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HETEROGENEOUS ENSEMBLE CLASSIFICATION

SEAN A. GILPIN∗
AND DANIEL M. DUNLAVY†

Abstract. The problem of multi-class classification is explored using heterogeneous ensemble
classifiers. Heterogeneous ensembles classifiers are defined as ensembles, or sets, of classifier models
created using more than one type of classification algorithm. For example, the outputs of decision
tree classifiers could be combined with the outputs of support vector machines (SVM) to create a
heterogeneous ensemble. We explore how, when, and why heterogeneous ensembles should be used
over other classification methods. Specifically we look into the use of bagging and different fusion
methods for heterogeneous and homogeneous ensembles. We also introduce the Hemlock framework,
a software tool for creating and testing heterogeneous ensembles.

1. Introduction. The problem of data classification, or data labeling, arises in a
wide variety of applications. Examples include detecting spam e-mail messages based
on the content of the messages (document classification), labeling cells and tumors
as malignant or benign based on the context of MRI scan data (image classification),
and identification of individuals based on fingerprints, facial features, and iris patterns
(biometric identification). In all of these examples, the goal is to predict a discrete
label (e.g., “spam” versus “not spam”) for a particular data instance (e.g., a particular
e-mail message) based on the attributes of that instance.

More formally, classification is the task of learning a function, f , that maps a
set of data instance attributes, x = 〈a1(x), . . . , am(x)〉, to one of several predefined
class labels, Y = {y1, . . . , yk}. When a data instance can be deduced easily from the
context, attribute j of that instances will be denoted simply as aj . The function f
is often called a classifier, classifier model, or hypothesis. The set of data instances
used to learn, or train, a classifier model is called the training set and is denoted
Dtr = {(x1, y1), . . . , (xn, yn)}, where n is the number of instances, x ∈ R

m is a vector
of attributes, or features, for data instance i, and yi is the label for data instance
i. In order to validate the models learned, it is common practice to select some of
the training data to be used in testing the resulting classifier models. This testing,
or validation data, is denoted Dte and is not used in training the classifier model.
Throughout this paper, we assume that all labels given for the training and testing
data are correct—i.e., there are no mislabeled instances.

Recent results in solving classification problems indicate that the use of ensembles,
or sets of classifier models, often leads to improved performance over using single
classifier models [3, 4, 5, 24]. Much of the previous work on ensembles of classifier
models (see e.g., [7]) has focused on homogeneous ensemble classifiers—i.e., collections
of classifier models of a single type. In this work, we focus on heterogeneous ensemble
classifiers, where the collection of classifiers are not of the same type. Note that such
classifier models are also referred to as hybrid ensemble classifiers. Our goal is to find
when and how the use of heterogeneous ensembles can be advantageous.

The motivation for our current work stems from previous work in classifying text
documents [4]. The problems in that domain sometimes involve two classes (e.g.,
“spam” versus “not spam” in the e-mail classification problem), but more generally
involve more than two classes (e.g., mapping scientific articles to appropriate journals
for publication). Thus, we focus on the general problem of multi-class classification
in this paper (i.e., k >= 2). We are also interested in incorporating data with missing
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2 Heterogeneous Ensemble Classification

attributes or with both continuous and discrete attributes into our models, as such
data often arises in text document classification problems (e.g., documents do not
contain all terms [i.e., features] and documents can contain both continuous features
[via vector space models] and discrete features [dates, publication names, etc.]).

As part of this work, we have created a software framework called Hemlock

(Heterogeneous Ensemble Machine Learning Open Classification Kit) for creating and
evaluating heterogeneous ensemble classifiers. Although the methods described in this
paper for classifier models, ensemble creation, and classifier validation/performance
are applicable to the problem of classification in general, the majority of the focus is
on those methods currently available in Hemlock.

2. Methods. In this section, we describe the methods used in the Hemlock

software package to generate classifier models. Currently, Hemlock interfaces a
software library called Weka [25] for all of its classification methods. These methods
formulate models that include mathematical descriptions of decision boundaries—i.e.,
hyperplanes, piecewise hyperplanes, or nonlinear manifolds that partition the feature
vector space induced from a given training set of data. Combined with decision rules
particular to each method, these decision boundaries are used to determine which class
labels are associated with different areas of the feature space. Note that some methods
generate explicit representations of the decision boundaries via parameters of some
explicit function (e.g., support vector machines), whereas others generate implicit
boundaries (e.g., nearest neighbor classifiers). Appendix A has information about the
methods used from Weka. The rest of this section focuses on the ensemble methods
implemented in Hemlock. Throughout this section, “data” refers to “training data”
unless otherwise indicated.

2.1. Ensemble Classifiers. Ensemble classifiers are a type of meta-model that
use a set of base classifiers as input to a combination function. The combination
function is intended to make the best use of the information provided from the base
classifiers in order to make class label predictions as accurately as possible. These
ensembles are homogeneous, referring to the fact that all of the base classifiers are of
a single type (e.g., decision trees), differing by model parameters, the data used for
training, or a combination of the two.

Ensemble classifiers have been found to be generally more accurate than non-
ensemble classifiers. Following are different situations in which using an ensemble
classifier model over a single classifier model have led to improved classifier perfor-
mance in practice [11].

• Base classifiers may not be able to model the true class decision boundaries
exactly. For example, a linear model can never exactly represent a quadratic
decision boundary. However an ensemble with linear models as base classifiers
will in general lead to more flexible decision boundaries than those of the
simple, underlying linear models.

• A lack of data can lead to many good estimations of the true class boundaries.
Instead of choosing one, an ensemble can use all of them as base classifiers to
eliminate the chance of picking the worst classifier.

• Globally optimal searches of the classifier function space are not computa-
tionally feasible for large sets of data or data instances with large numbers
of features. Most classification algorithms are therefore limited to searches
that lead to locally optimal parametrization. In this case, a combination of
models may better approximate globally optimal estimation of true decision
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boundaries by employing base classifiers that search different regions of the
global classifier parameter space.

• Noise in the training data can be addressed by combining models that are
trained using data sampled from the entire training data set. Combinations
of models trained is such a way often reduce overfitting the data as well.

There are two general types of ensemble combination functions: fusion and se-
lection. In fusion functions, the output from each of the base classifiers includes a
weight on every prediction made by the ensemble. A typical fusion function is the
sum of the weighted predictions. Selection functions, on the other hand, allow the
use of outputs from one or more of the base classifiers, not necessarily making use of
the outputs of all of the predictions. Moreover, the base classifier output used in the
selection function typically depends on the characteristics of the instance whose class
is being predicted. For example, a selection function could be one that chooses the
base classifier that performs best on the training data instances that are most like the
testing data instance being considered for classification. We currently consider fusion
methods only throughout the remainder of this paper.

The combinations functions we consider take as input one of three different types
of output from the base classifiers.

• Labels. Functions that make use of the most likely class to which an instance
belongs.

• Label rankings. Functions that make use of ranked lists of class label predic-
tions (e.g., sorted by likelihood or probability that the instance belongs to
the class).

• Measurements. Functions that make use of vectors of length k (i.e., the num-
ber of classes), where element j corresponds to a measurement of an instance
associated with class j. These measurements are often intrinsic values com-
puted within each classification method. In this work, the measurements are
the probabilities that an instance belongs to a particular class.

A variety of fusion methods have been developed. We discuss several here that
are used in the experiments described in Section 4. An example of a fusion function
that uses label outputs is the majority voting function [19]. In majority voting, the
labels output from each base classifier are used as votes on the predicted class, and
the class with the most votes becomes the predicted class of the ensemble classifier.
The sum rule is an example of a fusion function that uses measurement outputs from
the base classifiers [18]. The sum rule first sums the measurement output vectors from
the base classifiers for a given test instance, and then chooses the class corresponding
to the largest sum as the predicted class. The linear combination rule is identical to
the sum rule except that each of the base classifiers is assigned a weight, which is
used to scale the measurement vectors before summing [26]. In our experiments, we
determined the weights using the least squares method to maximize training accuracy.
In stacking, the output vectors are treated as input to a new classification problem,
where a classification algorithm, such as the SVM classification algorithm, builds a
model to act as the fusion function. We have also been alerted, by a referee, to an
ensemble method that is implemented inside of Weka, called Ensemble Selection[8].
In the future we would like to explore this method and compare our results with it.

The process of creating ensemble classifier models involves two major steps. First,
the base classifiers are created during a generation phase, and then the models are
combined during a combination phase. The goal of the generation phase is to create a
diverse, accurate set of base classifiers. A recent survey on several diversity measures
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[5] illustrates the challenges associated with creating a diverse set of base classifiers,
and accuracy will be discussed in Section 3.1. Examples of methods for generating
diverse base classifiers include sampling the training data (e.g., bagging [6]) and sam-
pling the feature space (e.g., the random subspace method [15]). Another example
method, the method of random forests [7], combines these two sampling strategies.

For some homogeneous ensemble models (e.g., models using a linear combination
fusion function), several model parameters need to be learned or fit. Typically, the
training of the ensemble model parameters is performed using the training data set.
However, there are issues with such an approach [13], and more work in this area is
required to better understand the implications of such a training strategy. Such work
is beyond the scope of this paper, but will be pursued in future work.

2.2. Heterogeneous Ensemble Classifiers. A heterogeneous ensemble is an
ensemble with a set of base classifiers that consist of models created using different
algorithms. The same combination functions that are used to create homogeneous
ensembles can be used to create heterogeneous ensembles. The main difference lies
in the methods used for creating the set of base classifier. The methods available for
creating base classifier sets for homogeneous ensembles are modified so that models
built from different classification algorithms can be combined to form a set of base
classifiers. Currently, there is no clear choice on how to combine these base classi-
fiers most effectively. Furthermore, there are open questions regarding which base
classifiers to use and how they should be combined for optimal performance.

Motivation. Using different types of base classifiers leads to diversity in the same
way that changing model parameters can in creating homogeneous ensemble classifiers.
Different base classifier types can have different internal representations and may be
biased in different ways. This leads to classifiers that will disagree with each other
to some extent over a set of data instances covering a wide range of the feature
space. This disagreement between the base classifiers is essential for the success of
an ensemble classifier and is what we refer to as diversity. Without diversity in the
base classifier models, there is no point in using an ensemble, as the output of the
ensemble classifier will be identical to the output of each of the base classifiers. On
the other hand, we would also like the base classifiers to be as accurate as possible.
We do not want to force diversity in such a way that we end up with base classifiers
that have too much error or that do not generalize well. Using a heterogeneous set of
base classifiers, then, is a way to introduce diversity while keeping accuracy high.

Diversity. Table 2.1 illustrates how different base classifier algorithms can lead
to diversity in an ensemble. These classifiers were trained using the same data set.
They were then tested using a testing data set and their outputs were recorded. The
differences in their outputs represent the extent to which they “disagree” about the
probability distributions for the test instances.

2.2.1. HEMLOCK. Hemlock has been designed to create and test hetero-
geneous ensemble models. As such it contains methods for creating base classifiers,
applying fusion functions, and evaluating classifier models. Hemlock currently uses
interfaces to Weka classification algorithms for creating base classifiers. Input and
output is passed to and from Hemlock via XML. The input, or experiment, files
contain information about which models to use, model parameters, evaluation meth-
ods, and data sets to be used in an experiment. Ranges of model parameters can
be specified as well, leading to collections of experiments, each corresponding to a
particular set of parameters allowed. Currently only full factorial experiments for a
given set of parameter values (i.e., sets of experiments where all possible combinations
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Naive Bayes Decision Tree
Instance Measurement Label Measurement Label

1 [0.99, 0.01] 1 [0.87, 0.13] 1
2 [0.00, 1.00] 2 [0.18, 0.82] 2
3 [0.04, 0.96] 2 [0.18, 0.82] 2
4 [0.01, 0.99] 2 [0.87, 0.13] 1
5 [0.00, 1.00] 2 [0.18, 0.82] 2
6 [0.00, 1.00] 2 [0.05, 0.95] 2
7 [0.99, 0.01] 1 [0.87, 0.13] 1
8 [1.00, 0.00] 1 [0.05, 0.95] 2

Table 2.1

Measurement outputs from two classifiers trained on the same data. The differences in these
outputs for the same instances is what we refer to as diversity and is essential for creating ensemble
classifiers. In this example the diversity is introduced by using different classification algorithms.

of the given parameters values are tested) are supported. Several standard evaluation
methods have been implemented in Hemlock as well: e.g., stratified k-fold cross
validation, ROC curve generation, and generalization error calculations. Creation of
base classifiers using a particular set of parameters or via random sampling can be
specified as well. Hemlock currently includes the fusion methods of majority voting,
the sum rule, and a linear combination rule (where the weights are computed using
linear l2 regression).

3. Evaluation of classification algorithms. The evaluation of performance
or accuracy of a classification algorithm is not necessarily straightforward. Real world
problems often have different sets of (potentially conflicting or competing) require-
ments. Hence, an algorithm (or more precisely, a particular parametrized instance of
an algorithm) that may work well in solving one classification problem may perform
poorly on other problems. Some issues that motivate different approaches to classifier
evaluation include model interpretability, predictive ability of models created (includ-
ing accuracy and data overfitting), and computational time/effort required during
both the training and application of a model.

3.1. Evaluation Considerations.

Interpretability. Sometimes the models from classification algorithms need to be
interpretable by a human being, e.g., for explanatory analysis of classes in addition
to prediction. It may be that the user wants to ensure the sanity of the model, or
it may be that he or she wants to learn something about the underlying classes by
studying the models. Some classification algorithms create models that are easy and
natural for humans to interpret. Ensembles models, however, are generally not easy
to interpret, even when the base classifiers individually are easy to interpret.

Accuracy. Generalization error is a measure of how well a model predicts the
classes for a set of instances it has never seen before (i.e., a testing data set). Training
error is a measure of how well a model predicts classes for the same set of instances
that were used to train the model. Training error is a very optimistic estimation of
the true model error over the entire instance space, whereas generalization error is
more pessimistic and a less biased estimate of the true error. Accuracy then usually
refers to the complement of the generalization error.

Overfitting. One of the reasons that training error is regarded as optimistic is
based on data overfitting. Training error does not incorporate the extent a classifi-
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cation model has overfit the data. If a model is too specific to the training data and
does not generalize well to the entire instance space, then it has overfit the training
data. There are various strategies that classification algorithms can employ to ensure
that resulting models both perform well on the training data and generalize to unseen
training instances. For example, many decision tree classification algorithms contain
methods for pruning of tress to avoid singleton leaf nodes, which typically do not
generalize well.

Computational Time. There are two considerations associated with the compu-
tational running time of a classification algorithm. One is the amount of time it takes
to build the models, called training time. The other is the time it takes to predict
the class of an instance, called prediction time. Some algorithms require very little
time to train but more time to predict, and some vice versa. For example, artificial
neural networks [22] (not currently part of Hemlock) can take a very long time to
train, but the models they produce are a simple linear combination of the features,
leading to constant prediction time complexity. On the other hand, a nearest neighbor
classifier spends no time on training, but during classification the training data set
must be searched to find the nearest neighbors for each testing instance, which can
be computationally expensive. A less extreme example are decision trees, which for
many methods can be trained in O(mn log n) time and tested in O(logs n) time, where
s is the minimum number of splits allowed over all the attributes (e.g., s = 2 in the
case of binary decision trees induced from data with only continuous attributes) [12].
Another consideration that impacts computational time is how much and to what
extent the training and testing methods of a classification algorithm parallelizes. In
general, ensemble methods can be parallelized well because the ensemble members
can be trained in parallel, and the ensemble predictions can be executed in parallel
as well.

3.2. Evaluation Measures. The following descriptions of evaluation measures
assume we are solving a two-class classification problem and that the true class labels
are known for the testing data instances. All of the following concepts can be gener-
alized to multi-class problems but we do not, in this exposition, for the sake of clarity.
When dealing with two-class problems the class labels are “positive” (typically re-
ferring to the class in which we are most interested in classifying) and “negative”.
Table 3.1 lists definitions used throughout this section.

Value Symbol True Label Predicted Label
True positives TP positive positive
True negatives TN negative negative
False positives FP negative positive
False negatives FN positive negative

Table 3.1

Definitions used in measures for evaluating two-class classifier models.

Confusion Matrices. A confusion matrix can be created from a model f and a
set of instances with known true class labels Dte, and reflects how well a classifier
correctly classifies those instances per class. An example confusion matrix for the
two-class classification problem is as follows.
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Predicted Class
Positive Negative

True Class
Positive TP FN
Negative FP TN

Rows of the matrix are associated with true labels, and columns represent the pre-
dicted labels. Hence, the sum of the row values equals the number of instances in Dte

that have the true class corresponding to that row. Similarly the sum of the column
values equals the number of instances in Dte where f(x) has predicted the class cor-
responding to that column. It is easy to see that elements on the diagonal contain the
counts of instances that the model correctly labeled for each class. With a two class
classification problem, you always get a 2 × 2 confusion matrix where the values in
the matrix correspond to TP, FN, FP, TN from left to right and top to bottom. TP
and TN are on the diagonal entries and correspond to correctly classified instances.

Accuracy. We denote the accuracy of a classifier model, f , as

A(f) =
Number of correct predictions

Total number of predictions
. (3.1)

As mentioned above, it is important to realize the importance of choosing a set of
instances for calculating accuracy. Accuracy can be calculated using any set of in-
stances, but a data set containing instances different than those used in training the
model begin evaluated will be less biased.

Receiver Operator Characteristic (ROC) Curve. ROC curves depict the potential
of a model for correct classification in two-class problems. To generate an ROC curve
for a classifier model, the set of continuous outputs relative to the positive class—i.e.,
the values f(x),x ∈ Dte are first sorted in descending order. The ROC curve is then a
plot of the true positive rate, TP/(TP +FN), as a function of the false positive rate,
FP/(FP + TN), computed using each of the sorted outputs as a cutoff threshold for
labeling instances as positive. The true positive rate is also called the sensitivity of
a classifier model, and the false positive rate is the complement of the specificity of a
classifier model. Thus, an ROC curve is sometimes referred to as a plot of sensitivity
versus (1 - specificity).

ROC analysis can also be used to compare models built for multi-class classifica-
tion problems. In the simplest case, each model will correspond to one point on the
graph. One can then easily compare different properties of the models based on their
placement on the graph. [14]

Area Under the Curve (AUC). The AUC measurement corresponds to the ROC
analysis for two-class classification models. The area under the ROC curve described
above can be calculated to give a scalar representation of the most important aspect
of the plot: the potential of the classifier to perform well in separating regions of
feature space by class.

3.3. Validation Methods. Methods for validating the performance of classifier
models typically employ a scheme for choosing training and testing data sets and a
process for determining the significance of the results [19, 23].

Holdout. The simplest method to validate a classifier model is called the holdout
method and simply involves separating a given set of instances with known labels
into two sets, Dtr and Dte. The first set is used to train the model and the second
set is used to test the model. This method is not often used because it is difficult
to determine the significance of the tests results since it is based on a single split of
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Fig. 3.1. Example ROC curves for random tree classifiers trained on the “anneal” data set (6
classes, 5 classes represented in test data). The different curves correspond to ROC curves for the
two-class problems of one class versus the rest.

the data only. However, the method is quick and does indicate a rough estimate of
performance.

Stratified k-Fold Cross Validation. The method of k-fold cross validation is used
to compute generalization error and determine the significance of the testing results.
The methods starts by first dividing the training data into k partitions, or folds,
where each fold contains instances with approximately equal class distribution (i.e.,
are stratified). If the folds are not stratified, the test results may poorly approximate
the generalization error. Each of the folds will be used as a testing set for exactly
one model trained using the remaining folds as training data. Once the models are
created, they are tested and the results are averaged to determine generalization error
and then analyzed statistically to determine the significance of the results. A common
value used for k is 10, but their may be advantages for using other values depending
on the problem at hand. One disadvantage of using large values of k is that a large
number of models will need to be created and tested; this may not be practical due
to the computational time required.

Other related methods are the leave-one-out method and 5 × 2-fold cross vali-
dation. In the leave-one-out method, each of the instances is used individually as a
testing set with the remaining instances used as the training set. With n instances,
this is equivalent to n-fold cross validation. 5 × 2-fold cross validation consists of
2-fold cross validation performed five times, with the results being averaged across
the five runs [10].

Bootstrapping (Random Fold) Validation. Bootstrapping is similar to k-fold cross
validation in that different models are created and tested, with the performance results
computed as averages over all the models. The training sets are created by randomly
selecting instances with replacement. All of the instances that are not chosen for the
training set are used as the test set. Because the instances are drawn with replacement,
a larger training set can be created than with k-fold cross validation. However, many
of the instances in the training set may be duplicates. The test results of this method
should be meaningful, as the class distributions of the test set will likely match the
class distribution of the original set of instances and the training set because of the
random way the set is chosen. This method can be useful when only a small number
of instances with known labels are available.
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4. Numerical Experiments. In this section we describe the experiments we
performed on base classifiers, homogeneous ensemble classifiers, and heterogeneous
ensemble classifiers.

4.1. Data. The data we used in our experiments is the data from [3]. We
specifically only used data that had no unknown attributes. See Table B.1 for a
summary of the data sets used in the experiments.

4.2. Experiments. First we performed parameter sweeps for the base classi-
fier algorithms to find sets of parameters that performed well. We measured the
performance by using 2-fold cross validation to calculate accuracy and then taking
the average of those accuracies across all of the data sets. We then used the pa-
rameter combinations to construct homogeneous ensemble classifiers. Each of these
homogeneous classifiers used the top two-thirds of the parameter combinations of the
base classifier algorithm. This meant that the homogeneous ensembles had different
numbers of base classifiers as there were different numbers of total parameters combi-
nations for each of the base classifier types. We also created heterogeneous ensembles
by using all of the base classifier combinations that were used in the homogeneous
ensembles. Each of the ensembles were combined using either voting or the sum rule.

We then repeated the same strategy for creating creating ensembles, with the
additional use of bagging. Each of the bagged ensembles were constructed using 200
base classifiers trained on a bag with the same size as the original training set. We
evaluated the ensembles by measuring the accuracy using 2-fold cross validation for
each of the data sets and then averaging over the all of the data sets.

Classification Fusion

Type Algorithm Function
Decision Tree Random Tree (RT) [7] Voting [19]
Probabilistic Naive Bayes (NB) [16, 20] Sum Rule [19]
Function Support Vector Machine (SVM) [17, 21, 2]
Instance Based k Nearest Neighbor (KNN) [1]
Rule Based Ripper [9, 23]

Table 4.1

The classification algorithms and fusion functions used in Hemlock to create ensembles.

4.3. Results. As was expected, on average, the ensembles performed better than
the base classifiers in terms of accuracy. For the averaged results corresponding to the
ensemble classifiers, the only clear trend was the improvement due to the use of the
sum rule over voting when not using bagging, as can be seen in Figure 4.1. Surpris-
ingly, the results were not as clear for bagging. Figure 4.2 shows no clear correlation
between bagging and accuracy. The difference in accuracies for the different ensemble
methods is not clear when averaged over all the data sets either. The heterogeneous
ensembles and the decision tree ensembles result in higher averaged accuracies, but
the differences may not be significant. More work on analyzing this data is needed.

The accuracies for each data set and the averaged accuracies are presented in
Appendix C. When the accuracies are averaged over all data sets, it is difficult to see
any advantages over using one ensemble method over the other. However when looking
at the details of how these methods perform on particular data sets, there are often
large differences in accuracy. This suggests that exploring these different ensemble
methods may lead to better understanding of the behavior of the different methods.
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Fig. 4.1. The average accuracies over all data sets showing that ensembles that use the sum
rule do better than those that use voting.

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

H
eter. S

um

 H
eter. Voting

 R
T S

um

 R
T V

oting

 K
N
N
 Sum

 K
N
N
 Voting

 R
IPP

E
R
 S

um

 R
IPP

E
R
 V

oting

 S
V
M

 Sum

 S
V
M

 Voting

A
c

c
u

ra
c

y

Without Bagging

With Bagging

Fig. 4.2. The average accuracies over all data sets, comparing the use of bagging for each
ensemble method.

However, the ensemble generation techniques need to be fine tuned to take advantage
of information known about the data set for which we are building a classifier model.

We did notice that when the performance of a homogeneous ensemble was poor,
relative to the other homogeneous ensembles trained on the same data set, then
the heterogeneous ensemble also had lower performance. Examples of this can be
seen in Figure 4.3. There are points in this figure where the random tree ensembles
perform much worse than the average homogeneous ensemble, leading to mediocre
heterogeneous ensemble performance. This suggests that if one of the homogeneous
ensembles performs poorly, we should not include the associated base classifier type
into the heterogeneous ensemble, or we should include less base classifiers of that type.
More work is needed to see how well this idea generalizes to other data sets.

Some of the results in Figure 4.3 indicate that all the ensemble methods perform-
ing equally well for a particular data set. However, the results for the letter data set
illustrate that heterogeneous ensembles can outperform the homogeneous ensembles.
In this work there was no systematic method used for selecting what balance of base
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classifiers to use, and this result indicates that paying closer attention to such a detail
may be important.
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Fig. 4.3. Accuracy of the heterogeneous ensemble, random tree ensemble, and the average for
the rest of the homogeneous ensembles, for each data set.

5. Future Work. This work was an exploratory experiment in learning more
about creating heterogeneous ensembles and how they can be used effectively. The
majority of the work went into creating the Hemlock framework, which allows us to
experiment with these methods in future work.

We need to create better methods for training our ensembles for the data sets in
which we are interested. The training sets may include indicators which will allow us to
fine tune the way the base classifiers are generated or to help determine which ensemble
techniques to use. This will be the main focus of future work. We would also like to
determine, in general, whether the strategies used for training homogeneous ensembles
should be used for training heterogeneous ensembles as well. It will be important to
explore which types of base classifiers lead to better ensemble performance. This
could result in either general guidelines or a set of new methods.

We would also like to explore novel methods that take advantage of the unique
nature of heterogeneous classifiers. The different base classifier algorithms all have
their own strengths, and it would be interesting to try to use each of the base classifiers
in ways that take advantage of those strengths. For example, if a base classifier works
better with nominal features, then it could be trained on a subspace of the original
training set with just the nominal features.

6. Conclusions. Our initial attempt at creating heterogeneous ensembles did
not lead to significant gains in classifier performance. However, the results presented
here will serve as a good benchmark for evaluating performance of ensemble classifiers.
We have demonstrated that heterogeneous ensembles perform better than homoge-
neous ensembles in some cases, but more work is needed to better understand under
what circumstances the use of heterogeneous ensemble classifiers leads to this im-
provement. Using the Hemlock software framework developed in this work, we can
now investigate and evaluate new methods for heterogeneous ensemble classification,
and we intend to follow up on the many questions identified in work presented here.

We also found that the sum rule performs better than voting on average. We
expected this because the sum rule has more information from the base classifiers,
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since it uses measurement values. This result has lead us to believe that it is worth
while to continue exploring fusion functions that use measurement values.
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Appendix A. Base Classifiers. A base classifier refers to a single classifier
model whose output is used as input for an ensemble classifier. The base classifiers
used in this work consist of several typical learning models used in ensemble classifier
models. The base classifiers chosen are representative of the major strategies currently
used in solving many classification problems: decision trees, probabilistic models,
functional models, instance-based models, and rule-based models.

Decision Trees. Decision tree algorithms create models using a divide and conquer
strategy to recursively partition the feature space along feature axes until ”pure”
partitions (i.e., partitions containing data from a single class only) are found. Choices
for a partitioning strategy (i.e., how to choose features and split values), stopping
criteria for growing trees (i.e., if and when to stop growing a tree before pure partitions
are found), and a partition aggregation strategy (i.e., how to prune a tree to avoid
overfitting the data) lead to different decision tree methods. Also, sampling from
feature space at each decision node leads to random decision trees. For small data
sets, the resulting decision trees are often easy to interpret and analyze, thus making
decision trees a popular choice for data analysts [7].

Bayesian Classifiers. Bayesian classifiers consist of a probability model for each
class combined with a decision rule for choosing the class for a given data instance.
The probability model is a conditional model that is estimated using Bayes’ Theorem:

p(yi|xi) =
p(yi) p(xi|yi)

p(xi)
≡ posterior =

prior × likelihood

evidence
. (A.1)

The naive Bayes classifier is a particular Bayesian classifier which includes the as-
sumption that the features are conditionally independent:

p(xi|yi) = p(〈a1(xi), . . . , am(xi)〉|yi) =
m∏

j=1

p(aj(xi)|yi) . (A.2)

A common decision rule for Bayesian classifiers is to choose the class that is most
probable (i.e., the maximum a posteriori, or MAP, decision rule) [16, 20].

Support Vector Machines. Support vector machines (SVMs) [17, 21] are linear
classifiers designed to find a hyperplane which simultaneously minimizes classification
error and maximizes the distance, or margin, between the hyperplane and data in-
stances from two different classes. Extensions of SVMs used in the work presented
here include methods for handling misclassifications (using soft, or relaxed, margins)
and for embedding data into higher dimensional feature spaces in order to estimate
nonlinear decision boundaries in the original feature space (i.e., the kernel trick [2]).

Nearest Neighbor Classifiers. Nearest neighbor classifiers [1] are examples of clas-
sifiers that do not need training. To label a data instance, a nearest neighbor classifier
examines the instances in the training set that are closest to it in terms of feature
similarity or distance in some metric space and predicts a label based on the labels
of those “neighboring” instances. The class boundaries are therefor implicit, often
leading to more flexible decision boundaries than some of the other explicitly formed
boundaries discussed in this section. Choices for the number of neighbors, the sim-
ilarity/distance measure, and voting/weighting schemes for combining information
(attributes, labels, etc.) from neighbors lead to different variants of nearest neighbor
classifiers.
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Association Rules. Models created from these classifier methods are sets of rules
consisting of logical conjunctions of decision boundaries along feature axes. An ex-
ample of a rule is

{a1 = “scalar”} ∧ {a2 > 1.0} =⇒ y1 . (A.3)

These rules are often built in a general to specific manner, where new conditions are
added to the conjunction as long as the rule continues to improve classifier perfor-
mance (see Section 3.2 for more information on classifier performance). An opposing
approach, a specific to general rule building strategy, starts with a specific rule target-
ing some instance in the training set and then proceeds by removing conditions from
the conjunction while the rule continues to improve classifier performance [9, 23].
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Appendix B. Data Sets Used in Experiments.

Continuous Nominal

# Name Instances Classes Attributes Attributes

1 abalone 4177 29 7 1

2 anneal 898 6 6 32

3 bupa 345 2 6 0

4 car 1728 4 0 6

5 credit-g 1000 2 7 13

6 dna 3186 3 0 180

7 ecoli 326 8 7 0

8 glass 214 6 9 0

9 ion 351 2 34 0

10 iris 150 3 4 0

11 krk 28056 18 6 0

12 krkp 3196 2 0 36

13 led-24 5000 10 0 24

14 letter 36000 26 16 0

15 lrs 530 10 93 0

16 lymph 148 4 3 15

17 nursery 12961 5 0 8

18 page 5473 5 10 0

19 pendigits 10993 10 16 0

20 phoneme 5404 2 5 0

21 pima 768 2 8 0

22 promoters 106 2 0 57

23 ringnorm 300 2 20 0

24 sat 6435 6 36 0

25 segment 2310 7 19 0

26 shuttle 58000 7 9 0

27 sonar 208 2 60 0

28 soybean-small 47 4 0 35

29 splice 3190 3 0 60

30 threenorm 300 2 20 0

31 tic-tac-toe 958 2 0 9

32 twonorm 300 2 20 0

33 vehicle 846 4 18 0

34 vote 435 2 0 16

35 vote1 435 2 0 15

36 vowel 528 11 10 0

37 waveform 5000 3 21 0

38 yeast 1484 10 8 0

39 zip 9298 10 256 0
Table B.1

Meta information for each data set used in the experiments.
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Appendix C. Numerical Results.

Data Set Heter. RT KNN RIPPER SVM

abalone 0.258 0.267 0.200 0.211 0.264

anneal 0.958 0.967 0.983 0.982 0.986

bupa 0.698 0.733 0.638 0.681 0.623

car 0.900 0.911 0.916 0.862 0.924

credit-g 0.734 0.735 0.735 0.733 0.743

dna 0.626 0.589 0.801 0.936 0.921

ecoli 0.834 0.859 0.840 0.853 0.847

glass 0.771 0.793 0.676 0.700 0.635

ion 0.929 0.920 0.846 0.900 0.889

iris 0.940 0.933 0.947 0.933 0.955

krk 0.550 0.538 0.687 0.747 0.287

krkp 0.946 0.940 0.962 0.992 0.970

led-24 0.736 0.741 0.624 0.744 0.750

letter 0.914 0.871 0.982 0.954 0.845

lrs 0.864 0.861 0.877 0.847 0.885

lymph 0.858 0.864 0.819 0.758 0.824

nursery 0.965 0.971 0.978 0.972 0.930

page 0.966 0.968 0.960 0.971 0.951

pendigits 0.972 0.971 0.993 0.974 0.980

phoneme 0.868 0.868 0.893 0.861 0.772

pima 0.747 0.766 0.724 0.754 0.768

promoters 0.906 0.858 0.811 0.821 0.908

ringnorm 0.953 0.963 0.563 0.733 0.717

sat 0.888 0.885 0.910 0.883 0.864

segment 0.963 0.965 0.964 0.965 0.930

shuttle 0.999 0.999 0.999 1.000 0.966

sonar 0.769 0.841 0.851 0.761 0.727

soybean-small 1.000 1.000 1.000 0.981 1.000

splice 0.742 0.726 0.813 0.950 0.924

threenorm 0.853 0.860 0.783 0.657 0.830

tic-tac-toe 0.902 0.896 0.977 0.979 0.983

twonorm 0.960 0.973 0.950 0.827 0.963

vehicle 0.729 0.719 0.691 0.701 0.752

vote 0.938 0.945 0.936 0.956 0.952

vote1 0.906 0.899 0.903 0.901 0.920

vowel 0.922 0.956 0.975 0.752 0.684

waveform 0.844 0.837 0.800 0.814 0.865

yeast 0.621 0.606 0.551 0.595 0.590

zip 0.924 0.899 0.967 0.907 0.949

mean 0.842 0.843 0.834 0.835 0.827

std 0.148 0.149 0.166 0.151 0.171
Table C.1

Accuracy results for ensembles without bagging using the sum rule as the fusion function.
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Data Set Heter. RT KNN RIPPER SVM

abalone 0.270 0.262 0.221 0.188 0.261

anneal 0.941 0.915 0.979 0.982 0.986

bupa 0.733 0.730 0.612 0.684 0.641

car 0.840 0.807 0.920 0.863 0.928

credit-g 0.721 0.717 0.737 0.727 0.752

dna 0.569 0.542 0.790 0.931 0.924

ecoli 0.859 0.849 0.840 0.807 0.864

glass 0.762 0.754 0.665 0.686 0.644

ion 0.917 0.920 0.843 0.900 0.866

iris 0.953 0.939 0.961 0.913 0.966

krk 0.464 0.467 0.695 0.715 0.284

krkp 0.884 0.861 0.953 0.994 0.949

led-24 0.660 0.631 0.648 0.744 0.747

letter 0.828 0.782 0.970 0.943 0.845

lrs 0.870 0.863 0.870 0.845 0.888

lymph 0.838 0.840 0.839 0.737 0.845

nursery 0.959 0.967 0.979 0.969 0.931

page 0.966 0.967 0.958 0.972 0.950

pendigits 0.970 0.964 0.993 0.972 0.980

phoneme 0.852 0.850 0.882 0.860 0.758

pima 0.762 0.759 0.734 0.758 0.779

promoters 0.820 0.802 0.792 0.803 0.906

ringnorm 0.937 0.967 0.547 0.754 0.730

sat 0.882 0.881 0.908 0.880 0.867

segment 0.951 0.952 0.956 0.968 0.934

shuttle 0.999 0.999 0.999 1.000 0.966

sonar 0.788 0.822 0.822 0.755 0.765

soybean-small 1.000 1.000 1.000 0.981 1.000

splice 0.848 0.814 0.780 0.947 0.919

threenorm 0.830 0.843 0.850 0.694 0.854

tic-tac-toe 0.872 0.874 0.979 0.973 0.983

twonorm 0.960 0.977 0.940 0.817 0.960

vehicle 0.736 0.723 0.705 0.686 0.748

vote 0.945 0.952 0.929 0.954 0.963

vote1 0.922 0.910 0.897 0.894 0.915

vowel 0.848 0.920 0.913 0.769 0.710

waveform 0.838 0.828 0.807 0.821 0.871

yeast 0.601 0.608 0.573 0.582 0.596

zip 0.900 0.866 0.963 0.897 0.950

mean 0.828 0.824 0.832 0.830 0.831

std 0.151 0.155 0.161 0.154 0.169
Table C.2

Accuracy results for ensembles without bagging using voting as the fusion function.



S.A. Gilpin and D.M. Dunlavy 19

Data Set Heter. RT KNN RIPPER SVM

abalone 0.255 0.264 0.210 0.211 0.270

anneal 0.939 0.951 0.983 0.987 0.981

bupa 0.667 0.733 0.629 0.684 0.629

car 0.867 0.909 0.915 0.852 0.933

credit-g 0.742 0.742 0.745 0.717 0.742

dna 0.748 0.587 0.803 0.923 0.919

ecoli 0.846 0.853 0.844 0.807 0.864

glass 0.720 0.781 0.691 0.678 0.649

ion 0.912 0.932 0.852 0.889 0.874

iris 0.933 0.940 0.961 0.935 0.953

krk 0.594 0.539 0.686 0.748 0.285

krkp 0.931 0.943 0.958 0.992 0.969

led-24 0.687 0.739 0.626 0.742 0.747

letter 0.962 0.868 0.983 0.951 0.843

lrs 0.841 0.866 0.874 0.834 0.889

lymph 0.838 0.840 0.846 0.746 0.858

nursery 0.945 0.973 0.978 0.972 0.932

page 0.961 0.967 0.960 0.972 0.950

pendigits 0.979 0.970 0.993 0.974 0.980

phoneme 0.858 0.870 0.894 0.862 0.774

pima 0.749 0.764 0.720 0.758 0.775

promoters 0.821 0.820 0.821 0.830 0.925

ringnorm 0.894 0.973 0.567 0.780 0.727

sat 0.895 0.885 0.907 0.884 0.864

segment 0.954 0.959 0.966 0.965 0.932

shuttle 0.999 0.999 0.999 1.000 0.966

sonar 0.817 0.817 0.851 0.774 0.764

soybean-small 1.000 1.000 1.000 0.981 1.000

splice 0.810 0.732 0.810 0.947 0.924

threenorm 0.813 0.853 0.800 0.663 0.856

tic-tac-toe 0.888 0.924 0.973 0.981 0.983

twonorm 0.943 0.973 0.960 0.840 0.967

vehicle 0.719 0.730 0.714 0.698 0.773

vote 0.926 0.954 0.926 0.959 0.954

vote1 0.906 0.908 0.906 0.890 0.894

vowel 0.869 0.943 0.972 0.759 0.682

waveform 0.828 0.837 0.802 0.818 0.866

yeast 0.597 0.602 0.534 0.591 0.592

zip 0.944 0.901 0.966 0.902 0.948

mean 0.836 0.842 0.837 0.833 0.832

std 0.143 0.150 0.165 0.151 0.169
Table C.3

Accuracy results for ensembles with bagging using the sum rule as the fusion function.
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Data Set Heter. RT KNN RIPPER SVM

abalone 0.261 0.264 0.226 0.186 0.265

anneal 0.914 0.918 0.971 0.978 0.980

bupa 0.649 0.730 0.591 0.643 0.649

car 0.841 0.819 0.917 0.867 0.933

credit-g 0.725 0.718 0.742 0.718 0.758

dna 0.614 0.543 0.786 0.930 0.923

ecoli 0.847 0.841 0.863 0.811 0.862

glass 0.715 0.780 0.638 0.654 0.659

ion 0.900 0.931 0.843 0.903 0.878

iris 0.947 0.940 0.960 0.960 0.967

krk 0.452 0.465 0.693 0.706 0.283

krkp 0.880 0.849 0.952 0.990 0.951

led-24 0.625 0.643 0.653 0.740 0.743

letter 0.876 0.785 0.970 0.946 0.845

lrs 0.862 0.863 0.871 0.848 0.890

lymph 0.791 0.843 0.830 0.770 0.819

nursery 0.946 0.969 0.978 0.968 0.931

page 0.958 0.967 0.957 0.973 0.951

pendigits 0.964 0.965 0.992 0.973 0.980

phoneme 0.849 0.857 0.884 0.865 0.757

pima 0.714 0.740 0.743 0.738 0.766

promoters 0.735 0.698 0.736 0.886 0.935

ringnorm 0.867 0.953 0.550 0.760 0.720

sat 0.881 0.880 0.910 0.878 0.865

segment 0.935 0.959 0.957 0.964 0.935

shuttle 0.998 0.999 0.999 1.000 0.966

sonar 0.789 0.808 0.812 0.793 0.765

soybean-small 1.000 1.000 1.000 0.982 1.000

splice 0.837 0.809 0.767 0.951 0.920

threenorm 0.820 0.830 0.833 0.694 0.846

tic-tac-toe 0.860 0.872 0.976 0.980 0.983

twonorm 0.920 0.947 0.953 0.823 0.963

vehicle 0.714 0.721 0.695 0.693 0.741

vote 0.943 0.949 0.926 0.952 0.954

vote1 0.910 0.903 0.903 0.908 0.924

vowel 0.792 0.939 0.917 0.710 0.688

waveform 0.821 0.827 0.810 0.813 0.870

yeast 0.592 0.605 0.563 0.587 0.590

zip 0.899 0.868 0.961 0.894 0.946

mean 0.811 0.820 0.829 0.832 0.831

std 0.152 0.155 0.163 0.157 0.170
Table C.4

Accuracy results for ensembles with bagging using voting as the fusion function.


