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While the literature on consistent individual differences in

correlated suites of physiological and behavioural traits is

steadily growing for vertebrates, invertebrates have received

less attention. The few studies that do exist have measured

temporary physiological states (or responses), rather than

consistent individual physiological traits. Here, I explore

the consistency of individual differences in physiology and

behaviour of n = 53 shore crabs (Carcinus maenas) by repeatedly

measuring haemolymph density (HD) and the crabs’ responses

to a novel environment. In crustaceans, HD is directly

proportional to protein concentrations, and thus indicative of

physiological condition. HD was highly repeatable, and crabs

showed consistent individual differences in their behavioural

responses to a novel environment, thus indicating individual

consistency in both physiology and behaviour. Furthermore,

HD was significantly correlated with the crabs’ risk propensity,

i.e. individuals with higher HD spent more time near shelter.

Overall, this provides the first evidence for consistency in

an endogenous physiological trait in an invertebrate. The

link between consistent physiology and behaviour, i.e. coping

styles, analogous to those found in vertebrates, suggests

metabolic and/or immunological correlates of personality

which offer great potential for future studies.

1. Introduction
Animal personalities, i.e. consistent individual differences in

behaviour, have been extensively studied in vertebrates (e.g. [1,2])

and more recently, also in invertebrates (reviewed by Mather &

Logue [3] and Kralj-Fišer & Schuett [4]). In vertebrates, a

large body of research has shown that consistent phenotypic

differences are underpinned by consistent individual differences

in physiology, e.g. physiological stress reactivity, energy

2015 The Authors. Published by the Royal Society under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted

use, provided the original author and source are credited.
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metabolism, neuroendocrine characteristics and immunological reactivity (e.g. [5–7]). Such ‘coping

styles’, that is consistent individual differences in correlated suites of behavioural and physiological

traits [5], provide a useful concept for understanding individual adaptive capacity to deal with changes

in the environment (note that, misleadingly, ‘coping style’ is sometimes used in the literature as a

synonym for personality without inferring a link between physiology and behaviour).

Relationships between individual differences in behaviour and physiology have also been

documented in invertebrates, and previous studies have focused on life-history variables (e.g.

Acyrthosiphon pisum [8], Euprymna tasmanica [9]), parasite load (e.g. [10]), immune parameters

(e.g. Gryllus spp. [11]), and effects of environmental conditions, e.g. food quality (e.g. Phaedon

cochleariae [12]) or temperature (e.g. Pagurus bernhardus [13], Ozius truncatus [14]). However, in all of these

examples, researchers have investigated and measured ‘temporary’ physiological states (or physiological

responses), which they linked to behaviour, rather than measuring consistent individual differences in an

endogenous physiological trait. This distinction between temporary states and consistent physiological

traits is important because, if consistent individual differences in behaviour are promoted by a

physiological trait, consistency in the physiological trait is a prerequisite. Individual consistency, or

repeatability, in a trait can only be assessed by obtaining multiple measures from the same individuals

(e.g. [15,16]), and to my knowledge no study has yet assessed consistent individual differences in an

invertebrate endogenous physiological trait.

Here, I first investigate individual differences in the physiology of shore crabs (Carcinus maenas), using

repeated haemolymph density (HD) measures. HD is directly proportional to protein concentrations in

the blood and is commonly used as an indicator of physiological condition in crustaceans [17]. Second,

I investigate individual differences in behavioural responses to a novel environment (i.e. exploration,

activity and risk propensity). Finally, I test whether HD and behaviour are related.

2. Material and methods

2.1. Subjects and housing

Shore crabs (n = 53) were collected in Swansea Bay and were sexed (n = 33 females, n = 20 males)

based on the shape of the abdomen ([18]; electronic supplementary material, figure S1), weighed,

and their carapace width (CW) measured using digital callipers (mean ± s.d.: 46.2 ± 6.7 mm). Subjects

were individually marked using Tipp-Ex and were housed in a 122 × 61 cm aerated plastic tank, with

seawater flow-through, and containing shelters. The water temperature ranged between 11.9◦C and

12.4◦C throughout the study. The crabs were fed mackerel or herring twice a week. The crabs were

kept under standardized conditions for two months prior to any behavioural and physiological data

collection to standardize recent environmental conditions.

2.2. Physiological and behavioural data

Once a week (n = 6) on the same day, haemolymph was taken from the base of the fifth pereiopod

(walking leg) using 21 gauge needles and 1 ml syringes. HD, i.e. the refractive index, was measured

using a salinity density refractometer [17].

Behaviour in a novel environment was assessed by placing each crab in a gravel-lined test tank

(W × L × H : 15 × 54 × 24) containing half a flower pot as shelter (trial 1). The behaviour of the crab

was recorded for 10 min using a Panasonic HDC-SD60 high-definition video camera. In order to gauge

repeatability in crab behaviour, the experiment was repeated after 2 days (trial 2), with subjects being

tested in a randomized order. Three behavioural measures were extracted from video: (i) Exploration (the

percentage of test arena explored, assessed by drawing a square grid on tracking trajectories images,

obtained using the EthoWatcher R© Tracking Module [19] and counting the number of squares (total

n = 138) visited by the crab), (ii) Immobility (the time spent without moving) and (iii) Risk propensity

(the time spent near shelter, i.e. in physical contact in, under, behind, or next to it). Immobility and risk

propensity were calculated using the EthoWatcher R© Ethography Module [19].

2.3. Data analysis

Parametric and non-parametric tests were conducted in SPSS STATISTICS 17.0. To investigate individual

consistency in HD across six weeks, I calculated repeatability as an intraclass correlation coefficient

(ICC) based on variance components derived from a one-way analysis of variance (ANOVA) with
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Figure 1. Consistency in shore crab (a) HD measured with a salinity density refractometer, (b) exploration, (c) immobility and (d) time

spent near shelter (i.e. risk propensity). For (b,c,d), open circles represent male and filled circles female subjects (total n= 53).

individual (n = 53) as a factor [15] using the R package ICC [20]. The relationship between the two HD

measures nearest to the experiments was assessed using Pearson’s correlation. In order to assess sex

differences in HD, a Mann–Whitney U-test was used. Spearman’s rank correlations were used to assess

(i) a potential link between body size and HD, (ii) consistency in behaviour across the two trials and

(iii) relationships between the three behavioural traits. In order to test whether HD predicts behaviour,

while simultaneously controlling for the effects of individual, size, sex and trial, I used linear mixed

models (LMMs) using the R package lme4 [21].

3. Results

3.1. Consistency in haemolymph density and behaviour

HD (average ± s.d. : 1058.7 ± 12.2; range : 1025 − 1100, n = 53) was highly repeatable across six weeks

(ICC = 0.77, 95% CI = 0.69, 0.84, respectively), indicating strong individual consistency. The two HD

measures nearest to the behavioural trials were averaged for further analyses and were highly correlated

(Pearson’s r = 0.926, p < 0.001, n = 53; figure 1a). No sex differences were found in mean HD (Mann–

Whitney U = 267, p = 0.247). Body size and HD were unrelated (Spearman’s ρ = −0.015, p = 0.915,

n = 53).

Exploration, immobility and risk propensity were significantly correlated between trial 1 and

trial 2 (exploration: Spearman’s ρ = 0.614, p < 0.001, n = 53; figure 1b; immobility: Spearman’s ρ = 0.663,

p < 0.001, n = 53; figure 1c; risk propensity: Spearman’s ρ = 0.378, p = 0.005, n = 53; figure 1d),
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Figure 2. The relationship between mean HD and mean time spent near shelter in shore crabs (n= 53). For the statistical effect of HD

upon time spent near shelter (while controlling for other factors), see table 1.

indicating individual consistency across trials. The three behavioural traits (averaged across trials) were

also correlated (immobility and exploration: Spearman’s ρ = −0.895, p < 0.001; immobility and risk

propensity: Spearman’s ρ = 0.552, p < 0.001; exploration and risk propensity: Spearman’s ρ = −0.307,

p = 0.025).

3.2. The link between physiology and behaviour

HD significantly predicted risk propensity (LMM: p = 0.009; table 1), i.e. crabs with higher HD spent

more time near shelter (figure 2). Neither immobility (LMM: p = 0.101; table 1) or exploration (LMM:

p = 0.350; table 1) were predicted by HD. No sex differences in behaviour were found (table 1). CW

significantly affected exploration (LMM: p = 0.011; table 1) and immobility (LMM: p = 0.017; table 1) but

not risk propensity (LMM: p = 0.834; table 1). Individuals explored more (LMM: p = 0.049) and spent less

time immobile (LMM: p = 0.002) in trial 2 than in trial 1, suggesting an effect of habituation (table 1). No

difference in risk propensity was found between trials (LMM: p = 0.277; table 1).

4. Discussion
Understanding consistent individual differences in suites of correlated physiological and behavioural

traits (i.e. ‘coping styles’) has been the recent focus within the animal personality framework (e.g. [5–7]).

In vertebrates, individual differences in both physiology and behaviour (and links between the two)

are well documented [5–7]. Conversely, in invertebrates, although consistency in behaviour, and links

between physiological state and behaviour have been shown [8–14], evidence for consistent individual

differences in physiology is lacking. This study demonstrates such individual consistency in physiology,

i.e. HD, as well as a link between HD and risk propensity, indicative of coping styles, analogous to those

observed in vertebrates (e.g. [5]).

HD in crustaceans is directly proportional to haemolymph protein levels and therefore is often

used to assess physiological condition (reviewed by Lorenzon et al. [17]). In particular, haemolymph

protein levels are used as an index of nutritional condition and are decreased in starved crustaceans

(reviewed by Lorenzon et al. [17]). The present findings may therefore have important implications

for the physiological monitoring of wild or farmed crustaceans. For instance, if individuals are not

sampled repeatedly, intrinsic individual differences in haemolymph protein levels (or the HD proxy) may

potentially lead to false assumptions regarding the nutritional state of the animals. More generally, the

relationship between haemolymph protein and physiological state is not straightforward as total protein

concentrations can vary with nutrition (see above), moulting stage, reproduction, infection, temperature,

osmotic pressure, pH and salinity (reviewed by Lorenzon et al. [17] and Depledge & Bjerregaard [22]).
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Table 1. Factors affecting exploration, immobility and risk propensity in male and female shore crabs (n= 53). Statistically significant

values are in bold.

model predictor variable estimate ± s.e. p-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

exploration intercept 291.20 ± 217.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trial 5.24 ± 2.59 0.049
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sex −5.22 ± 5.51 0.348
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CW −1.04 ± 0.39 0.011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HD −0.19 ± 0.20 0.350
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

immobility intercept −46.48 ± 28.46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trial −1.1 ± 0.3 0.002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sex 0.87 ± 0.72 0.234
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CW 0.13 ± 0.10 0.017
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HD 0.04 ± 0.03 0.101
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risk propensity intercept −71.04 ± 28.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trial −0.59 ± 0.53 0.277
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sex 1.13 ± 0.72 0.124
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CW −0.01 ± 0.05 0.834
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HD 0.07 ± 0.03 0.009
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this study, housing and feeding conditions were the same for all subjects. Moulting stage, in shore

crabs, is reflected in carapace coloration (green in recently moulted crabs, and red as the exoskeleton

hardens [23]); however, testing green and red crabs separately revealed comparable significant results

(see electronic supplementary material, table S1).

But what are the causes of individual variation in HD? In decapods, 70–95% of total haemolymph

protein is haemocyanin, the oxygen transport molecule in crustaceans and many other invertebrates [22];

the remaining proteins include (among others) various antimicrobial proteins [24]. If individual

differences in HD reflect individual differences in haemocyanin, this could be linked to differences in

metabolic physiology. Alternatively, but not mutually exclusively, if individual differences in HD are

due to differences in antimicrobial protein concentrations, this would suggest differences in immune

function. These hypotheses are yet to be tested in shore crabs (or other crustaceans). Regardless, both

individual differences in metabolic and immune physiology have been linked to individual differences

in behaviour and, in fact, might play an important role in the link between personality and life

history (e.g. [5–7,11,14]). Body-size-dependent differences in metabolism, for instance, may underlie size-

dependent differences in boldness of sea anemones (Actinia equina) [25]. Similarly, in this study, body size

affected activity, i.e. smaller crabs explored more and were less immobile, but body size and HD were

unrelated. The link between body size and activity found here may have occurred owing to the ratio

between crab body size and test tank size. Future studies are needed to more systematically explore how

body size is linked to activity (e.g. with constant size : tank ratios, or very large test tanks).

The hypothesis that metabolism promotes phenotypic differences has received support by recent

studies on ectotherms, including both vertebrates and invertebrates (e.g. [14,25,26]; see also [7]). In

ectotherms, metabolism increases with temperature, and rock crabs (Ozius truncatus), for example,

exhibit consistent individual differences in behaviour at a given temperature as well as in response to

changes in temperature [14]. Biro et al. [14] speculate that metabolic physiology may underlie these

different behavioural responses and, to further investigate this, suggest that future research should

measure metabolic rates and behaviour across different temperatures. If consistent individual variation

in HD is indeed linked to metabolic physiology, this study—by revealing these individual differences—

provides a crucial conceptual and methodological tool for invertebrate personality research which could

unravel evolutionary pathways to phenotypic differences [3,4].
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