2013 Scanning Sheet. Assi	ignment Description:	Instructor:	Date:	Scanned File Name:

ABET Outcomes Rubric or						Rubric or	Example	1						
											1		Outcome	
Α	В	С	D	Е	F	G	Н	- 1	J	K	student %	problem	#	EET 452 Operational Amplifier Applications (3) – Outcomes Reviewed 2013
2	2 1	1	1		1								1	Understand op amp terminal characteristics.
2	2 1	1	1		1								2	Understand the DC and AC characteristics of op amps through application in lab experiments.
2	2 1	2	1	1	1					1			3	Apply op amps for comparator circuits in lab experiments.
2	2 1	1	1		1								4	Apply op amps for the design and implementation of various types of oscillators in lab experiments.
- 2	2 1	1	1		1								5	Apply op amps for the design of active filters in lab experiments.
2	2 1	2	1	1	1					1			6	Apply op amps for signal processing in lab experiments.
2	2 1	1	1		1								7	Understand the use of op amps for A/D and D/A conversion.
2	2 1	1	1		1								8	Understand the operation of Phase Locked Loops.

1=supporting contribution

2=significant contribution	a.	an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly defined engineering technology activities
Rubric	b.	an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies
5: Excellent Mastery of Outcome By Vast Majority of Students	C.	an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
4: Good Mastery of Outcome By Vast Majority of Students	d.	an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives
Adequate Mastery of Outcome By Majority of Students Marginal Mastery of Outcome By Most Students	e.	an ability to function effectively as a member or leader on a technical team an ability to identify, analyze, and solve broadly-defined engineering technology problems
	- -	an ability to apply written, oral, and graphical communication in both technical and non-technical
1: Lack of Mastery of Concept By Most Students	g.	environments; and an ability to identify and use appropriate technical literature an understanding of the need for and an ability to engage in self-directed continuing professional
nprovement Suggestions or Comments:	h.	development an understanding of and a commitment to address professional and ethical responsibilities including a
	i.	respect for diversity
	j.	a knowledge of the impact of engineering technology solutions in a societal and global context; and
	k.	a commitment to quality, timeliness, and continuous improvement.