Chapter 32	Electrostatics
------------	----------------

Exercises

32.1 Electrical Forces and Charges (pages 645-646)

- **1.** Circle the letter beside the correct comparison of the strengths of the gravitational force and the electrical force.
 - a. The gravitational force is slightly stronger than the electrical force.
 - b. The electrical force is slightly stronger than the gravitational force.
 - c. The gravitational force is much stronger than the electrical force.
 - d. The electrical force is much stronger than the gravitational force.
- 2. Why don't you feel the electrical forces that act on you all the time?
- **3.** Describe the simple model of the atom proposed in the early 1900s by Rutherford and Bohr.
- 4. ______ is the fundamental electrical property to which the mutual attractions or repulsions between electrons or protons is attributed.
- 5. By convention, what is the charge of the following?
 - a. electrons _____
 - b. protons _____
 - c. neutrons _____
- **6.** Is the following sentence true or false? The mass of a proton is 2000 times greater than the mass of an electron.
- 7. Circle the letter beside the correct comparison of the *magnitudes* of the charges of a proton and an electron.
 - a. The magnitude of the proton's charge is slightly greater.
 - b. The magnitude of the electron's charge is slightly greater.
 - c. The magnitudes of a proton's charge and an electron's charge are always equal, but they vary for different atoms.
 - d. The magnitudes of a proton's charge and an electron's charge are always equal and never change.
- 8. Like charges ______ and opposite charges

Name ___

Chapter 32 Electrostatics

32.2 Conservation of Charge (pages 646-647)

9. Explain why there is no net charge in a neutral atom.

10. A charged atom is called a(n) _____

- **11.** The ______ of many atoms are bound very loosely to an atom and can be easily dislodged. Circle the correct answer.
 - a. outermost electrons
 - b. innermost electrons
 - c. outermost protons
 - d. innermost protons

charged.

13. What is the principle of conservation of charge?

32.3 Coulomb's Law (pages 648-650)

14. What does Coulomb's law state?

Match each variable or constant in Newton's law of gravitation with its analogous variable or constant in Coulomb's law.

15. <i>m</i> ₁	a. <i>d</i>
16. <i>m</i> ₂	b. <i>k</i>
17. <i>d</i>	c. <i>q</i> ₁
18. G	d. <i>q</i> ₂
19. The SI unit of	of charge is the .

- 20. How many electrons are contained in 1 C of charge?
- **21.** Is the following sentence true or false? The electrical force between two protons is very small compared to the gravitational force.

^{12.} If a rubber rod is rubbed by a piece of fur, the rubber becomes ______ charged and the fur becomes ______

Name

Class _

Chapter 32	Electrostatics
------------	----------------

32.4 Conductors and Insulators (pages 651-652)

- **22.** A material through which electric charge can flow is a(n)
- **23.** A material that is a poor conductor of electricity is a(n)
- **24.** Define semiconductor.
- **25.** Classify the following by writing *C* beside each conductor, *I* beside each insulator, and *S* beside each semiconductor.
- _____ a. aluminum _____ d. glass
- _____ b. copper _____ e. rubber
- _____ c. germanium _____ f. silicon
- **26.** What effect will adding an impurity level of one atom in ten million to a crystal of semiconductor have?
- **27.** Is the following sentence true or false? Atoms in a semiconductor hold their electrons until the atoms of the semiconductor are given small energy boosts. ______
- **28.** Thin layers of semiconducting materials sandwiched together make up ______, which are used in a variety of electrical applications.

32.5 Charging by Friction and Contact (page 652)

- **29.** Classify each of the following by writing *F* if it is an example of charging an object by friction and *C* if it is an example of charging an object by contact.
 - _____ a. sliding across the seat of an automobile
- _____ b. scuffing your shoes as you walk across a rug
- _____ c. touching a charged rod to a metal sphere
- _____ d. combing your hair with a plastic comb
 - ______e. touching your hand to a slightly charged metal plate
- **30.** One object charges a second object by contact. Describe what will happen to the charge on the second object in each of the cases below.
 - a. The second object is a good conductor.
 - b. The second object is a poor conductor.

Chapter 32 Electrostatics

32.6 Charging by Induction (pages 653-654)

Use the figure below to answer Questions 31–33.

31. Why do the positive and negative charges separate in part (b)?

- **32.** Why do the positive and negative charges spread out on each on the spheres in part (d)?
- **33.** Why is the process illustrated in the figure an example of charging by induction?

34. The ______ is a practically infinite reservoir for electric charge.

- 35. Circle each letter next to a discovery made by Benjamin Franklin.
 - a. electricity b. Lightning is an electrical phenomenon.
 - c. lightning rods d. Electricity can travel along metal wires.
- **36.** Describe what causes lightning to occur during thunderstorms.

^{37.} Is the following sentence true or false? A lightning rod placed above a building repels electrons in the air to prevent leaking of the charge onto the ground.

Chapter 32 Electrostatics

32.7 Charge Polarization (pages 655-657)

- **38.** Describe an electrically polarized atom or molecule.
- **39.** Why can an insulator become polarized when you bring a conducting rod near it?
- **40.** Circle the letter beside the sentence that explains why a charged comb attracts an uncharged piece of paper.
 - a. The forces of attraction and repulsion on opposite sides of the paper cancel.
 - b. The forces of attraction and repulsion on the paper disappear with the comb nearby.
 - c. The force of attraction for the closer charge is greater than the force of repulsion for the farther charge.
 - d. The force of repulsion for the closer charge is greater than the force of attraction for the farther charge.
- **41.** Explain why the bits of paper sometimes suddenly fly off when a comb attracts bits of uncharged paper.
- **42.** When you rub an inflated balloon on your hair and it becomes negatively charged, the charge on the balloon induces a ______ charge on the surface of the wall.

- 43. Why is the water molecule shown in the figure above an electric dipole?
- 44. What are the three ways objects can become electrically charged?
 - a. _____
 - b. _____
 - C. _____