2013 Scanning Sheet. Assignment Description:									Description:			Instructor: Date: Scanned File Name:
	ABET Outcomes Rubric or Example											
A B	С	DE	F	G	Н	I	J	К	student %	problem	Outcome #	EE 487 RF Systems Engineering (3) – Outcomes Reviewed 2013
2			1					2			1	Understand noise in passive and active components at RF frequencies; assess Noise Figure
2	1		1		1			2			2	Use impedance transformation techniques in different circuits for RF applications
2	1		1		1			2			3	Analyze and design sine wave oscillators for RF applications
2			1		1	1		2			4	Analyze and interpret various analog and binary digital modulation schemes
2	1		1		1			2			5	Analyze and design Mixers used in RF communication systems.
2	1		1		1			2			6	Analyze the FET and BJT amplifier Models
2	1		1		1			2			7	Design RF amplifiers using Scattering Parameters.
2	1		1		1			2			8	Design Low Noise Amplifiers (LNAs)
												Evaluate the propagation path loss for a communication system and use this path loss in the Link
2	1		1		1			2			9	budget analysis of the System
2	1		1		1			2			10	Analyze and design power amplifiers at RF frequencies
2			1		1			2			11	Understand the operation of antennas for transmission and reception

1=supporting contribution 2=significant contribution

1=supporting contribution

	a on ability to analy knowledge of mothematics, asigned, and ensine and
2=significant contribution	a. an addity to apply knowledge of mathematics, science, and engineering
Rubric	b. an ability to design and conduct experiments, as well as to analyze and interpret data
	c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as
5: Excellent Mastery of Outcome By Vast Majority of Students	economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4: Good Mastery of Outcome By Vast Majority of Students	d. an ability to function on multi-disciplinary teams
3: Adequate Mastery of Outcome By Majority of Students	e. an ability to identify, formulate, and solve engineering problems
2: Marginal Mastery of Outcome By Most Students	f. an understanding of professional and ethical responsibility
1: Lack of Mastery of Concept By Most Students	g. an ability to communicate effectively
	h. the broad education necessary to understand the impact of engineering solution in a global, economic,
Improvement Suggestions or Comments:	environmental, and societal context
	i. a recognition of the need for, and an ability to engage in life-long learning
	j. a knowledge of contemporary issues
	k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice