2.1. KBG-normal

The KBGN pdf is obtained from (3) by taking G(-) and g(+) to be the cdf and pdf of the
normal distribution, N(u, o?), so that

oo () o (5O o (5) ool wo(52))

where x € R, u € R is a location parameter, o > 0 is a scale parameter, a and b are
positive shape parameters, ¢ € R, and ¢ () and ®(+) are the pdf and cdf of the standard
normal distribution, respectively. A random variable with the above pdf is denoted
by X ~ KBGN(a,b,c,u,0?). For u = 0 and o = 1, we have the standard KBGN
distribution. Further, the KBGN distribution with a =2, b = 1 and ¢ = 0 is the skew
normal distribution with shape parameter equal to one (Azzalini, 1985).
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2.2. KBG-Weibull

The cdf of the Weibull distribution with parameters f > 0 and a > 0 is G(x) =
1 —exp{—(Bx)*} for x > 0. Correspondingly, the KBG-Weibull (KGBW) pdf is

) =Kap®x* " [1—exp{—(Bx)*}]" " exp{—c[l —exp{—(Bx)*}] — b(Bx)"},

where x,a,b, 8 > 0 and ¢ € R. Let KBGW(a,b,c,a, ) denote a random variable with
this pdf. For a = 1, we obtain the KBG-exponential (KBGE) distribution. KBGW(1,5,0,1, )
is an exponential random variable with parameter 8* = b f3.

2.3. KBG-gamma

Let Y be a gamma random variable with cdf G(y) =I'g,(a)/I'(a) for y, a, B > 0, where
I'() is the gamma function and I';(a) = [;#* 'e'dtis the incomplete gamma function.
The pdf of a random variable X, say X ~ KBGGa(a,b,c,f3,a), having the KBGGa
distribution can be expressed as

b—1

f(x) - r‘(a>a+b71 F(a)

For @ = 1 and ¢ = 0, we obtain the KBGE distribution. KBGGa(1,5,0,(,1) is an
exponential random variable with parameter 5* = b f.

B Kﬁaxafl exp(—pfx) exp {—C r[o’x(a) }Fﬁx(a)a] {[‘(a) - Fﬁx(a)}

2.4. KBG-Gumbel

The pdf and cdf of the Gumbel distribution with location parameter u > 0 and scale
parameter o > 0 are given by

—1 X—u X— U
= — = — >0
N

G(x) =1 —exp{—exp (_)%“> }

respectively. The mean and variance are equal to u —yo and m?c?/6, respectively,
where y =~ 0.57722 is the Euler’s constant. By inserting these equations in (3), we obtain
a KBGGu random variable, say KBGGu(a,b,c,u,0).

Figure 2 displays some possible shapes of the four KBG pdfs. These plots show the
great flexibility achieved with the new distributions.

and
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Figure 2: (a) KBGN(8,2,¢,0,1), (b) KBGW(5,3,¢,0.5,4), (c) KBGGa(3,1.5,¢,4,2)
and (d) KBGGu(0.8,1,¢,0,1) pdfs (the red lines represent the beta-G pdfs).

3. Expansions for pdf and cdf

The cdf F(x) and pdf f(x) = dF (x)/dx of the KBG-G distribution are usually straight-
forward to compute given G(x) and g(x) = dG(x)/dx. However, we provide expan-
sions for these functions as infinite (or finite) weighted sums of cdf’s and pdf’s of
exponentiated-G distributions. In the next sections, based on these expansions, we ob-
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tain some structural properties of the KBG-G distribution, including explicit expressions
for moments, mean absolute deviations, pdf of order statistics and moments of order
statistics.

Using the exponential expansion in (2), we write

F(x) = ZW,‘ Ha+i,h (x), (4)
i=0
where w; = [K B(a+i,b)(—c)"]/i! and

H,,(x) = L /G(x) ja=1 (1 _t)b—ldt
' B(a,b) Jo

denotes the beta-G cdf with positive shape parameters a and b (Eugene et al., 2002).
Equation (4) reveals that the KBG-G cdf is a linear combination of beta-G cdf’s. This
result is important. It can be used to derive properties of any KBG-G distribution from
those of beta-G distributions.

For b > 0 real non-integer, we have the power series representation

(-G =Y (1) (”; 1) G, )

j=0

where the binomial coefficient is defined for any real. Expanding exp{—cG(x)} in
power series and using (5) in equation (2), the KBG-G cdf can be expressed as

F(x)= i wij G(x) (6)
i,j=0

where

K(-1)*¢ (b—1
wi,—g( )

T iNari+ )\ g

If b is an integer, the index i in the previous sum stops at b — 1. If a is an integer,
equation (6) reveals that the KBG-G pdf can be expressed as the baseline pdf multiplied
by an infinite power series of its cdf.

If a is a real non-integer, we can expand G(x)*"/ as follows

Gt = T -1 (T - e

k=0
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Then,
o k . .
. k
G(x)a+z+j _ Z Z(_l)k+r <a+l+J> < > G(x)r.
k=0r=0 k
Further, equation (2) can be rewritten as
ok
Fx)=Y Y tijx G, (7)
i,j,k=0r=0

where
k+r a+ i + .] k
tijkr =tijkr(a,b,c) = (—1) L L Wi

and w; ; is defined in (6). Replacing } ;" er{:o by Y7 Y, in equation (7), we obtain
F(x)=Y b,G(x), ®)
r=0

where the coefficient b, = Z(:fzo Y i, ti jxr denotes a sum of constants.
Expansion (8), which holds for any real non-integer a, expresses the KBG-G cdf as
an infinite weighted power series of G. If b is an integer, the index i in (7) stops at b — 1.
We also note that the cdf of the KBG family can be expressed in terms of exponentiated-
G cdfs. We have

Fx) =Y bV,(). ©)
r=0

where V, = G(x)" is an exponentiated-G cdf (Exp-G cdf for short) with power parameter
r.

The corresponding expansions for the KBG pdf are obtained by simple differentia-
tion of (6) for a > 0 integer

FO) =) ¥ wi, Gyttt (10)

i,j=0

where w; ; = (a+i+ j)w; ;. Analogously, from equations (8) and (9), for a > 0 real
non-integer, we obtain

() =) ¥ B G, an
r=0
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and
f) =Y crve(x), (12)
r=0

where b* = (r+1)b,;; and ¢, = b,y for r=0,1..., and v, = (r+1)g(x) G(x)"
denotes the Exp-G pdf with parameter r 4 1. Equation (12) reveals that the KBG-G pdf
is a linear combination of Exp-G pdfs. This result is important to derive properties of
the KBG-G distribution from those of the Exp-G distribution.

Mathematical properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar et al. (1995) for exponentiated Weibull, Gupta
et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for exponentiated
exponential and Nadarajah and Gupta (2007) for exponentiated gamma.

Equations (10)-(12) are the main results of this section. They play an important role
in this paper.

4. Moments and generating function

4.1. Moments

The sth moment of the KBG-G distribution can be expressed as an infinite weighted sum
of PWMs of order (s,q) of the parent G distribution from equation (10) for a integer
and from (11) for a real non-integer. We assume that ¥ and X follow the baseline G and
KBG-G distributions, respectively. The sth moment of X can be expressed in terms of the
(s,q)thPWMs of Y, say 7,, =E[Y*G(Y)?] (for ¢ =0,1,...), as defined by Greenwood
et al. (1979). The moments 7(s,q) can be derived for most parent distributions.

For an integer a, we have

py=EX) =Y W} Toasivjo1-
i=0

For a real non-integer a, we can write from (11)

/ *
My = E ,brTS-,"
r=0

So, we can calculate the moments of any KBG-G distribution as infinite weighted sums
of PWMs of the G distribution.

Alternatively, we can express . from (11) in terms of the baseline quantile function
Q(u) = G~ '(u). We have
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:wb* *g(x)G(x)" dx.
Y0 [ s

Setting u = G(x) in the last equation, we obtain

M—Zb*/uQ

Now, we express moments of KBG distributions from equation (12) in terms of
moments of Exp-G distributions. Let ¥, have the Exp-G pdf v, = (r+1) g(x) G(x)"
with power parameter (r+ 1). As a first example, consider G the Weibull distribution
with scale parameter A > 0 and shape parameter y > 0. If Y, ; has the exponentiated
Weibull distribution, its moments are

o (r+2) (s - (=r)i
E(Y’) = s I <;+1> )3 it(i+ 1)t/

i=0""

where (a); =a(a+1)...(a+i—1) denotes the ascending factorial. From this expecta-
tion and equation (12), the sth moment of the KBG-Weibull distribution is

(3 - (rH2)e ()i
For a second example, take the Gumbel distribution with cdf G(x) = 1 — exp

{—exp(—*F)}. The moments of ¥, having the exponentiated Gumbel distribution
with parameter (r+ 1) can be obtained from Nadarajah and Kotz (2006) as

e = 040 X (3w o (35) T+ 1)

From the last equation and (12), the sth moment of the KBG-Gumbel (KBGGu)
distribution becomes

=Tty (Yo (2 [renro)

r=0 i=0

p=1

p=1

Finally, as a third example, consider the standard logistic cdf G(x) = [1 +exp(—x)] '
We can easily obtain the sth moment of the KBG-logistic (KBGL) distribution as

:i‘acr <%>SB(H—(F+1),1—t)

t=0
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4.2. Generating function

Let X ~ KBG-G(a,b,c). We provide four representations for the mgf M (7) = E[exp(rX)]
of X. Clearly, the first one is

~

S

M(t) = =t
(r) ;,) NI
where u, = E(X*). The second one comes from

M(t) =KE [exp 1X —cG(X)] G (X) {1 - G(X)}b’l]
> (b—1 exp(tX —Uc)
_ _1\J sl
-epo (7))
where U is a uniform random variable on the unit interval. Note that X and U are not

independent.
A third representation for M(r) is obtained from (12)

M(t) :i)CiMiH(l),

where M;(t) is the mgf of Y;.; ~ Exp-G(i+ 1). Hence, for any KBG-G distribution,
M(t) can be immediately determined from the mgf of the G distribution.
A fourth representation for M(¢) can be derived from (11) as

M(t) =Y b} p(t,i), (13)
i=0

where p(t,r) = [~ exp(tx) g(x) G(x)"dx can be expressed in terms of the baseline
quantile function Q(u) as

p(t,a) = /O " explr O(u)] dut (14)

We can obtain the mgf of several KBG distributions from equations(13) and (14). For
example, the mgfs of the KBG-exponential (KBGE) (with parameter 1), KBGL and
KBG-Pareto (KBGPa) (with parameter v > 0) are easily calculated as

M(t) = ib;‘B(H-l,l—)Lt“), M(t) = ib;*B(i+ 1,1—1),
i=0 i=0
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and

o *

b*t?
M(t) = exp(—t) Z " B(i—i—l,l—pv’l),
ip=0 P

respectively.
Clearly, four representations for the characteristic function (chf) ¢ (1) = E[exp(itX)]
of the KBG-G distribution are immediately obtained from the above representations for

the mgf by ¢ (1) = M(it), where i = /—1.

5. Mean absolute deviations
Let X ~ KBG-G(a,b,c). The mean absolute deviations about the mean (5,(X)) and
about the median (6,(X)) can be expressed as

81(X) =E(|X —pi|) =201 F () — 2T (ui),

62(X) =E(IX —M|) = uy —2T (M), (15)
respectively, where u; = E(X), F(u}) comes from (2), M = Median (X) denotes the

median determined from the nonlinear equation F (M) = 1/2, and T(z) = [*_ x f(x)dx.
Setting u = G(x) in (11) yields

T(z) =) biT.(z), (16)
r=0
where the integral 7;(z) can be expressed in terms of Q(u) = G~!(u) by

Gl)
T.(z) :/0 u" Q(u)du. (17)

The mean absolute deviations of any KBG distribution can be computed from
equations (15)-(17). For example, the mean absolute deviations of the KBGE (with
parameter 1), KBGL and KBGPa (with parameter v > 0) are immediately calculated
using

R

- (=1)/T(r+j+1)[1 —exp(—jz)]
= rg X G
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and

w jo(—=1) (" (/
- B

Jj=0k=0

respectively.
An alternative representation for 7'(z) can be derived from (12) as

T(z)= /Z xf(x)dx= Zch,+1(z), (18)
el r=0
where
Jo1(z) = /j X Vi1 (x)dx. (19)

Equation (19) is the basic quantity to compute mean absolute deviations of Exp-G
distributions. Hence, the KBG mean absolute deviations depend only on the quantity
Jr+1(z2). So, alternative representations for 61(X) and §,(X) are

o

§1(X) =2u\F (u)) =2 crdepr (W) and 862(X) =p) —2) ¢ Jo1 (M).
r=0 r=0

A simple application is provided for the KBGW distribution. The exponentiated Weibull
pdf with parameter r+ 1 is given by

vt () = (- DB exp {—~(Bx)?} [1 —exp { ~(B)}]

for x > 0. Then,

Jr(@) = (r+ 1) p* [ exp{~(Bx)"} [1 —exp{~(Bx)"}]"dx

oo

=rdf* Y (-1)* <;> /OZ x' exp [—(k+1)(Bx)"] dx.

k=0

We calculate the last integral using the incomplete gamma function y(a,x) = [5 w* e ™¥dw
for a > 0. Then,

oo Yk (T
Jo1z)=(r+1)p7! Z—( D R

Lo y(1+d ', (k+1)(Bz)9).
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Equations (16) and (18) are the main results of this section. These equations can be
applied to Bonferroni and Lorenz curves defined for a given probability p by

B(p)= "9 ana 1(p)="19,

!

P uy

where u} =E(X) and ¢ = F~!(p).

6. Entropies

An entropy is a measure of variation or uncertainty of a random variable X. The most
popular measures of entropy are the Shannon entropy (Shannon, 1951) and the Rényi
entropy.

6.1. Shannon entropy
The Shannon entropy (Shannon, 1951) is defined by E{—1log[f(X)]}. Let X has the pdf
(3). We can write
E{-log[f(X)]} = —log(K) —E{log[g(X)]} + (1 —a)E{log[G(X)]}
+(1=b)E{log[l - G(X)]} + cE[G(X)]
— —logK —E{log[g(X)]} + (a—1 Zl { )]’“}

“DLiE
= —log(K) — E{log[g(X)]} + (a— 1);%

i (a+k,b,c) cK(a+1,b,c)
= kK(a,b,c) K(a,b,c)

k‘ |

+cE[G( )]

NI*—‘

; (20)

where K = K(a, b, ¢) is given by (1). The only unevaluated term in (20) is E{log[g(X)]}.

6.2. Rényi entropy

The Rényi entropy is given by

0r(&) = 5 glog[/o:ofg(x)dx} E>0and E£ 1.
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The integral can be expressed as

/_ Z FE()dx = KE / () GE N (x) [1 = G)ECY exp =& ¢ G(x)] dx.

Expanding the exponential and the binomial terms and changing variables, we obtain

/_if’g(x)dx:Kg i M <£(bj_ 1)> I[J(g), (21)

!
i,j=0 ¢

where J; j(&) denotes the integral

1;,(&) = /01 g5 (0w)) utitEE ) gy,

to be calculated for each KBG-model. For the KBGE (with parameter 1), KBGL and
KBGPa (with parameter v), we obtain

L&) =A"B(i+j+&a—-1)+1,8), L,;(§)=B(i+j+&a,§),
and
I; (&) :vg’lB(H-j—l—{(a—1)+1,v’1(<§— 1)+<§),

respectively. Equation (21) is the main result of this section.

7. Order statistics

Order statistics have been used in a wide range of problems, including robust statis-
tical estimation and detection of outliers, characterization of probability distributions
and goodness-of-fit tests, entropy estimation, analysis of censored samples, reliability
analysis, quality control and strength of materials.

Suppose Xi,...,X, is a random sample from a continuous distribution and let
X1 < -+ < X;., denote the corresponding order statistics. There has been a large amount
of work relating to moments of order statistics X;.,. See Arnold et al. (1992), David and
Nagaraja (2003) and Ahsanullah and Nevzorov (2005) for excellent accounts. It is well-
known that

fin(x) = %F(X)il {1—Fx)}" ",
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where B(-,-) denotes the beta function. Using the binomial expansion in the last
equation, we have

finl) = B(l.’}{%%g(—l)f (") P @)

We now provide an expression for the pdf of KBG order statistics as a function
of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Based
on this result, we express the ordinary moments of the order statistics of any KBG-G
distribution as infinite weighted sums of the PWMs of the G distribution.

Replacing (8) in equation (22), we have

i+j—1
x) T = (): b, u> , (23)

where u = G(x) is the baseline cdf.
We use the identity (Y5 oaxx*)" = Y5 dinx* (see Gradshteyn and Ryzhik, 2000),
where

k
don=ay and  din=(kao) ' Y [m(n+1) —K] Gy di mn
m=1

(for k =1,2,...) in equation (23) to obtain
F)™ ' =Y dyiy; 1 Gx), (24)
r=0

where
p

doirj1=by™* " and  dyiyjo1 = (kb)Y [(i4 j)m—r] bydy i i

m=1

For real non-integer a, inserting (11) and (24) into equation (22) and changing
indices, we rewrite f;.,(x) for the KBG distribution in the form

fi:n(x) = &E(—l)j <I’l]-l> i b;du7i+j,1G(x)u+v. (25)

B(i,n—i+1) = o

For an integer a, we obtain from equations (10), (22) and (24)

fi:n(x) = & i(_l)]‘ <I’l _ i> i W;qdu,z#jfl G(x)a+p+fl+u71. (26)

B(i,n—i+1) ;5 I/ pagu=o
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Equations (25) and (26) immediately yield the pdf of KBG order statistics as a func-
tion of the baseline pdf multiplied by infinite weighted sums of powers of G(x). Hence,
the moments of KBG-G order statistics can be expressed as infinite weighted sums of
PWMs of the G distribution. Clearly, equation (26) can be expressed as linear combi-
nations of Exp-G pdfs. So, the moments and the mgf of KBG order statistics follow
immediately from linear combinations of those quantities for Exp-G distributions.

8. Extreme values

If X = (X; +---+X,)/n denotes the mean of a random sample from (3), then by the
usual central limit theorem /(X — E(X))/+/Var(X) approaches the standard normal
distribution as n — oo under suitable conditions. Sometimes one would be interested in
the asymptotics of the extreme values M,, = max(Xi,...,X,) and m, = min(Xj,...,X,).

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel
extreme value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist
a strictly positive function, say 4(z), such that

. 1 =G(t+xh(1))
lim
oo 1-G(1)

= exp(—x)

for every x € (—oo,00). But, using L’Hopital’s rule, we note that

lim 1 —F(t+xh(t)) ~tim 1 +Xh/(l‘)]f(l‘+xh(t))
t—roo 1—F(Z) f—yo0 f(l)
— lim [1 —i—xh/(t)]g(t—i—xh(t)) |:G(l+xh(t)):|a1
e g() G(r)
—_ X b—1
[1 ?(f 2(5 (I))} exp{cG(t) —c Gt +xh(1))}
= exp(—bx)

for every x € (—eo,0). So, it follows that F also belongs to the max domain of attraction
of the Gumbel extreme value distribution with

lijn Pr{a, (M, —b,) < x} =exp{—exp(—bx)}

for some suitable norming constants a, > 0 and b,,.

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet
extreme value distribution. Then by Leadbetter ez al. (1987, Chapter 1), there must exist
a 8 > 0 such that
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. 1-G(tx) g
T

for every x > 0. But, using ’Hopital’s rule, we note that

(
_ Jim Y80 [GW)]H [T_L(;(Ef))]b_lexp{(:c(t) _cG(ix)

for every x > 0. So, it follows that F" also belongs to the max domain of attraction of the
Fréchet extreme value distribution with

lim Pr{a, (M,, — b,) < x} =exp (—xbﬁ)
n—oo

for some suitable norming constants a, > 0 and b,,.

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull
extreme value distribution. Then by Leadbetter ef al. (1987, Chapter 1), there must exist
a a > 0 such that

G(tx)
=5 G

for every x < 0. But, using L’Hopital’s rule, we note that

F(tx) 5 xf(tx)

(
t—1>I—no<> F(t) ioe (1)
( xg(1x) [G(tx)]“l [1 —G(tx)]blex {cG(t)—cG(tx)}

e g(t) G(1) 1-G(1) P

= xB,

So, it follows that F also belongs to the max domain of attraction of the Weibull extreme
value distribution with

lim Pr{a, (M, —b,) < x} =exp{—(—x)"“}
n—soo
for some suitable norming constants a, > 0 and b,,.
The same argument applies to min domains of attraction. That is, F' belongs to the
same min domain of attraction as that of G.
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9. Inference

Let v be the p-dimensional parameter vector of the baseline distribution in equations
(2) and (3). We consider independent random variables Xi,...,X,, each X; following a
KBG-G distribution with parameter vector 8 = (a,b,c,y). The log-likelihood function,
¢ =1/(0), for the model parameters is

n

(o) = nlog(KHilogg(xi;y) Y6l

+<a—1>ilog{c<xi;y>}+<b—1)ilog{1—G<x,-;y>}- @)

1=
The elements of score vector are given by

24(0)
da

ndK &
= E%—I—Zlog{G(xi,Y)},

i=1

oc\Y) _ _—+Zlog{l —G(xs7)},

db Kb =
O) noK o
dc Kac 0w

and

x5y) 9y Iy G(xizy) 9y
(b—1) aG(m)]

aae):i[ I dgluiy) _ dg(eiy)  (a—1) G (wiy)
g (

1-Gxisy) 9y
for j=1,...,p, where

K {[w<a>—w<a+b>] 1F1(a,a+b’_c)+%}

% - B(a,b) [1F1(a,a+b,—c)]2

9

ok {0 —vla+b)iFi(a,atb,—c)+ Do

Fr B(a,b)[Fi(a,a+b,—c))?

)

JK _ aifi(atla+b+1,—c)
dc  (a+b)B(a,b)Fi(a,a+b,—c)’
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81F1(a,a+b, —C)

= — [ (@)~ (a+b)] Fi(a.atb,—c)

da
3 D by k) —aplat b
k:ok!(a+b)k ’
and
d1Fi(a,a+b,—c) = (a)i(—c)
b —lp(a+b)1F1(a,a+b,—c)+l;)m¢(a+b+k)

These partial derivatives depend on the specified baseline distribution. Numerical maxi-
mization of the log-likelihood above was accomplished by using the RS method (Rigby
and Stasinopoulos, 2005) available in the R contributed gamlss package (Stasinopoulos
and Rigby, 2007; R Development Core Team, 2009).

For interval estimation of each parameter in @ = (a,b,c,1")”, and tests of hypothe-
ses, we require the expected information matrix. Interval estimation for the model pa-
rameters can be based on standard likelihood theory. The elements of the information
matrix for (27) are given in the Appendix. Under suitable regularity conditions, the
asymptotic distribution of the MLE, 6, is multivariate normal with mean vector 8 and
covariance matrix estimated by {—0%£(0)/06067} at 6 = 6. The required second
derivatives were computed numerically.

Consider two nested KBG-G distributions: a KBG-Gy4 distribution with parameters
01,...,0, and maximized log-likelihood —2/¢(6,); and, a KBG-Gp distribution contain-
ing the same parameters 0,...,0, plus additional parameters 6,.1,...,6, and maxi-
mized log-likelihood —2/(65), the models being identical otherwise. For testing the
KBG-G, distribution against the KBG-Gp distribution, the likelihood ratio statistic (LR)
isequal tow = —2{¢ (§A) -/ (§3)} It has an asymptotic )(Z_, distribution.

We compare non-nested KBG-G distributions by using the Akaike information
criterion given by AIC = -2/ (6) 4 2p* and the Bayesian information criterion defined
by BIC = —2/(60) + p*log(0), where p* is the number of model parameters. The
distribution with the smallest value for any of these criteria (among all distributions
considered) is usually taken as the one that gives the best description of the data.

10. Application-Ball bearing fatigue data

In this section, we shall compare the fits of the KBGW, beta Weibul (BW), Birnbaum-
Saunders (BS) and Weibull distributions to the data set studied by Lieblein and Zelen
(1956). They described the data from fatigue endurance tests for deep-groove ball
bearings. The main objective of the study was to estimate parameters in the equation
relating bearing life to load. The data are a subset of n = 23 bearing failure times for
units tested at one level of stress reported by Lawless (1982). Because of the lower
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Table 1: MLEs and information criteria for the ball bearing data.

Model d B a b c AIC BIC
KBGW 1.5040 0.0456 15.9411 0.1972 12.7943 2239 229.6
BW 1.5254 0.0435 3.3335 0.2032 0 233.7 238.3
Weibull 2.1018 0.0122 1 1 0 231.3 233.6
a B - - -
BS 0.5391 62.9794 = = - 230.2 2325

bound on cycles (or time) to fail at zero, the distributional shape is typical of reliability
data.

Firstly, in order to estimate the model parameters, we consider the MLE method
discussed in Section 9. We take initial estimates of d and f as those obtained by fitting
the Weibull distribution. All computations were performed using the statistical software
R. Table 1 lists the MLEs of the parameters and the values of the following statistics:
AIC and BIC as discussed before. The results indicate that the KBGW model has the
smallest values for these statistics among all fitted models. So, it could be chosen as the
most suitable model.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is shown in Table 2. The p-values indicate that the proposed model yields the
best fit to the data set. In order to assess if the model is appropriate, we plot in Figure 3
the histogram of the data and the fitted KBGW, BW, Weibull and BS pdfs. We conclude
that the KBGW distribution is a suitable model for the data.

o
g_
o
w0
z
= — KBGW
— BW
BS
— Weibull
—, e
E 3
o

0.005

0.000

Figure 3: Fitted KBGW, BW, Weibull and BS pdfs for the ball bearing data.



R. R. Pescim, G. M. Cordeiro, C. G. B. Demétrio, E. M. M. Ortega and S. Nadarajah 175

Table 2: LR statistics for the ball bearing data.

Model Hypotheses Statistic w p-value
KBGW vs BW Hp:c=0vs Hy : Hyis false 11.85 0.00057
KBGW vs Weibull Hy:a=b=1and c=0vs H; : Hyis false 13.45 0.00375

Secondly, we apply formal goodness-of-fit tests in order to verify which distribution
gives the best fit to the data. We consider the Cramér-Von Mises (W*) and Anderson-
Darling (A*) statistics. In general, the smaller the values of the statistics, W* and
A*, the better the fit to the data. Let H(x;0) denote a cdf, where the form of H
is known but @ (a k-dimensional parameter vector, say) is unknown. To obtain the
statistics, W* and A*, we proceed as follows: (i) compute v; = H (x,-;a), where the
x;’s are in ascending order, y; = ®~!(-) is the standard normal quantile function and
ui =D{(yi—y)/sy}, wherey=n"' T2, yiand s> = (n— 1) "' LI, (yi—¥)?; (ii) calculate
W2=Y" {u;i—(2i—1)/(2n)}>*+1/(12n) and A2 = —n—n' Y7 {(2i — 1) log(u;) +
(2n+ 1 —2i)log(1 —u;)} and (iii) modify W2 into W* = W2(1+0.5/n) and A* into
A* =A%(1+0.75/n+2.25/n?). For further details, the reader is referred to Chen and
Balakrishnan (1995). The values of the statistics, W* and A*, for all fitted models are
given in Table 3. Thus, according to these formal tests, the KBGW model fits the data
better than other models. These results illustrate the flexibility of the KBGW distribution
and the necessity for the additional shape parameters.

Table 3: Goodness-of-fit tests for the ball bearing data.

Model Statistic
w* AT
KBGW 0.00507 0.19916
BW 0.20587 0.57785
Weibull 0.13587 0.34791
BS 0.02298 0.34791

11. Conclusions

Following the idea of the class of beta generalized distributions and the distribution due
to Ng and Kotz (1995), we define a new family of Kummer beta generalized (KBG)
distributions to extend several widely known distributions such as the normal, Weibull,
gamma and Gumbel distributions. For each continuous G distribution, we define the
corresponding KBG-G distribution using simple formulae. Some mathematical proper-
ties of the KBG distributions are readily obtained from those of the parent distributions.
The moments of any KBG-G distribution can be expressed explicitly in terms of in-
finite weighted sums of probability weighted moments (PWMs) of the G distribution.
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The same happens for the moments of order statistics of the KBG distributions. We
discuss maximum likelihood estimation and inference on the parameters. We consider
likelihood ratio statistics and goodness-of-fit tests to compare the KBG-G model with
its baseline model. An application to real data shows the feasibility of the proposed class
of models. We hope this generalization may attract wider applications in statistics.
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Appendix: elements of the information matrix

The elements of this matrix for (27) can be worked out as:

p((PUOY o [1 (9K oK
da> ) K |K\da da? |’

. _2%(6) _ g [1 (9K (9K K
obdc ) K |K\db dc dbdc|’
0%(0)\  n_[1 (dK\ J?

E(‘ 22 )“EE_E(%)—W]’

E _9%(6) __ng [1 (9K (9K 9K
dadb )] K |K \ da ob dadb |’

E KRG __ng 1 (9IK\ (9K K
dadc )] K |K\ da dc dadc |’

B PUO)) | ng[1 (K 3K
o ) K |K\db) db*)|’
9%0(0) 2 [ 1 3G(x,,y)}

E(- - ~VE ,
dady; ,:Zl G(xiy) 9y,
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i=1
326(9) ) " [ 1 0%g (xi;y)] U [82g (x,-;}f)}
E(— - VE +cVE| &)
( Y9y ; g (xiy) dy;dvk Cl; Y07k
1 (a—1) I*°G(x;;y } 1 (1—-0b) %G (x;;7)
E +VE
,-:ZI {Gz(xi;r) Y9y« ; {1—=G(xiy)}* 9ridn

for j=1,..., p, where

PK { ('@ ' (atb)] | [$(@)—p(a+b) iFi(a.a+b.—c)

da? 1Fi(a,a+b,—c) [\Fi(a,a+b,—c))? da
n 1 9*1Fi(a,at+b,—c)  [(a) —y(a+b)’
[1F1 (a,a+b,—c)]2 da? F (a,a+b,—c)
n 2 8]F1(a,a—i—b,—c)
[\Fi (a,a+b,—c)) da

N 1 <81F1(a,a+b,—c)>2
[\Fi(a,a+b,—c)]’ da ’

PK W)= y(a+b)] | (b)) —p(a+b)] I iFi(a,a+b,—c)
ob? 1Fi(a,a+b,—c) [\Fi(a,a+b,—c)) ob

N 1 821F1(a,a+b,—c)+ [ (b) —p(a+b))?
[1F (a,a+b,—c)]2 db? 1Fi(a,a+b,—c)

i 2 alFl(a,a—l-b, —C)
[1F1 (a7a+b>_c)]2 b

N 1 <81F1(a,a+b,—c)>2
[1F1 (a,a+b,—c)]3 db ’

I’K _Jala+1)iFi(a+2,a+b+2,—c) A[1Fi(a+1,a+b+1,—c)?
dc? (a+b)B(a,b)\Fi(a,a+b,—c)  (a+b)2B(a,b)|\F(a,a+b,—c)]*
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aZK:_{ W(atb)] | [p®)—tla+b)] 9iFi(aatb —c)
1F1 2

Jdadb (a,a+b,~¢) [ \Fi(a,a+b,—c)] da
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821F1(a,a+b,—c)
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ob?
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Hurdle negative binomial regression model
with right censored count data

Seyed Ehsan Saffari', Robiah Adnan? and William Greene®

Abstract

A Poisson model typically is assumed for count data. In many cases because of many zeros in
the response variable, the mean is not equal to the variance value of the dependent variable.
Therefore, the Poisson model is no longer suitable for this kind of data. Thus, we suggest
using a hurdle negative binomial regression model to overcome the problem of overdispersion.
Furthermore, the response variable in such cases is censored for some values. In this paper,
a censored hurdle negative binomial regression model is introduced on count data with many
zeros. The estimation of regression parameters using maximum likelihood is discussed and the
goodness-of-fit for the regression model is examined.

MSC: 62J12

Keywords: Hurdle negative binomial regression, censored data, maximum likelihood method,
simulation.

1. Introduction

Commonly, for the modelling of counts such as the number of reported insurance claims,
the starting point is the Poisson distribution:

e"lilf"

= (1)

fr.(vi) =

where covariates are included in the model by the parameter A; = exp(x] ) where x; is
a vector of explanatory variables (Dionne and Vanasse, 1989). The Poisson distribution
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is equidispersed since its mean and variance are both equal to A;. Because the Poisson
distribution has some severe drawbacks that limit its use, other distributions can be used,
such as hurdle models (Boucher et al., 2007).

Mullahy (1986) has first discussed hurdle count data models. Hurdle models allow
for a systematic difference in the statistical process governing individuals (observations)
below the hurdle and individuals above the hurdle. In particular, a hurdle model is
mixed by a binary outcome of the count being below or above the hurdle (the selection
variable), with a truncated model for outcomes above the hurdle. That is why hurdle
models sometimes are also called two-part models.

The most important usage of a hurdle count data model is the hurdle at zero. The
hurdle at zero formulation can account for excess zeros. It means that this model can
be used in situations where there are many zeros at the response variable. In this case,
the hurdle at zero defines a probability (Pr(Y = 0)) that is the first part of the two part-
models.

The hurdle model is flexible and can handle both under- and overdispersion problem.
A generalized hurdle model is introduced by Gurmu (1998) for the analysis of overdis-
persed or underdispersed count data. Greene (2005) has discussed about the compar-
ison between hurdle and zero-inflated models as two part-models. Some researchers
have discussed the applications of hurdle models, such as Pohlmeier and Ulrich (1995),
Arulampalam and Booth (1997). A hurdle model to the annual number of recreational
boating trips by a family is discussed by Gurmu and Trivedi (1996). Dalrymple, Hud-
son and Ford (2003) applied three mixture models including a hurdle model and argued
its application in the incidence of sudden infant death syndrome (SIDS). Boucher, De-
nuit and Guillen (2007) compared generalized heterogeneous, zero-inflated, hurdle, and
compound frequency models for the annual number of claims reported to the insurer.
Saffari, Adnan and Greene (2011) argued the overdispersion problem on count data us-
ing a right truncated Poisson regression model.

Suppose that g;(0) is the probability value when the value for response variable is
zero and that g,(k),k = 1,2,... is a probability function when the response variable is a
positive integer. Therefore, the probability function of the hurdle-at-zero model is given
by:

21(0)

1 ) (2)
(1-g1(0)ga(k), k=1,2,...

P(Yi:k):{

Mullahy (1986) discussed the hurdle-at-zero model and he believes that both parts
of the hurdle model are based on probability functions for nonnegative integers such
as fi and f>. In terms of the general model above, let g;(0) = f;(0) and g»(k) =
f2(k)/(1 = £3(0)). In the case of g,, normalization is required because f, has support
over the nonnegative integers (k = 0,1,...) whereas the support of g, must be over
the positive integers (k = 1,2,...). This means that we need to truncate the probability
function f,. However, this is a theoretical concept, i.e., truncation on f, does not mean
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that there is truncation of the population here. All we need to do is to work with a
distribution with positive support, and the second part of a hurdle model can use a
displaced distribution or any distribution with positive support as well.

Under the Mullahy (1986) assumptions, the probability distribution of the hurdle-at-
zero model is given by

f(¥ =0)=/(0)
PN e (1() _ _
f(Y_k) _T;(O)fZ(k)_QfZ(k)? k=1,2,...

where f; is referred to as parent-process. The numerator of 6 presents the probability
of crossing the hurdle and the denominator gives a normalization that accounts for the
(purely technical) truncation of f5. It follows that if f| = f or, equivalently, & = 1 then
the hurdle model collapses to the parent model. The expected value of the hurdle model
is given by

E(Y)=0Y kA(k) 3)
k=1

and the difference between this expected value and the expected value of the parent
model is the factor 8. In addition, the variance value of the hurdle model is given by

2
Var(Y)=0Y K f>(k) — [9 Y k fz(k)] 4)
k=1 k=1

If 6 exceeds 1, it means that the probability of crossing the hurdle is greater than the
sum of the probabilities of positive outcomes in the parent model. Therefore, increasing
the expected value of the hurdle model is related to the expected value of the parent
model. Alternatively, if 6 is less than 1 (that is the usual case in an application with
excess zeros), it means that the probability of not crossing the hurdle is greater than
the probability of a zero in the parent model, thus decreasing the expected value of
the hurdle model relatively to the expected value of the parent model. Therefore, this
model gives a new explanation of excess zeros as being a characteristic of the mean
function rather than a characteristic of the variance function. The mean function of the
hurdle model provides additional nonlinearities relative to the standard model in order
to account for the corner solution outcome, much as in other corner solution models,
and this is just like as how a Tobit model works.

Consequently, the model can be overdispersed and that depends on the value of the
parent processes. To overcome overdispersion, we would like to cut the values of the
response variable that are very big. In statistics, this is called truncation and because we
want to truncate the values that are bigger than a constant, it is called a right truncation.
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There are many options to choose the processes f; and f,. Some of the most
popular hurdle model choices are nested models where f; and f, come from the
same distribution, such as the Poisson distribution (Mullahy, 1986) or the Negative
Binomial (Pohlmeier and Ulrich, 1995). However, non-nested models (Grootendorst
(1995), (Gurmu, 1998), or Winkelmann (2003)) can also be used. These models do
not nest with a standard count distributions such as the Poisson or the NB types, but are
overlapping with suggested model by Vuong (1989) since models can be equivalent for
certain parameter restrictions.

Maximum likelihood is used to estimate the parameters. The log-likelihood function
of a hurdle model can be expressed as:

f2(yi;6;)
1— £2(0;6;)

The interesting aspect of the hurdle model is to estimate the parameters by two
separate steps. In fact, we can estimate the zero-part parameters by using MLE on the
first part of the likelihood function while the other parameters only use the second part,
only composed with non-zero elements. We have used SAS code to implement this
algorithm and this characteristic of the model helps us to save computer time in the
estimation (Chou and Steenhard, 2009).

In this article, the main objective is to explain how we can use hurdle negative bino-
mial regression model in right censored data. In Section 2, the hurdle negative binomial
regression model is defined and the likelihood function of hurdle negative binomial
regression model in right censored data is formulated. In Section 3, the parameter es-
timation is discussed using maximum likelihood. In Section 4, the goodness-of-fit for
the regression model is examined and a test statistic for examining the dispersion of
regression model in right censored data is proposed. An example is conducted for a cen-
sored hurdle negative binomial regression model in terms of the parameter estimation,
standard errors and goodness-of-fit statistic in Section 5.

Il = ;I{yizo} log f1(0; 6;) + Iy,~0y log(1 — £1(0;6;)) + ;I{yi>0} log 5)

2. The model

Let Y;(i = 1,2,...,n) be a nonnegative integer-valued random variable and suppose
Y; = 0 is observed with a frequency significantly higher than can be modeled by the
usual model. We consider a hurdle negative binomial regression model in which the
response variable Y;(i = 1,...,n) has the distribution

wo, Yi :07

—a 1y, . .
Pr(Yl = yl) = (1 _ WO) F(yl + a_l) (1 + aul) a Vi a)llnu’?l yi N 0 (6)
Coi+ D@ ) 1= (1+ap) ™ ’
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or
W07 yz*O,
Pr(Y; =y;) = (1= wo) g >0, (7)
1= (1+au) ™
where
r i—i-afl
g=g0iti,a) = v ) (1+ap) ™ Vi (8)

L(yi+1C(a™)

where a(> 0) is a dispersion parameter that is assumed not to depend on covariates. In
addition, we suppose 0 < wy < 1 and wy = wy(z;) satisfy

Z zijO &)

logit(wp) = log

where (z;1 = 1,2p2,...,2im) is the i-th row of covariate matrix Z and (61,62,...,0,)
is an unknown m-dimensional column vector of parameters. In this set up, the non-
negative function wy is modeled via logit link function. This function is linear and other
appropriate link functions that allow wq being negative may be used. In addition, there
is interest in capturing any systematic variation in u;, the value of u; is most commonly
placed within a loglinear model

IOg ALLl lejﬁj (10)

and f3,’s are the independent variables in the regression model and m is the number of
these independent variables. Furthermore, in this paper we suppose that wy and f3; are
not related.

The value of response variable, Y;, for some observations in a data set, may be
censored. If censoring occurs for the ith observation, we have Y; > y; (right censoring).
However, if no censoring occurs, we know that ¥; = y;. Thus, we can define an indicator

variable d; as
1 ifY; >y,
di = = (11)
0 otherwise.
We can now write
yi—l

Pr(Y; > y;) = ZPr )=1=Y Pr(¥;=) (12)
j=0

J=Yi
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Therefore, the log-likelihood function of the censored hurdle regression model can be
written as

n oo
logL(8;:y1) = Y { (1 =d;) |L-ol0g £(0:6) + L,0f (:6,) | +dilog ( Y. Pr(¥, = j)) |
i=1 J=yi

(13)
We now obtain the log-likelihood function for the hurdle negative binomial regression
model, we have

LL = Zn: {(1— d;) [IyizologWo +Iyl~>0{ log(1 —wp) +logg — log (1 1+ a‘ui),aﬂ) }]

i=1

Tdilog Y Pr(Y; = i} (14)

J=Vi

3. Parameter estimation

In this section we estimate the parameters by maximum likelihood. By taking the partial
derivatives of the likelihood function and setting them equal to zero, the likelihood
equation for estimating the parameters is obtained. Thus we obtain

ILL & g (1+au)* !
== 1—d)l, -0 | 22— ‘ Xir
P, ?1{‘ )“”[g 1= (e oy

d; J=yi
Z Pr(Y; 9P

J=yi

OLL &
Y {(1 —di)ly>o

) Pr(Y; = j)
}:0

!/

8a

i=1

o'/ (4 aw) — a‘zlogl(l +au,) (14 apy) o
1—(1+a,u,-)—°‘
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where

Py Pr(vi=))

-1 .
= (1= +ap)™* ) —(1+au)™* g
”a— =) (1—wo)=* — Wiy
8 ZPI‘ ) a’IM
J=yi _ Z (1—wo) g log(1+au;)* " — l+a“"g(1—|—a‘u~)_a71
" ~ i
J=yi 1= (1+ap)® (1—(1+aui)*a 1)2
Cyital) (o ) a*1+
/ i )
= log(1 PEE Vi
g/ _ Yi— Ui g
Powi(l+ap)

Since these partial derivative equations cannot be further simplified, we have applied
the Newton-Raphson method with ridging as the optimization algorithm, using code
in SAS given in the Appendix. Furthermore, the Convergence of the algorithm does
not necessarily mean that a global maximum has been found, it just means that the
convergence criteria have been achieved, and thus it can be a local maximum.

4. Goodness-of-fit statistics

For count regression models, a measure of goodness of fit may be based on the deviance
statistic D defined as

D= [logL(é )—logL(éi;y[)] (15)

where logL(6;;{1;) and logL(B;;y;) are the model’s likelihood evaluated respectively
under {; and y;. The log-likelihood functions are given in equation (7).

For an adequate model, the asymptotic distribution of the deviance statistic D is chi-
square distribution with n — k — 1 degrees of freedom. Therefore, if the value for the
deviance statistic D is close to the degrees of freedom, the model may be considered
as adequate. When we have many regression models for a given data set, the regression
model with the smallest value of the deviance statistic D is usually chosen as the best
model for describing the given data.

In many data sets, the u;’s may not be reasonably large and so the deviance
statistic D may not be suitable. Thus, the log-likelihood statistic log(éi;yi) can be used
as an alternative statistic to compare the different models. Models with the largest
log-likelihood value can be chosen as the best model for describing the data under
consideration.



188 Hurdle negative binomial regression model with right censored count data

When there are several maximum likelihood models, one can compare the perfor-
mance of alternative models based on several likelihood measures which have been pro-
posed in the statistical literature. The AIC and BIC are two of the most regularly used
measures. The AIC is defined as

AIC = —21+2p (16)

where [ denotes the log likelihood evaluated for estimated parameters u and p the
number of parameters. For this measure, the smaller the AIC, the better the model is.

5. An application

The state wildlife biologists want to model how many fish' are being caught by
fishermen at a state park. Visitors are asked how long they stayed, how many people
were in the group, were there children in the group and how many fish were caught.
Some visitors do not fish, but there are no data on whether a person fished or not. Some
visitors who did fish did not catch any fish so there are excess zeros in the data because
of the people that did not fish. We have data on 250 groups that went to a park. Each
group was questioned about how many fish they caught (count), how many children
were in the group (child), how many people were in the group (persons), and whether
or not they brought a camper to the park (camper).

We will use the variables child, persons and camper in our model. Table 1 shows
the descriptive statistics of using variables and also the camper variable has two values,
zero and one as Table 2. In addition, Figure 1 shows the histogram of the count variable
before censoring.

We have considered the model as follow

log(w) = by + by * camper + by * persons + bz * child,
logit(wo) = ao + ay * child

Furthermore, we put two censoring points, ¢c; = 3,c, = 5. Table 3 shows the estimation
of the parameters according to different censoring constants. Also, the —21log L and AIC
are presented as the goodness-of-fit measures.

Table 1: Descriptive statistics for the fish data.

Variable Mean Std Dev Min Max Variance
count 3.296 11.635028 0 149 135.373880
child 0.684 0.850315 0 3 0.723036
persons 2.528 1.112730 1 4 1.238169

1. The fish dataset is available at the UCLA Academic Technology Services website, http://www.ats.ucla.edu.
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Table 2: camper variable description.

camper Frequency Percent
0 103 41.2
1 147 58.8

Table 3: Parameter estimation.

Parameter c1=3 =5
by —1.0922 —0.9616
(0.5998) (0.4764)
by 0.7043 0.6079
(0.3235) (0.2702)
by 0.7397 0.7227
(0.2086) (0.1533)
b3 —0.9130 —0.9266
(0.3449) (0.2807)
ag —0.3843 —0.3843
(0.1703) (0.1703)
aj 1.1110 1.1110
(0.2049) (0.2049)
a 0.5673 0.6225
(0.4388) (0.3412)
—2logL 540.9 618.1
AIC 554.9 632.1

According to the censoring points, there is 22.8% censored data when ¢; = 3. It
means that 22.8% of the values of the response variable (count) are 0, 1, 2, 3 and the
remaining 77.2% of values of the response variable are greater than 3, that is censored
in the model. Also the percentage of the censoring for c; =5 is 12%. For example, the
25th value of the response variable is count,s = 30, and the values of the independent
variables are as follow

camperys = 1, personsys =3, childys =0

So we want to censor only the value of the response variable (count,s > censored point).

The estimated parameter for camper variable of the model is a positive value for
both censoring points, it means that while being a camper (camper = 1), the expected
log(count) will be increased by 0.7043 and 0.6079, respectively when ¢; =3 and ¢; =5.
Also, the effect of persons is positively associated with the number of fish caught for
both censoring points, and the expected log(count) will be increased for a unit increase
in persons for the first and the second censoring point, respectively, by 0.7397 and
0.7227. But, the expected log(count) will be decreased for a unit increase in child for
by 0.9130 and 0.9266, respectively for the first and the second censoring point. Further-
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Figure 2: Estimate vs Real when the censoring point is 3.

more, the estimated parameter for child variable of the logit part of the model is positive
for both censoring points, i.e, the group with more children was less successful in
fishing. The estimated dispersion parameter suggested overdispersion in the model for
both censoring points.

We have compared the censored hurdle negative binomial (CHNB) regression model
with the censored negative binomial (CNB) regression model and the results are shown
in Figure 2 and Figure 3 when the censoring points are ¢, = 3, ¢; = 5, respectively.
The CHNB regression model shows a better estimation than the CNB regression model
except when the value of the count variable is 3 in Figure 2 and 4 in Figure 3. The CHNB
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Figure 3: Estimate vs Real when the censoring point is 5.

regression model estimated the number of zeros as 142 (the same as number of zeros
in fish data) in both cases (¢; = 3,c; = 3), but the CNB regression model estimated
141 and 123, respectively, when the censoring points are ¢; = 3,c2 = 5. Also, the
CHNB regression model shows a closer estimate for the censored values than the CNB
regression model. For example, when there are 45 censored values in the fish data, the
CHNB regression model presented 38 censored values and the CNB regression model
presented 20 censored values.

6. Conclusion

In this article we want to show that the hurdle negative binomial regression model can be
used to fit right censored data. In fact, the proposed model is suitable to solve the excess
zeros problem in the response variable when the data are censored from the right side.
The results from the fish data are summarized in Table 1-3. The goodness-of-fit measures
are presented in the Table 3 according to different censoring points and it is obvious that
we have a smaller value for —2logL or AIC when the percentage of censoring increase
and that is because of the number of the data which are used in the model. Also, the
censored hurdle negative binomial model shows a better fit with respect to the censored
negative binomial model for different censoring points as shown in Figure 2 and
Figure 3.
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Appendix:
SAS code to estimate the parameters for Fish data

data fish;

set fish;

bound=3;

if count > bound then count=bound+l; x This is probably
how you would see the data if it was actually censored;

proc nlmixed TECH=NRRIDG;
parms a_0=-0.4 a_1=1 b_0=-1 b_1=1 b_2=1 b_3=-1 alpha=0.5;
bounds alpha>0;
lin = a_0 + a_1* child;
w = exp(lin)/ (1l+exp(lin));
eta = b_0 + b_1 xcamper + b_2x% persons + b_3% child;
mu = exp(eta);
phi=1/alpha;
pdf=(gamma (count+phi) / (gamma (count+1) xgamma (phi)))
* ((1/ (l+alpha*mu) ) **phi* (alpha*mu/ (1+alpha*mu) ) x* count);
1.1 = w;
1_2 = (1-w) * pdf / (1-(l+alpha*mu) ** (-phi));
cdf=0;
do t=1 to bound;
cdf=cdf+ (gamma (t+phi) / (gamma (t+1) *gamma (phi) ) )
* ((1/ (l+alpha*mu) ) **phix (alpha*xmu/ (1+alphaxmu) ) x*t) ;
end;
1_3= (1-w)*(l-cdf/ (1-(1l+alpha*mu) ** (-phi)));
if count = 0 then 11 = log(l_1);
if 0 < count <= bound then 11 = log(l_2);
if count <= bound then d=0; else d=1
11=(1-d) *11+d*log(1l_3);
model count “general (1l1l);

4

predict mu out=hnbmu;
predict w out=hnbw;
run;
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Statistical modelling and forecasting of
outstanding liabilities in non-life insurance

Maria Dolores Martinez-Miranda!+2, Jens Perch Nielsen?
and Mario V. Wiithrich3

Abstract

Non-life insurance companies need to build reserves to meet their claims liability cash flows. They
often work with aggregated data. Recently it has been suggested that better statistical properties
can be obtained when more aggregated data are available for statistical analysis than just the
classical aggregated payments. When also the aggregated number of claims is available one can
define a full statistical model of the nature of the number of claims, their delay until payment and
the nature of these payments. In this paper we provide a new development in this direction by
entering yet another set of aggregated data, namely the number of payments and when they
occurred. A new element of our statistical analysis is that we are able to incorporate inflationary
trends of payments in a direct and explicit way. Our new method is illustrated on a real life data set.

MSC: 62P05 Applications to actuarial sciences and financial mathematics, 91B30 Risk theory,
insurance.

Keywords: Outstanding loss liabilities, claims settlement process, claims reserving, chain ladder
method, individual claims data, prediction uncertainty, bootstrap, early warning systems.

1. Introduction

Non-life insurance companies need to forecast future payments arising from claims
where the companies already received the insurance premium. The discounted aggre-
gate of these future payments is called the reserve (outstanding liabilities) and is one
of the most important components in the accounts of a non-life company. The reserve
is most often set by actuaries and the reserving problem is omnipresent in the literature
of actuarial science. However, the history of the reserving problem is not a mathematical
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statistical history even though it clearly is a mathematical statistical forecasting problem.
The history is a practical one, where actuaries have had to develop methodologies
to set reserves at a time when mathematical statistics was not well developed. The
most popular reserving method used by almost all insurance companies is called the
chain ladder method by actuaries. Most practical actuaries would talk about chain
ladder as a method rather than as a mathematical statistical model even though the
actuarial literature has shown a close connection between the chain ladder method
and the multiplicative Poisson model. It was only just recently that this multiplicative
Poisson model was identified as belonging to the class of exponential families implying
well defined solutions to the maximum likelihood estimators and it was also only
recently that the explicit expressions of the entering parameters were derived, see
Kuang, Nielsen and Nielsen (2009). While practical actuaries work with chain ladder
forecasts identical to the forecasts provided by a multiplicative Poisson model, they
do not work with the distributional properties of the multiplicative Poisson model.
Other distributional properties are preferred, often based on ad hoc bootstrap type of
procedures. In this paper we build on theory recently derived in three interconnected
papers. The main underlying idea of these three papers is that more data (aggregated
reported number of claims) should be added to classical actuarial data to allow for a
better and more precise formulation of the underlying mathematical statistical model
driving the claims development process defining the reserve. The first of these papers
(Verrall, Nielsen and Jessen, 2010) defines the simplest possible version of such a model,
the second (Martinez-Miranda, Nielsen, Nielsen and Verrall, 2011) develops a bootstrap
methodology to assess the distribution of such a model, but the most important of
these three papers is perhaps the third one (Martinez-Miranda, Nielsen and Verrall,
2012). This paper shows that a slight modification of Verrall et al. (2010)’s model,
with one particular moment type estimation method, provides us with a well-defined
mathematical statistical model exactly replicating the reserving estimates one would
obtain using the classical chain ladder method. This model has trustable distributional
properties that can be used in practice by actuaries. In this paper we take the ideas of
the above three papers one step further and add yet another piece of data (aggregated
number of payments) to our data set and we show that important insights of the
claim development process result when incorporating this extra piece of information
in our mathematical statistical model. We follow in this paper Martinez-Miranda et al.
(2012) and work with moment type of estimators. Our hope is that this paper provides
information to the mathematical statistician wishing to use their excellent tools on
this important real life problem and can perhaps be helpful in bringing mathematical
statisticians into this important field. The notation and vocabulary of this paper are
deliberately closely related to classical actuarial terminology while describing a well-
defined mathematical statistical model. This is a deliberate attempt to bridge the gap
between classical actuarial terminology, often obscure to mathematical statisticians,
and standard mathematical statistical model formulations that might seem unrelated to
classical reserving for many actuaries.
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The general post credit crunch atmosphere in the financial sector emphasizes a
better understanding of outstanding loss liabilities of non-life insurance companies,
with reserving models as one of the essential technical building blocks. However,
the insurance industry is also gaining new territory in new markets, where better
early warning reserving systems are required than that provided by the old chain
ladder methodology. In this paper we introduce a new reserving methodology with
an automatic early warning system to detect important irregularities in the claims
development process. Our methodology requires more detailed data than classical
reserving methods. The point of view taken is that the aggregated payments do not
provide us with sufficient mathematical statistical information, we argue that also the
number of payments and the number of reported claims are needed. This enables us to
embed a variety of new claims inflation type of information in our overall model. We
consider severity inflation, underwriting year inflation and claims delay inflation and
show how to incorporate those in the reserving process. The calendar inflation is not
treated in detail in this paper, but it could have been extracted up front using the Kuang,
Nielsen and Nielsen (2011) methodology of calendar inflation (see also Kuang, Nielsen
and Nielsen 2008a,b) .

In the next section we define the model on the micro-level. The basis of our model is
the compound Poisson processes studied in Norberg (1993, 1999) and Jessen, Mikosch
and Samorodnitsky (2011). We show how we need to structure these compound Poisson
processes on the micro-level so that we obtain a chain ladder claims reserving method
on the aggregate level. Such connection is proved from first moments calculations which
are provided in Appendix A. In Section 3 we provide estimates of the parameters
of the model. From the estimated model, point forecasts for the reserve are given in
Section 4. Using bootstrap methods we provide in Section 6 (together with Appendix B)
an approximation of the full predictive distribution of the outstanding loss liabilities.
The methods proposed in this paper are illustrated using a dataset from the insurance
industry, given in Appendix C. The focus of this application is to provide an estimate of
the claims reserves and to detect irregularities in the data.

2. Model setup

2.1. Data and micro-level structure

In classical reserving methods the data upon which projections of future claims are
usually represented by so called run-off triangles. This format tabulates the claim data
(payments, numbers of reported or paid claims, etc.) according to the period in which
the claim arose (called underwriting or accident period) and the period in which the
payment (or other action) was made. The difference between the payment period and the
accident period is referred to as the development period. The data are usually aggregated
in years or quarters of years, but other time periods can also be used depending on the
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business line. Hereafter we write years as the periods considered in the aggregation.
We denote accident years by i = 1,...,m, and development years by j =0,...,m—1,
where m € N denotes the last observed accident year. Then the available data lie in the
triangle J,, = {(i,j); i=1,...,m;j=0,...,m—1;i+ j < m}. In Appendix C we show
an example of this type of data.

The methods proposed in this paper consider such run-off triangles as input data.
In fact we will need more triangles to provide a more precise formulation of the
mathematical statistical micromodel that underlies the claims development process
defining the reserve. It is a parametric model that is deliberately formulated in such
a way that the entering parameters are identifiable and estimable from three aggregated
data sets: number of reported claims, number of payments and aggregated paid amounts.
These stochastic variables are described in the following:

e Number of reported claims of accident year i with a reporting delay of j years,
denoted by N; ;.

e Number of payments. Each of these N;; reported claims generates a claims
payment cash flow. We denote by R; ;; the number of payments generated by these
N; ; reported claims that have a payment delay of / > 0 years. That is, R, ;; is the
number of payments in accounting year i+ j + [ for claims that have occurred in
accounting year i and were reported in accounting year i + j.

e Individual claims payments. Each of these R; ;; claims payments has size Yl(f)l, for
k= 1,...,R,'7j7].

Often, claims payment data is not available on the micro-level structure described by
{Niji (i,j) € In} U{R:j0, ¥): (i, ) € T, i+ j+1<m, k> 1}. Therefore, we define
the following aggregate claims payment information. The total number of payments in
accounting year i + j from claims with accident year i is given by

J
R; ;= ZRi,jfl,l- (D
=0

These R; ; are the number of payments in accounting year i + j generated by all claims
with accident year i which where reported prior to (and including) accounting year i + j,
i.e. these are payments from the N; ;_; reported claims, with [ =0, ..., j. The payments
(total quantity paid) in accounting year i + j from claims with accident year i are then
given by

j Rij-11
Xij=3 )
=0 k=1

k

A )

From these definitions we assume that the available information at time m consists
of the following three o -fields (upper claims development triangles):



Maria Dolores Martinez-Miranda, Jens Perch Nielsen and Mario V. Wiithrich 199

Nm = O'{N,'J; (l,]) € jm},
:Rm =0 {Ri,j; (l)]) € jm}a
xm - U{le, <l7.]) € jm}a

and the aim is to predict the total payments in the future:
X =X 3 (i,)) €I},

where J,, = {(i,j);i=2,...,m, j=0,...,m—1, i+ j > m} is the lower (inexperienced)
triangle.

Classical reserving methods as the chain ladder method provide predictions for X¢,.
However, a better description of the reserving problem would be provided if we are able
to separate these future payments in the lower triangle into payments for claims that have
been already reported (prior to and including accounting year m) and claims that will be
reported after accounting year m. The first class of claims is contained in the number of
reported claims N,,, and constitutes what is called the reported but not settled (RBNS)
claims reserves. The latter class contains the so-called incurred but not reported (IBNR)
claims and constitutes the IBNR claims reserves. Such a distinction is often important,
for example, in the calculation of unallocated loss adjustment expenses (ULAE), see
Wiithrich, Biilmann and Furrer (2010, Section 5.6). If we apply the classical chain ladder
method then we predict X¢, based solely on the information X,,, thus, we predict the
outstanding loss liabilities on a rather aggregate level, which does not allow a distinction
between RBNS and IBNR claims reserves.

2.2. Model assumptions

With the above definitions we assume the following hypotheses about the micro-level
structure.

(A1) All random variables in different accident years i € {1,...,m} are independent.

(A2) The numbers of reported claims N;g,...,N;,,—1 are independent and Poisson
distributed with cross-classified means E[N; ;] = U;3;, for given parameters ¥; > 0,
B; > 0 with normalization ¥; = 1.

(A3) The claims payments

Xiji =

Riji ®
=2 Yij
k

=1

are, conditionally given N;o,...,N;,_1, independent (in / > 0) and compound
Poisson distributed with
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° Ri,j~,1|{N,:o Nimo1} ™ P01(N,]7'cl) with given parameter 7t; > 0;

° Yt(f)l| (NigrNim 1} = @ Y(k ;1 areiid. for k > 1 with the first two moments given

by
! 1
ST IR (1 B
for parameters v;, U;;,s;; € Ry with normalization v; = 1.

One crucial point in assumption (A3) is that the claim size (or severity) distribution of
Y( )1 can be split into an accident year dependent part ¥; which models claims inflation in
the accident year direction, and a development year dependent part u;; which takes care
of reporting delay j > 0 and payment delay [ > 0. Note that assumption (A3) implies that
the payments Yl(f)l are independent from the number of reported claims N; ; as well as
from the number of payments R; ;; (conditional compound Poisson model assumption).

The choices %, = v; = 1 will make the parameters identifiable in the estimation
procedure. One can also use other normalizations, such as e.g. }; 8; = 1 (normalized
claims reporting pattern). However, our choice is rather simple to implement and other
normalizations are obtained by rescaling.

3. Parameter estimation

The estimation of the model parameters, {0;, B;, 7, vi,t;;5i = 1,...,m,j,l =0,...,
m — 1}, can be solved just using the simple chain ladder method on the three input
triangles. The only requirement is to demonstrate that the random variables N; ;, R; ;
and X; ; all have the same cross-classified mean structure, which is the chain ladder
mean structure. As was discussed in Martinez-Miranda et al. (2012) this can be done
from model specifications about just the first moment of the underlying stochastic
components. Further purposes about deriving the distribution of the future payments
requires conditions on higher order moments and also a more detailed specification
including distributional assumptions (see Martinez-Miranda et al. 2012 for further
explanation). Under the distributional model proposed here, we suggest in Section 6
an estimator for the second moment parameters s;; (j,/ =0,...,m — 1) to derive then
the predictive distribution.

Therefore we next provide estimates of the parameters based in the first moment
of the random variables, N; ;, R;; and X;;. We have deferred such calculations to
Appendix A in order to facilitate the reading of the paper. Specifically in Propositions 2
and 3 we have obtained that the first moments of the three sets of random variables V; ;,
R; j and X; ; all have the same cross-classified mean structure. Also we have established
connections among the parameters in the model through the following equations:
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a; = v, (3)
J
A=Y Bjim, (4)
=0
J
vi=Y Bjt 7 i, (5)
=0

From these initial steps our aim is to estimate the corresponding parameters based on
the information in N,,, R,, and X,,, and by applying the simple chain ladder method to
each triangle. As an example, we demonstrate the estimation for the observed number
of reported claims N,, and the parameters ¥; and [3;. The remaining parameters are
estimated in the same way, but based on R,, and X,,, respectively. In a distribution-
free approach we rely on moment estimators. If we aggregate rows and columns,
respectively, over the set of information J,, we obtain the first moment equalities

Y E[Nu] = 0 ) B fori=1,...,m, (6)
k=0 k=0
m—j m—j
Y EN] =B Y% forj=0,....m—1. (7)
k=1 k=1

Unbiased estimators for the right-hand side of these equalities are obtained by replacing
the moments E [N, j], (i,j) € J, by their observations N; ;j € N,,. Then the resulting
system of linear equations is solved for ¥; and [3;, which provides the corresponding
estimators for these parameters. This is in the spirit of the “total marginals” method of
Bailey (1963) and Jung (1968). Kremer (1985) and Mack (1991) have shown that in the
case of triangular data N,, this leads to the chain ladder estimators that can be calculated
in closed form. Thus,

N,» provides the chain ladder estimators 1/‘)\51) and [/5\ ; for U; and f3;,
R, provides the chain ladder estimators 5.(2) and X ; for ¥ and A i

1

X, provides the chain ladder estimators @; and 7 for a; and v,

with 551) = 552) = d; = | (initialization in cross-classified means). Note that we obtain
two different estimators 551) and ”552) for the same parameter ;. However, their values
should not be too different, otherwise this indicates that the model may not fit to the
claims reserving problem. In order to estimate ¥; we could now take a credibility
weighted average between 51.(1) and 51.(2). For simplicity we set 5,- as the arithmetic
mean between 5}1) and '5,-(2). Anyway, the appropriateness of this choice should always
be checked on the data. Using equality (3) we can estimate the accident year inflation
parameter v; by
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V=a;/%  fori=1,....m. (8)

Thus, it remains to estimate the parameters 7t; and u;; (j,/ =0,...,m — 1). There are
different ways to estimate these parameters. We start with 7; using the equality (4). If

we rewrite this equation in vector notation we have
T T
(AOJ"WAWL71> = Bﬁ (TCO?"'?TCW!*l) ’

for an appropriate matrix Bg = Bg, . g, € R™*". This matrix is estimated by ﬁﬁ =
B[JA’o.,..~7ﬁAm-1 € R™™ and then we can provide estimates, T, ..., 7,,_1, by solving the
following system:

~ ~ T =—1 /% I~ T
(Rorosfom ) = By (RoreiZr) ©)

The estimation of u;; needs more care because the model is over-parametrized. In order
to reduce the number of parameters we make one of the following two assumptions

Wi = W (10)
or
Ui = Uj. (1)
Using the condition (10) and the equality (5) we have that
(Yoau'a‘ym*l)T = Bﬁ(ﬂouo,-u’ﬂmqumq)T’

for matrix Bg = Bg, g, , € R"*™. If this matrix is again estimated by ]A3/5 =B

..... i ’5’07"'73’7171
we obtain estimates 7T, ..., T, as the solution of the following system:
—~ —~ T ~—1 ~ T
(TEAU‘OV"?TCAU‘mfl) = B[3 (Y()’"')Ym*l) ) (12)

and, finally, the estimator for u;; assumption (10) is given by ;; = fl; = 7T,/ 7).
On the other hand, using assumption (11) and rewriting (5) we have the following
system

(Y0, Ym1)" = By (Botdo,-- s Buitm1)",

for matrix By = By, , € R™. And again plugging in the estimated matrix

B, = Bz, .z, , € R™™, we obtain the estimates, Suy,...,Bu, 1, by solving the
system

—~ —~ T ~1 N
(ﬁ“07--->ﬁ.um71> = Bﬂt (Yov"'vym—l)-r' (13)

This yields the estimator {i;; = [i; = B;\Jj//gj
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The above procedure provides estimates for all the parameters required for point pre-
diction purposes, under the additional assumption (10) or (11). In the next section we are
going to describe how they are used to predict the outstanding loss liabilities X}, at time
m. Moreover, we will also discuss further adjustments to these estimators in practise.

4. Point forecasts

Point predictions for the outstanding loss liabilities can be derived as estimated uncon-
ditional (or conditional) means of the aggregated payments, X; ;, in the lower triangle,
dm- In the previous section we have estimated all the parameters in the model from the
observations N,,, R,, and X,,. It only remains to estimate the second moment parame-
ters sj; (j,l =0,...,m—1) of the size of the individual payments. But, as we pointed in
the previous section, such higher order moments are not involved in the point forecasts.
Therefore, we have all that is necessary to predict the outstanding liabilities, X{,. At time
m the conditionally expected outstanding loss liability cash flows in X¢, are given by

m m—1
= Z Z E[Xiyj‘Nm>:Rm;xm] .

i=2 j=m—it1

If we only rely on the observations X,,, then we can only estimate the parameters a; and
yj- Thus, in this case we set

m

Zigia?

which provides an estimator for Z,,. The crucial property of this estimator /Z\ﬁL is that it
provides the chain ladder reserves exactly (see Kremer 1985, Mack 1991 and Section 2.4
in Wiithrich and Merz 2008). Having additional information N, and &, we can refine
this estimate. We have

Nins Rins Xom

-1  i+j-m—1 ij—
) Z E[ Z lj ll

Note that the decoupling separates RBNS and IBNR claims: if i+ j —/ < m then

(k)

the payment ¥, ;" , belongs to a claim that has been reported prior to (and including)
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accounting year m, and henceforth is an RBNS claim at time m. Therefore, we define

l/ll

2, = i Z Z Z vy

i=2 j=m—i+1Il=i+j—m

NWH 92'I"l? xm

I

— i+j—m—1

m ij—
i WY [ZY,%
k=1

i=2 j=m—i+l1 1=0

Nins Ry X

Using assumptions (A1)—(A3) we obtain the following result.

Proposition 1

m—1 J
ZRBNS = Z% Y Y Nymow (14)
i=2 Jj=m—i+1Il=i+j—m
m— i+j—m—1
IBNR 9, Lo . . 15
Z Z Vi Z Z /3]71 T Vi Uj—i1- ( )

Jj=m—i+1 =0

Using the previous expressions we can estimate the RBNS claims reserve by plugging
estimates of the parameters in (14) and similarly the IBNR reserve using (15). Denote
the resulting predictions by ZRBNS and ZIBNR respectively. Then the total reserve can be
estimated by Z,, = ZRBNS ZIBNR A stralghtforward calculation demonstrates that the
model defined in (Al) (A3) can provide the same reserve as the classical chain ladder
just by making a particular choice. This result is stated in the following corollary.

Corollary 1 Under the additional assumptions that 551) = 51.(2), foralli=2,...,m, and
N j =0, for all (i, j) € J,,, we have 7, = ZEL

Often claims development goes beyond the latest development period m — 1, which
has been observed at time m. Therefore, in practice, one needs to add a tail estimate to
the claims reserves in order to also cover these additionally expected outstanding loss
liability cash flows. The entire tail can be estimated under assumptions (A1)—(A3) if we
additionally assume that 3; = t; = 0 for j = 1,...,m — 1. In this particular case, we
know that all claims are reported after development period j = m — 1. Thus, we define
the claims reserves including the tail by (re-arranging the summations)

m—i m—1

/Z\EBNSJF Z Vi ZNIJ Z 7/-5\1 ‘aj,ly
I=m—(i+j)+1
SIBNR m—1 _ m-1
ZNRE Zﬁ Vi Y B Y mid,
j=m—i+l  1=0

and the total reserves including the tail are defined by Z} = ZRBNS+ | ZIBNR+
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Figure 1: Real data example: estimates for 9;. Estimates 3 are based on Nm, estimates '5,-(2 are based

1
on R, and 9; is the arithmetic mean between the latter two estimates.
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Figure 2: Real data example: estimates for a;, 9; and v;.

5. An example with real data

We illustrate the methods proposed in this paper using a real data example provided in
Tables 6, 7 and 8 in Appendix C. The first step is to estimate the parameters according
to Section 3.

In Figure 1 we give the estimates for ¥; for i = 1,...,m = 14. We see that both
data sets N, and R,, provide similar estimates '5,(1) and 5,(2) for 1#; which confirms the
model assumptions (A 1)—(A3). Moreover,,\ we see a strong decrease in the volume in this
portfolio, since the exposure parameters ¥; decrease from 1 to roughly 0.5.

We could now proceed as described above and use the estimates 3; and A ;. However,
we slightly deviate from this approach. Namely, if we plug in the resulting (adjusted)
exposure estimates J; from (8) into (6) and (7) we get adjusted estimates [3; for 3; and

similarly P j for A;. We prefer to work with these adjusted estimates because they assure
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that the overall level is correct if calculate the cross-classified means of N; j and R; ;, see
Proposition 2.

In Figure 2 we show the estimates for the exposures a; and ¥;, and the resulting
inflation estimate V; is provided by the ratio of the latter two estimates. In general,
we see an increase in the time-series V1,..., V14, however accident year i = 8 seems
conspicuous and needs further analysis on single claims data. It may indicate that there
is a change in the underlying product (if it only acts on horizontal axis in the claims
development triangle). Indeed we observe a substantial decrease in average payments
per reported claim in accident year i = 8 which supports the argument of changes in the
product (or portfolio). o

Finally, we estimate 77; and j; from 3, A; and ?j. We ~solve the estimation problem
under assumption (10), i.e. yj; = uy. In that case we set B,g =Bz s andthen we

Bos--Pm—1
estimate 71; and 71744/ from equations (9) and (12). Figure 3 provides the estimates ;.

First of all we observe that all 77, > 0 except 72 < 0 and 72 < 0 which contradicts the
model assumptions (A 1)—(A3). Thus, at this point we might ask for a more sophisticated
model. However, this would also ask for more micro-level observations. We refrain from
doing so but correct this value. In our particular case, we choose correction

=2\ =1,
s |7 1=2,
=
0 I=12,13,
T otherwise.

The resulting adjusted estimates 7T; are also given in Figure 3. Note that we have
Y7 =~ Y;7 = 0.7251, which says that on average we expect 0.7251 payments
per reported claim, and in the average almost half of the claims can be settled without a
payment. An analysis of payments per reported claim shows that this figure is decreasing

0.6

L
02 \
WY

0.1

w——pi_| === pi_|tilde

Figure 3: Real data example: estimates 7| and 7t for 7).
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Figure 4: Real data example: estimates [ij for puj =y for [=0,...,11.

over time. This decrease can have various reasons such as changes in reporting philos-
ophy, changes in the claims handling process, but it could also be related to changes in
the portfolio (we have already mentioned that the volume is strongly decreasing).

We then estimate p;7t; from [i77,, which is the solution of the system (12). And,
under (10), we estimate 4, = p; by 7t /7).

The results are presented in Figure 4. We see that the average payments u;; are
increasing in the payment delay /. We could now further smooth this curve for the
expected payments (4;, but we refrain from doing so. There are also other issues, for

example that the payments Y,(j), may not only depend on the accident year i and the
payment delay / but also on the reporting delay j. However, as described in Section A
we cannot model all directions simultaneously because this would lead to an over-
parametrization.

Finally, in Table 1 we present the resulting claims reserves. We observe that under
assumptions (A1)-(A3) and (10) we obtain higher claims reserves than classical chain
ladder (see the last two columns in Table 1). One reason for this more conservative
estimate is that we judge the upper right corner of the triangle X, differently. The
estimate for later development periods, say j = 11,12, 13, is based on a rather small set
observations in the chain ladder method (and hence not very reliable). In our model we
use the additional model structure for the estimation of payments in later development
periods which, in this case, is more conservative. The influence of the tail estimate is
only minor, specifically Z,ﬁ —Zm = T7074. This has to do with the fact that we have a
rather short payout pattern 7T; (see Figure 3).

Another possible approach in the previous calculations is to use condition (11),
iLe. u;; = u;. However, the resulting claims reserves derived in this case seemed to be
too low and we have decided not to include this in the paper. The reason is because the
main driver of late payments is the payment delay 7t; and not the reporting delay ;. This
implies that under (11) we underestimate the amounts of late payments because they are
attached too strongly to the reporting pattern f3; compared to the payment pattern 7;.
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Table I: Real data example: resulting claims reserves under (10).

ay.i ZRUNSE  GIBNES: Z; ZEL | difference in %
1 536 0 536 536
2 1540 0 1540 0 1540
3 23799 0 23799 2220 21579 971.8%
-+ 162275 0 162275 147434 14 841 10.1%
5 291122 790 291912 280056 11855 4.2%
6 415955 1590 417545 408 154 9391 2.3%
v 584991 3300 588291 569060 19231 3.4%
8 605767 3676 609 443 583785 25658 4.4%
9 704 687 5039 709726 675363 34363 5.1%
10 803 884 6343 810228 764373 45855 6.0%
11 1054124 10037 1064 161 1004331 59829 6.0%
12 1397 607 22068 1419675 1352819 66 856 4.9%
13 1999243 84680 2083922 2076674 7248 0.3%
14 4221084 1474793 5695877 5487 650 208227 3.8%

total 12266 615 1612315 13878930 13351921 527009 3.9%

6. Bootstrap predictive distribution

6.1. Conditional mean square error of prediction

In addition to the claims reserves estimates Z; we also need to assess the corresponding
prediction uncertainty. We briefly describe this with the help of the conditional mean
square error of prediction (MSEP) uncertainty measure which is defined by

MSEPY, 1 Nom RonsXon} (Z*n’) =E l(X,,, —Z‘;)z N,,,,fR,,,,fXTm] / (16)

where the aggregate cash flow in the lower triangle is defined by X, = Y1 » 2'}:,,’,_,- 11 Xi j-
Thus, the conditional MSEP describes the possible fluctuations of the true outstanding
loss liability cash flows X, around the predictor Z\; . Since the predictor is T{ Ny, R,
X }-measurable the conditional MSEP can be decoupled into process variance and pa-
rameter estimation error, see (3.1) in Wiithrich and Merz (2008),

i 5
MSEPY, 1 N, Ron, X} (ZT;) = Var (Xpu| Nop, Ry Xin) + (Zm_zz) : (17)

The first term (process variance) can be calculated explicitly under our model assump-
tions, the second term (parameter estimation error) is more difficult to assess. Often,
one derives approximations for this latter term. However, in our case this is too in-
volved, therefore we rely on the bootstrap simulation method to quantify the prediction
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uncertainty. In order to apply the bootstrap method there is the parameter s? ; that still
needs to be estimated.We do this under calibration (10), i.e. we set

2, =5 (18)

to avoid over-parameterization. In view of Proposition 5 we have

Xij—aiy; Xij—oiy;
]E 5J J :0 d V —’] J = 2

The sample estimator then provides estimates

52 = Z Xyt

\/a, Vi

for j =0,...,m—2 and we set G2 , = G2 ,. In view of (21) we have a second
description for O'?. If we solve this for sl2 and replace all parameters by their estimates
we obtain estimates
T SR P ~ T (=25 ~2 T
((nsz)m tey (Tcsz)mfl) = B[)’I(o.(2h cee 7O-r2n—1) - (7'[% Au’(2J7 ceey 7'5,2"_1 Au‘r2n—1) )
and finally we set
$ = (ns?),/ 7, forall [=0,...,m—1. (19)

If we apply this procedure to Example 1 we obtain the result in Table 2. In order to justify
these estimates we calculate the estimates of the corresponding coefficients of variation
given by vco = 5;/;. Table 2 shows that these estimated coefficients of variation are
in the interval [1.5,5.5], i.e. the coefficients of variation for single claims payouts Y (k )
are of order 1.5 to 5.5. These are reasonable values, for instance in the Swiss Solvency
Test (SST) the coefficients of variation for single claim sizes (not payouts) are estimated
between 2.25 and 11 depending on the underlying line of business, see Section 8.4.4 in
FINMA (2006). These estimators now allow for applying bootstrap methods which are

Table 2: Real data example: resulting standard deviation estimates 5] together with the mean estimates [l
and the corresponding coefficient of variation estimates Vco.

0 1 2 3 4 5 6 7 8 9 10 11

5; 2862 8511 11651 26688 93291 28083 52846 43333 104714 59276 75632 104701
U, 818 1561 2534 7712 21993 18435 16113 22300 40529 29540 28704 46764
vco 350 545 460 346 424 152 328 194 258 201 263 2.24
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Table 3: Real data example: process standard deviation (first row) and rooted conditional MSEP (second
row) under model (Al)-(A3) for the predicted RBNS, IBNR and the total claim reserves. The last column
gives the results of the Mack formula (Mack 2010).

RBNS IBNR total Mack (1993)
process standard deviation 1511860 293 166 1545503 1521713
conditional MSEP'/2 2273294 326382 2324966 2182722

close to those proposed by Martinez-Miranda et al. (2011, 2012). Specifically, we derive
the predictive distribution using a parametric bootstrapping procedure which exploits the
model assumptions in Section 2. In a first step we define a bootstrapping scheme based
on Monte Carlo simulation from the model (A1)-(A3) where the unknown parameters
are simply replaced by the estimated parameters (ignoring the parameter estimation
uncertainty). This gives an estimation of the process variance defined as the first term
in equation (17). The resulting process variances for RBNS, IBNR and total reserves
(for all the years) are given in the first row of Table 3. To quantify the second term in
equation (17), i.e. the parameter estimation error, we consider a more general bootstrap
algorithm which also simulates the distribution of the involved parameters. From such
general bootstrap method — formally described below — we derive the desired conditional
MSEP. The resulting errors are displayed in the second row of Table 3. The last column
displays the same uncertainties obtained from the Mack’s distribution-free chain ladder
model Mack (1993). We observe that our bootstrap results are slightly more conservative
compared to the classical Mack formula.

6.2. Bootstrapping the RBNS and IBNR reserve

The predictive distribution which describes the possible fluctuations of the true out-
standing loss liability cash flows can be derived using parametric bootstrap methods. By
exploiting the distributional assumptions (A1)-(A3) we describe in the Appendix B an
explicit algorithm to derive separately the predictive distribution of the RBNS and IBNR
cash flows, XRXBNS and XIBNR  respectively. With this resampling scheme the RBNS and
IBNR cash flows can be simulated using Monte Carlo methods. We have derived these
cash flows for the data in Example 1. Table 4 shows the median and the upper quantiles
separately for the RBNS and IBNR cash flows. Here we consider B = 10000 replica-
tions in the resampling scheme. As we expect the means imitate the predicted reserves
given in Table 1. The calculated medians however are slightly lower, which reveals that
the derived distribution is negatively skewed.

For comparison purposes we also consider the double chain ladder method (DCL)
proposed by Martinez-Miranda et al. (2012). This method is defined under a simpler
distributional model which makes the following assumptions on the first two moments
E[Y,(}),] = V;u and IE[(Yl(Jl)l)z] = v?02. Table 5 reports the summary of the distribution for
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Table 4: Real data example. Simulation of predictive distribution of RBNS and IBNR reserves by accident
year: mean, median and 95% and 99% quantiles over B = 10000 repetitions. Column 2-5 give the RBNS
reserves, Column 6-9 give the IBNR reserves.

RBNS IBNR
ay.i mean median 95% 99% mean  median 95% 99%
1 522 0 0 882 0 0 0 0
2 1658 0 0 38893 0 0 0 0
3 23947 0 140730 352637 0 0 0 0
4 165490 73036 633033 1172022 0 0 0 0
5 297 554 199030 932461 1579736 202 0 18 3910
6 418854 321105 1106734 1840653 688 0 2509 16514
7 586159 476807 1435075 2194285 1617 0 8521 30389
8 609403 522311 1377117 2047477 2312 8 12839 34068
9 712294 615028 1548731 2236150 3750 92 18937 49613
10 809344 716227 1660795 2374073 5108 639 22475 58796
11 1056515 953340 2092864 2990605 9096 2896 37051 78573
12 1410137 1295048 2537813 3437648 21487 13153 69200 125271
13 2008886 1899042 3271259 4179189 86354 72050 188811 327241
14 4211291 4126027 5463231 6402499 | 1552438 1512135 2074502 2514402
total | 12312055 12040963 16325473 18860539 | 1683054 1640097 2222831 2709200

the RBNS, IBNR and total claims reserves. The resulting reserves are similar when we
consider the sum over all accident years. However, we observe more variability in the
method proposed in this paper, under assumptions (Al)-(A2), compared to the DCL
method. This is due to the fact that in DCL method there is the assumption that a claim
is settled by a single payment and hence there is less volatility in the cash flow process.
Besides, the model in this paper involves more parameters than the DCL model and
therefore it increases the uncertainty of the parameters, which we are taking into account
in the resampling scheme (see algorithm in Appendix B).

Table 5: Real data example. Bootstrap predictive distribution: RBNS, IBNR and total claims reserves. The
first three columns give the summary of the distribution under model (A1)(A3). The last three columns
provide the bootstrap distribution from the DCL method proposed in Martinez-Miranda et al. (2012).

model (A1)-(A3) DCL
RBNS IBNR total RBNS IBNR total

mean 12312055 1683054 13995109 11758152 1585151 13343303
MSEP!/2 2273294 326382 2324966 1881154 485312 2018112
1% 8090717 1131376 9615040 8081739 687623 9314398
5% 9088207 1262754 10685634 9012040 897886 10408 658
50% 12040963 1640097 13723567 11637796 1532079 13243493
95% 16325473 2222831 18101695 14869197 2448915 16729435
99% 18860539 2709200 20660941 16516558 2941469 18487830
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7. Conclusions

In this paper we have defined the claims reserving model on an individual claims pro-
cesses basis (micro-level). The definition of the model on this micro-level has been
done such that on the aggregate level we re-discover the classical chain ladder reserving
method. Under this model we show how extended data collection can provide us with
more and better information to act in time on unforeseen patterns of outstanding liabil-
ities. In particular we have focused on how various claims delays impact severities and
how to incorporate this information in the reserve. Our approach in this paper shares
the simplicity and intuitive appeal which have popularized the chain ladder method in
claims reserving. But, with a little more effort in calculations and data requirements,
our approach reports several other advantages. Since chain ladder is only based in the
aggregated payments triangles, it cannot provide the split of the claims reserves into
RBNS and IBNR and the tail as we do. Such split is required for the calculation of unal-
located loss adjustment expenses ULAE and it gives valuable information to the insurer.
In addition, to work under a well-defined and firm statistical model provides a suitable
framework to develop consistent bootstrap methods to quantify the uncertainty in the
predictions. In future work we will also consider simulation of coefficients of varia-
tion following the insights of for example Gulhar, Kibria, Albatineh and Ahmed (2012).
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A. Moments calculations

Here we provide calculations about the two first moments of the stochastic variables in
the triangles N,,,, R,, and X,,. Hereafter we work under the model assumptions (A1)-
(A3) formulated in Section 2.2.

A.1. Calculation of means

We start with the claims payments X; ;; given in (A3). The conditional and unconditional
means are given by

E[Xi i Nios-- s Nim—1] = Nij T Vi Uj1,
EXi ;)| =E[E[X; 1| Nio,---sNim—1]] =T B; 01 vi -

The total number of payments R;; of accident year i in accounting year i+ j has,
conditionally given {N;,...,N;m—1}, a Poisson distribution with conditional mean

J J
E[Ri|Nios---sNim-1] = ZE[Ri,j—l,l’Ni,j—l] = ZNi,j—l .
=0 1=0

This implies for the unconditional mean
J
E[Ri ;] =E[E[RijINig,---,Nim-1]) =0 Y Bjt 7.
1=0

Define A; = Z{:o Bj—i 7, for j=0,...,m—1, then we have just proved the following
proposition.

Propositi0n2 E[IV,’]] = ﬁi ﬁj and E[Rivj] = ’l?i A/

Thus, the pair (N; ;,R; ;) satisfies the double chain ladder model of Martinez-Miranda et
al. (2012) with inflation parameter set equal to 1. 7; describes an exposure measure for
accident year i, (f3;); gives the claims reporting pattern and (A;); provides the number
of payment count pattern.

The accounting year payments X; ; for accident year i in accounting year i+ j have,
conditionally given {N;,...,N;,,—1}, a compound Poisson distribution with conditional
mean

J
E[Xi;|Nio,. - ,Nim—1] = ZNi,j—l T Vi dji4-
1=0
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This provides the unconditional mean for X; ; given by

J
E[Xi;]=0; v Zﬁjfl T Ui
=0

We define the parameter y; which only depends on the development period j given by
Y= Z{ZO Bj—1 7 Wj—r;. Thus, we obtain a cross-classified unconditional first moment
for X; ; which is stated in the following proposition.

Proposition 3 We have for a; =V, v; that E[X; ;| = a; 7.

This moment property is similar to the Bornhuetter-Ferguson models used by Mack
(2008) and Saluz, Gisler and Wiithrich (2011), Models 4.11 and 4.16. Moreover,
Proposition 3 explains how the claims development reporting pattern (f3;); for N; ; is
related to the claims development pattern (;); for claims payments X; ;.

A.2. Calculation of variances

In a similar fashion to the first moments we calculate the variances. First we have under
the conditional compound Poisson assumptions (A3)

2 2
Var (X ji|Nio,- -, Nim-1) = Nij 0 v} 85,
and for the unconditional variance we have

Var (Xi 1) = Var (E[X; ji| Nio, - s Nim-1]) + E [Var (Xi 1| Nio, - -, Nim-1)]
=0, B; v; (n] w3+ sy,).

The total number of payments R;; of accident year i in accounting year i+ j has,
conditionally given {Njy,...,N;u—1}, a Poisson distribution with conditional variance

J J
Var(Ri,j\N,-?o, e ,Ni’mfl) = Zvar(RiJ*lANi,j*l) = ZNiJ’,] 7.
1=0 =0
This implies for the unconditional variance

Var (R,'J) = Var (E [R,'J" Ni707 - 7Ni,m71]) +E [Val'(R,"j‘ ]V,'!’Q, e ,Ni’mfl)]

J J
=) B 7T12+ﬁi2ﬁjfl .
=0 =0



216 Statistical modelling and forecasting of outstanding liabilities in non-life insurance

Define for j =0,...,m—1

J
=Y B m(l+m)>2;, (20)
=0

then we have just proved the following proposition.
Pl’OpOSitiOll 4 Var (Ni,j) = ’l?,' ﬁj and Var (Ri,j) = ’l?l' tjz.

In view of Proposition 2 we see that for the number of payments R; ; we obtain over-
dispersion parameter

2 J 2
J - i
J Z{:()ﬁjfl (9]

1.

Note that R; ; has a mixed Poisson distribution which is exactly reflected in this over-
dispersion parameter ¢; > 1.

The accounting year payments X; ; for accident year i in accounting year i + j have,
conditionally given {N;,...,N;;—1}, a compound Poisson distribution with conditional
variance

J
Var(X,-_,j|N,~_,0, e aNi,m—l) = ZNi:j_l Y Viz sifl,l'
=0

This provides the unconditional variances for X; ; given by
Var(X,»vj) = Var(E [Xi,j|Ni,07 - Jvi,m—l]) —|—E [Var(X,-’j|N,-70, N aNi,m—l)]

J J
_ 2 2 2 2 2
=0 v Y B us g+ 0 v Y B s gy
1=0 =0

We define the parameter 0? which only depends on the development period j given by

j 2
0'5 = Zﬁjfl T Uj-1 <7T1 Wi+ ‘uj_ L ) - 210
1=0 j—l,l

Thus, we obtain a cross-classified model for X; ; with first moment given by E[X; ;] =
a; v and variance given in the following proposition:

Proposition 5 Var (X; ;) = a; v; 07.

Again it is similar to the claims reserving models used in Mack (2008) and Saluz ef al.
(2011), Models 4.11 and 4.16, but now the parameters have an explicit meaning.
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B. Resampling schemes

Here we provide the algorithm to derive the predictive distribution of the RBNS and
IBNR cash flow: XRBNS and XIBNR We denote by 6 = {7/, us,s;,vi; [ =0,...,m—
1,i = 1,...,m} the set of parameters involved in the model, under calibration (10).
Moreover, let 6 denote the parameters estimated from the data (N;,,, R,,,, X,,,) which can
be calculated using the methods described in Section 3 and expression (19).

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the observed data (N,
Ry, Xo) estimate the model parameters 0 by the estimator 0 = {7, U;, 51, V;; [ =
0,...,m—1,i=1,...,m}, as described above. The payment delay distribution is
estimated by a Poisson distribution with estimated parameter, i.e. R; j ;| (NigrNim_1}

(1

~ 7j7l
gamma distribution with shape parameter A = {7 /(s7 — [i7) and scale parameter
K= (512 - ‘alz)/{)i/.al-

Step 2. Bootstrapping the data. Conditional on the observed number of reported
claims N, generate new bootstrapped triangles R;, = {R;;; i+ j < m} and
X, =A{X;; i+j < m} as follows:

~ Poi(N; ;7). The distribution of the individual payments, Y, . is estimated by a

(i) Simulate the payment delay: from each N; ;, i+ j < m, generate the number of
payments, R; ;, from a Poisson distribution with parameter N; ; 7T, estimated
in Step 1. Calculate the bootstrapped total number of payments, R} =

{Rjij; i+ j < m} from expression (1).

(ii) Get the bootstrapped aggregated payments, X, = {X;* B i< m}, from the

gamma distribution estimated in Step 1 and using expression (2) but replace
R,'J'_l,[ by sz_u.

Step 3. Bootstrapping the parameters. From the bootstrap data, (R, X)), and the

m?

original N,,, estimate again the parameters and get bootstrapped parameters 6*.

Step 4. Bootstrapping the RBNS predictions. Simulate the RBNS cash flow, XRENS*,
in the lower triangle using similar specifications to (i) and (ii) in Step 2 but with
bootstrapped parameters 0*.

Step 5. Monte Carlo approximation. Repeat Steps 2-4 B times and get the empirical
bootstrap distribution of the RBNS cash flows {XRENS2:p — 1 ... B}

The IBNR algorithm to simulate the IBNR cash flows XBNR* follows the same steps
as the algorithm RBNS but, in addition, involves the estimation and the simulation
of the number of reported claims N; ; in the lower triangle J,,. In this case and under
assumption (A1), we simulate N, = {N;;; (i, j) € I} from a Poisson distribution with

parameters estimated by the chain ladder estimates {1/?\1-, [/5\ i, j+1=1,...,m} (for more
details we also refer to Martinez-Miranda et al. 2011).
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C. Run-off triangles

Table 6: Example 1, number of reported claims Nj j, (i, j) € Jp.

ay / dy 0 | 2 3 4 5 6 7 8 9 10 11 12 13
1 18247 3083 124 22 5 5 3 1 0 1 1 0 0 0
2 17098 2567 98 25 6 1 1 3 0 1 0 0 0
3 16110 2700 107 18 7 5 4 1 4 0 0 0
4 14426 2253 103 17 10 3 2 1 1 1 0
5 14142 2173 62 11 7 4 0 1 1 0
6 14275 1850 86 25 6 2° 1@ 40 1
T 14019 1797 97 19 5 1 1 1
8 13933 1602 84 24 6 3 1
9 12962 1503 65 11 2 2
10 12226 1352 74 18 7
11 11124 1347 57 12
12 10360 1307 56
13 10371 1141
14 10435
Table 7: Example 1, number of payments R; j, (i, j) € I
ay/ dy 0 1 2 3 4 5 6 7 8 9 10 I1 12 13
1 11761 4800 324 71 39 14 10 6 3 vy L) 2 2 0
2 10927 4077 303 60 28 12 13 5 8 4 5 5 0
3 9856 4168 294 71 23 23 16 10 9 4 4 3
4 8915 3682 246 70 27 16 g T 4. 7 4
5 8854 3340 265 46 33 9 -+ 6. 2 35
6 8881 3000 199 70 22 15 8 8 4
7 8170 2983 221 46 18 8 5 6
8 7821 2741 184 55 22 15 3
9 6999 2540 166 44 18 7
10 6240 2420 184 45 18
11 5652 2210 184 45
12 5223 2317 148
13 5627 2024
14 5483
Table 8: Example 1, claims payments X; j, (i, j) € In.
0 1 2 3 4 5 6 7 B 9 10 1 12 13
1 9829717 5 690 608 874 882 420 112 154 884 55497 46239 313960 290204 12936 6218 18755 4678 o
2 9263718 5004173 971523 660 324 208 000 531391 495 368 48 367 566 099 49 905 362 747 388 190 0
3 9402 126 5625116 805 027 322263 325 505 101 469 160 747 310837 30754 69 395 8123 51756
4 8 650 875 5150702 752354 802 485 209 590 466 859 197 654 41763 25349 367 750 123001
5 B B48 118 4748516 1 390 699 1140610 412000 359991 20169 220227 54 395 240 967
6 9070 691 5890 678 519 808 539202 127 701 86472 122 060 83853 6 660
7 8763254 4293444 1339 396 292330 1515615 155 402 28210 36 709
8 7 777 082 4145234 642 BI6 504 127 92 030 101 250 6 620
9 7212984 3498 230 778132 354 855 626 442 342182
10 6265 457 3737 631 546 644 182490 297 995

ST37447 3281460 748 102 456 983
5612232 3495586 593774

6386024 3289703

6110750

i)

=
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Flexible geoadditive survival analysis of
non-Hodgkin lymphoma in Peru

Claudio Flores!, Mar Rodrl’guez—Girondoz’3, Carmen Cadarso-Sudrez?,

Thomas Kneib*, Guadalupe Gémez! and Luis Casanova’

Abstract

Knowledge of prognostic factors is an important task for the clinical management of Non Hodgkin
Lymphoma (NHL). In this work, we study the variables affecting survival of NHL in Peru by means
of geoadditive Cox-type structured hazard regression models while accounting for potential spatial
correlations in the survival times. We identified eight covariates with significant effect for overall
survival. Some of them are widely known such as age, performance status, clinical stage and lactic
dehydrogenase, but we also identified hemoglobin, leukocytes and lymphocytes as covariates with
a significant effect on the overall survival of patients with NHL. Besides, the effect of continuous
covariates is clearly nonlinear and hence impossible to detect with the classical Cox method.
Although the spatial component does not show a significant effect, the results show a trend of low
risk in certain areas.

MSC: 62P10 (Applications to biology and medical science) 62N01 (Censored data models) 6207
(Data analysis)

Keywords: Non-Hodgkin lymphoma, structured regression models, survival analysis.

1. Introduction

Non-Hodgkin lymphomas (NHLs) are a group of lymphoproliferative malignancies
of the lymphatic system defined by different morphological, immunophenotypic and
genetic features. This heterogeneity determines different patterns of prognosis in the
NHL patients that should be considered to optimize their treatment benefit (Friedberg er
al., 2008).
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Traditionally, the International Prognostic Index (IPI) has been used to classify the
NHL patients into four risk groups (low, intermediate low, intermediate high, high)
considering five variables of prognostic significance (age, performance status, clinical
stage, lactic dehydrogenase and extranodal sites) derived from a Cox regression analysis
based on categorical covariates (Shipp et al., 1993). However, a relatively important
group of patients presents poor survival, despite being classified as good prognosis
according to the IPI.

Several aspects can be related to the observed inaccuracy of the IPIL. It is possible
that important prognostic factors are not being included in the analysis such as new
genetic and biological markers currently under investigation. Another important issue
that could lead to implausible results refers to the categorization of the continuous
covariates included in the IPI (age and lactic dehydrogenase).

Beyond the IPI, many studies of prognostic factors for NHL have been performed
using the classical Cox’s proportional hazard model. Within this framework, the effect
of the continuous covariates is assumed to have a linear functional form, however it is
important to note that when this assumption is not satisfied, the Cox model may lead
to biased inferences, loss of statistical power and incorrect conclusions (Therneau and
Grambsch, 2000).

In addition, in databases based on hospital records, referral centres, population
studies or multicenter clinical trials, the results may be affected by spatial correlations.
These complexities in the covariates affecting survival are not covered by the Cox model
and hence a more general and flexible regression framework is required.

A variety of flexible methods have been developed in recent years. An up-to-date
review of Cox-type models extensions can be found in Buchholz and Sauerbrei (2011).
In this article we use geoadditive Cox-type structured hazard models to inspect the
functional form of several covariates effects, including a spatial component, on the
overall survival of the patients with NHL.

The rest of the paper is organized as follows. In Section 2 structured geoadditive
Cox-type hazard regression models for modelling survival data are revisited. Section 3
presents the results of the analysis of the data set of NHL in Peru and finally, a discussion
concludes the paper.

2. Methodology

2.1. Geoadditive survival models

In many clinical studies, the common target of analysis is to model the effect of several
covariates (prognostic factors) on the survival time. A classical tool for studying the
effect of a vector of covariates v on continuous survival times is the Cox proportional
hazards model (Cox, 1972):
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Ai(t,v) = Ao(r) exp(v] 7) (D

However, this specification is often not flexible enough for the correct modelling of
variables affecting survival in many applications.

In our analysis, we used structured geoadditive survival models (Hennerfeind ef al.,
2006; Kneib and Fahrmeir, 2007), a flexible spatial generalization of the Cox model.
Specifically, the linear predictor of equation (1) was extended to a structured geoadditive
predictor, including a spatial component for geographical effects and nonparametric
terms for modelling unknown functional forms of the log-baseline hazard rate and
nonlinear effects of continuous covariates. Specifically, individual hazard rates are given
by:

Ai(t) =exp(ni(t)),i=1,...,n ()
with geoadditive predictor
T q
Ni(t) = go(t) +v; T+Zsk(xik)+fspat(s) (3)
k=1

where go(t) = log(A(z)) represents the log-baseline hazard rate, the vector ¥ contains
the usual linear effects, s (x;) refers to the nonlinear effect of a continuous covariate x,
and fipai(s) is the spatial effect in region s € {1,...,S}.

In this representation, all the nonparametric effects, including the log-baseline hazard
are modeled using penalized splines (P-splines, Eilers and Marx, 1996). Thus, the
nonparametric problem is replaced by a parametric equivalent, in which a vector of
regression coefficients is estimated under a smoothness penalty (details are given in
Section 2.2.). The general idea is to approximate the functions gy and s; by linear
combinations of B-splines basis functions,

di
se(x) =) B;B;(x) )
j=1
where vector 3, = (f31,...,[34,) is the vector of unknown coefficients corresponding to

the B-splines basis of degree a and defined over a grid of k knots lying on the domain
of x, with dy = a+ k — 1. Specifically, we considered B-splines basis of degree 3 and a
grid of 20 equidistant knots in our analyses.

At the same time, the spatial effect of each region s is split up into a structured part
and an unstructured part:

fspat(s) = fstr(s) +funstr(s) ®))
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With this division of the spatial effects, we aim to distinguish between two types of
geographical influential factors. On the one hand, the structured effect refers to a general
smooth spatial effect along the whole studied area. On the other hand, the unstructured
effect accounts for possible effects that may be present only locally. The structured
spatial effects are modeled by means of Markov random fields, assuming that the
effect of an area s is conditionally Gaussian, where the expectation is the mean of the
effects of neighbouring areas and the variance is inversely proportional to the number of
neighbours, specifically

1 1
]7 Z ﬁ;/tr+MS7 ug~N <0, W) (6)
stri Vs

5 §'eS

foue(s) =B =

where 6 denotes the set of neighbouring areas of s and N; the corresponding number
of areas falling in &,. As for the unstructured spatial effects, a Gaussian region specific
i.i.d. random effect is assumed.

As a result, we can express each of the predictor components as the product
of an appropriate design matrix Z; and a vector f3; of regression coefficients, and
consequently we can represent the predictor vector 7 in a generic matrix notation as
N=Vy+Z 3, + - +Z, [Sq +Zw By +Zunste Buygr» Where Vo is the design matrix of
parametric effects.

Interestingly, from equations (2) and (3) we can extend the concept of hazard ratio
with respect to a reference value x.¢. In contrast to the linear hazard ratios derived from
the Cox model, the structured geoadditive survival specification provides flexible hazard
ratio curves. Hence, for a given smooth effect s associated to a continuous covariate
X, the adjusted hazard ratio for a subject with covariate x compared to a subject with
covariate xgr is given by the smooth curve:

HR (x, xper) = exp(s(x) — s(xpef)) (7)

2.2. Estimation of the parameters

Under the usual assumptions about non-informative censoring, the log likelihood, given
the vectors of all parametric effects ¥ and all nonparametric and spatial effects 3, is
(r,B)=6"M —1TA, where M denotes the linear predictor defined in (3) and § and A
are, respectively, the vector of censoring indicators and cumulative hazard rates.
However, instead of obtaining the estimates of 8 by means of the unpenalized
likelihood, a penalty term is added to control the level of smoothness by penalizing
wiggly functions. The most commonly used penalization term is based on the integral
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of the second derivative of the smooth functions, sy:

1 00
pen(sy) = E?Li/o [s7 (z)]*dzi )

Since equation (8) is a quadratic form of the corresponding vector of regression
coefficients f3;, it can be written as %A iB;K;B;, where the penalty matrix K; is a
positive semidefinite matrix and A; a smoothing parameter. Furthermore, the smooth
functions for the nonlinear effects are represented in terms of B-splines and it allows
to approximate the penalty term in terms of the squared differences of coefficients
associated with adjacent basis functions (Eilers and Marx, 1996). As a result, the
difference penalty matrix can be written as K; = DD, with D the second order
difference matrix of neighbouring coefficients.

A special remark about the spatial smoothing is required. In this case, the smoothing
referees to the intuitive idea that risk in neighbouring areas should be close to each other.
We define as neighbour areas those sharing a common boundary and analogously to the
nonlinear effects, we penalize large deviations between neighbouring coefficients fB,,
where Ay, from equation (6) is considered as the corresponding smoothing parameter.
Hence, the corresponding penalty matrix K, is defined as an adjacency matrix. For the
unstructured spatial effect, the penalty matrix is simply the identity matrix correspond-
ing to independent and identically distributed random effects for the regions.

As a result, the estimation of the regression effects is based on the penalized log-
likelihood to ensure a compromise between fidelity to data (in terms of the likelihood)
and smoothness (in terms of the penalty terms):

q
lpen (Ta ﬁ) = Z(Tv [3) - Z A’]lj;rKjﬁ] - A'Slrﬁz—trKStrﬁ str A’IHISIrﬁInstrl{llllst-rﬁunstr (9)
=1

Empirical Bayes inference was used to fit the model. This inferential procedure is
based on a mixed model representation of equation (9) where the smoothing parameters
(A;) are considered as variance components corresponding to the vector of regression
coefficients (8 ;). It allows for the simultaneous estimation of the regression coefficients
and the smoothing parameters corresponding to each unknown function go, sk Or fspa
using restricted maximum likelihood (REML) estimation. See Kneib and Fahrmeir
(2007) for details.

The analysis was conducted using BayesX statistical software (Brezger ef al., 2005)
freely available online from www.bayesx.org. Empirical Bayes inference was per-
formed due to its equivalence to the penalized splines likelihood in the frequentist frame-
work but BayesX also allows for a full Bayesian inference by means of MCMC simula-
tion techniques (Hennerfeind et al., 2006). To check the consistency of our results with
regard to the inference procedure, the corresponding full Bayesian analysis was also
conducted.
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Figure 1: Density function of survival time (left) and Kaplan-Meier estimate of the overall survival curves

with corresponding 95% confidence bands(right).

3. Application to NHL

We analyzed survival data for 2160 patients diagnosed NHL, older than 14 years and
treated at the Instituto Nacional de Enfermedades Neopldsicas (INEN), Lima, Peru,
between 1990 and 2002. The clinical features evaluated were age, sex, performance
status (zubrod), primary disease, clinical stage (CS), B symptoms, hemoglobin (Hbg),
log leukocytes (In(WBC)), lymphocytes and log lactic dehydrogenase (In(LDH)).

Table 1: Fixed and random estimates of the fitted model.

Variables df HR (95% CI)
Fixed effects:

Sex: male 1 1.25 (1.07,1.46)
Zubrod: 2-4 1 1.88 (1.59,2.22)
Primary: nodal 1 0.90 (0.76,1.06)
CS: II-1Iv 1 1.44 (1.22,1.71)
B-symptoms 1 1.16 (0.99,1.37)
Non-parametric effecs:

a(t) 3.52 see figure 2
Age 2.67 see figure 2
Hbg 4.16 see figure 2
In(WBC) 2.63 see figure 2
Lymphocytes 5.79 see figure 2
In(LDH) 4.16 see figure 2
Spatial effects:

Random component 5.41 see figure 3
Spatial component 1.06 see figure 3
AIC 6549.95

BIC 6750.99
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Figure 2: Logarithm of the smooth hazard ratio curves derived from the geoadditive model fit. Clinical
cut-off values were used as reference points in the analysis. 80% ( green) and 95% (grey) credible intervals
are shown.

The median age was 54.0 years (range: 14-96 years). Most patients presented
advanced-stage disease at diagnosis: 50.8% presented Stage I-II and 49.2% presented
Stage III-IV. Thirty-eight percent of the patients had B symptoms at diagnosis. The
median length of follow-up for the patients was 12.6 months. Among all the patients,
32.8% had died before the end of the follow-up period (uncensored cases) and 67.2%
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remained alive (censored cases). Figure 1 shows the distribution of survival time of
patients with and without censoring (left) and the Kaplan-Meier estimate of the overall
survival curve (right). According to the structured geoadditive Cox-type hazard analysis,
eight prognostic factors were identified associated with worse survival (Table 1). Three
categorical covariates: male patients, zubrod 2-4 and clinical stage III-IV at diagnosis
were associated with worse prognosis for overall survival. The location of the disease
described as primary nodal or extranodal, and the symptoms B had no significant effect
on the overall survival.

A significant nonlinear relationship was identified for the effects of all continuous co-
variates: age, Hbg, In(WBC), lymphocytes and In(DHL). Figure 2 shows the functional
form of the covariate effects in the log hazard ratio. Usual clinical cut-off values were
used as reference points: 60 years (age), 12 g/dL (Hbg), 10? counts/dL (WBC), 40%
(lymphocytes) and 240 UI/L (DHL). Note that a strong nonlinear effect (df = 5.79)
was found for Lymphocytes with increased hazard ratios for lowest and highest values.
Risk geographical pattern is presented in Figure 3. Although Lima and Apurimac areas
were identified as increased risk areas, the spatial effect was not significant according to
the included variables.

As for the inference procedure, the results obtained from the full Bayesian inference
(not shown) are very similar to the ones derived from REML estimation, hence we can
assess that both inferential methods perform equivalently to our data.

4. Conclusions

The study of new covariates (with possible non-linear functional forms) in a flexible
way and the existence of spatial correlation are examples of new challenges that the
traditional tools of survival analysis do not allow to manage in an efficient way. Recent
development of flexible methods for survival analysis allow for a deeper investigation
of the variables affecting survival.

We used structured geoadditive survival models, a nonparametric approach that
allows for the joint estimation of the baseline and covariates effects by means of
a modelling through P-splines. Specifically, we considered nonlinear effects for the
continuous covariates and we also account for possible geographical correlation.

In this work we identified eight covariates with significant effect for overall survival
by means of the fitted geoadditive Cox-type structured hazard model. Age, zubrod, CS
and DHL are prognostic factors reported in many published series, but we also identified
hemoglobin, leukocytes and lymphocytes as covariates with a significant effect on the
overall survival of patients with NHL.

Besides, the effect of continuous covariates is clearly non linear and hence impos-
sible to detect with the classical Cox method. Nicely, the concept of hazard ratio is
extended to obtain smooth hazard ratio curves for each of the continuous covariates.
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Figure 3: Spatial effect estimates.

Although the spatial component does not show a significant effect, the results show
a trend of low risk in certain areas. This phenomenon could be associated with certain
subtype of NHL more frequent in these areas. So, the spatial analysis points out that
further inspection of the NHL subtypes is required.

Still, it is noteworthy that more general specifications of the predictor are possible in
the structured geoadditive Cox-type hazard regression framework, such as the inclusion
of time-varying effects which allows to relax the proportional hazards assumption or the
inclusion of interactions between covariates. In fact, possible extensions of the present
work considering time-varying prognostic factors and interactions between them are
currently under investigation.

To sum-up, geoadditive Cox-type structured hazard regression is a useful tool for
assessing prognostic factors for the survival in a flexible way. This methodology allows
to detect variables that may affect the risk of mortality while taking the possible spatial
correlation of data into account.
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