
(67577) INTRODUCTION TO MACHINE LEARNING

Problem Set 9 – Kernels

Due: 1.6.2015 20:00

1 Kernel Ridge Regression

Let X “ R
d, Y “ R. And let S “ txi, yiu

m
i“1

Ď pX ˆ Yq be a sample set.
By applying the Tikhonov (ℓ2) regularization to linear regression with the
squared loss, we obtain the learning rule

argmin
wPRd

˜

λ

2
}w}2 `

1

2m

m
ÿ

i“1

pxw, xiy ´ yiq
2

¸

, (1)

1. Find a closed form of the minimizer of Equation (1).

2. As in SVM, we can incorporate Kernels. Let ψ be a feature mapping
from X into RN . The corresponding RLM is

argmin
wPRN

˜

λ

2
}w}2 `

1

2m

m
ÿ

i“1

pxw,ψpxiqy ´ yiq
2

¸

, (2)

Show how to implement the ridge regression algorithm with kernels.

2 Min-Kernel

Let N be any positive integer. For every x, x1 P t1, . . . , Nu define

Kpx, x1q “ mintx, x1u.

Prove that K is a valid Kernel, namely, find a mapping ψ : t1, . . . , Nu Ñ R
d

(for an appropriate value of d), such that

@x, x1 P t1, . . . , Nu, Kpx, x1q “ xψpxq, ψpx1qy.
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3 Practical Part - SVM

In this exercise you will implement the Soft-SVM algorithm with and with-
out kernels. Download the file ex9 code from the course website. We provide
you with two data sets, where the instances belong to R

2 (thus, they can be
visualized), and some auxiliary functions that will help you to visuzlize the
prediction of SVM.

The exercise is divided into two parts. In the first part, you will im-
plement linear SVM and use it to predict the labels of a data set which
is approximately linearly separated. The second data set is far from being
linearly separated. However, using the Gaussian kernel, we can still apply
SVM (with kernels) to approximately find the correct labels.

3.1 Programming language

We wrote a school solution and some auxiliary functions using MATLAB1.
However, you are allowed to use any programming language you prefer.

3.2 Linear SVM

1. Implement SGD for linear soft-SVM. The input of the algorithm is
pX,Y, lambda, T q, where:

(a) X is an mˆ d matrix, whose rows correspond to the instances.

(b) Y is an m ˆ 1 matrix, where Yi is the label of Xi,¨ (either 1 or
´1).

(c) lambda is the regularization parameter.

(d) T represents the number of iterations.

The output, denoted w, is a d ˆ 1 vector, which is obtained by the
soft-SVM algorithm.

2. Load SVM linear data, which contains a 2-dimensional input data
X,Y. Run your algorithm with T “ 10m, and lambda “ 0.01 to get
w, and then apply the function show SVM linear(X,Y,w) (where the
m-file show SVM linear is provided by us2) to display the resulting
classifier. Save the resulting plot as a JPEG file SVM linear.jpg.

1We also provide a translation of this auxiliary functions to Python
2We also provide a translation of this file to Python, named svm.utils, which has been

prepared by a student last year.
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3. For debugging purposes, you can use the function show SVM linear(X,Y,w)

inside each iteration of the algorithm, to show how the classifier is up-
dated. Use the pause() command if the display runs too fast.

3.3 SVM with Gaussian Kernel

1. Implement SGD for soft-SVM with gaussian kernels (as described in
lecture 8). The input of the algorithm is pX,Y, lambda, sigma2, T q,
where:

(a) X,Y, T, λ are defined as in the previous part (linear SVM).

(b) sigma2 is the kernel width (e.g. σ2 in Kpx, x1q “ expp´}x ´
x1}2

2
{σ2q

The output, denoted alphas, is an m ˆ 1 vector, returned by the
algorithm.

2. Important remarks:

(a) Other than the for loop appearing explicitly in the pseudocode,
you don’t need any other loop in your code. This is important
for your algorithm to run reasonably fast.

(b) In particular, do not keep recalculating Kpxi, xjq. Instead, com-
pute (in advance) a matrix G of size m ˆ m, where Gi,j “
Kpxi, xjq, and use it throughout the run of the algorithm. Note
that the calculation of G does not require loops. Here are some
hints for this calculation:

i. Let Z “ XXJ P R
mˆm. Note that zi,j “ xxi, xjy.

ii. Let v P R
m be the diagonal of Z. Duplicate this vector m

times. That is, use the function repmat (both in MATLAB
and Python) to obtain a matrix Z̄ P R

mˆm whose columns
are equal to v. Denote the resulting matrix by D.

iii. Express G in terms of Z and D.

.

3. Load SVM gaussian data, which contains 2-dimensional input data
X,Y.

4. Run your algorithm to get alphas as described next:

(a) Set T “ 10m to be the number of iterations.
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(b) Set lambda=0.1.

(c) Let sigma2 vary over the following values: sigma2=10,sigma2=1,
and sigma2=0.1.

(d) For each value of sigma2 (and the corresponding output alphas),
apply the function show SVM gaussian(X,Y,alphas,sigma2) (where
the m-file show SVM gaussian is provided by us) to display the re-
sulting classifier. Save the resulting plots as JPEG files SVM gaussian10.jpg,
SVM gaussian1.jpg, and SVM gaussian01.jpg respectively.

(e) Note: For debugging purposes only, you can use the function
show SVM gaussian(X,Y,w) inside each iteration of the algorithm,
to show how the classifier is updated. Use the pause() command
if the display runs too fast.

3.4 Files Included in This Exercise

1. The data matrix X and the corresponding label vector Y are given in
two alternative formats:

(a) MATLAB format: SVM linear data.mat, SVM gaussian data.mat.

(b) Text files: X linear, Y linear, X gaussian, Y gaussian.

2. show SVM gaussian.m, show SVM linear.m, SVM utils.py

3.5 Submission

Upload to the course website a zip file named “ex9.zip” that contains the
following files:

1. Your code.

2. The following figures: SVM linear.jpg, SVM gaussian10.jpg, SVM gaussian1.jpg,
and SVM gaussian01.jpg.

3. A README file titled README with your username and ID number,
separated by space. If you submit in pairs the README file should
contain two lines, one for each of you. Here is an example for how the
README file should look:
mickey1 123456789
minnie03 98765432
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Hints

1. Section 1, first part:

(a) Show that the RLM objective is convex.

(b) Hence, we can find a solution by computing the derivative and
comparing it to zero.

(c) You may rely on the following fact: For every d ˆ m matrix X
and every β ą 0, the matrix XXJ ` βI is invertible.

2. Section 1, second part: The representer theorem tells us that there
exists a vector α P R

m such that
řm

i“1
αiψpxiq is a minimizer of Equa-

tion (2). This leads us to the following observations:

(a) Let G be the Gram matrix with regard to S and K. That is,
Gij “ Kpxi, xjq. Note that G can be written as XJX where X is
a N ˆ m matrix whose i’th column is ψpxiq. Define g : Rm Ñ R

by

gpαq “
λ

2
αTGα `

1

2m

m
ÿ

i“1

pxα,G¨,iy ´ yiq
2 , (3)

where G¨,i is the i’th column of G. Show that if α̂ minimizes
Equation (3) then ŵ “

řm
i“1

α̂iψpxiq is a minimizer of the RLM.

(b) Show that g is convex. (You may use the fact that if G “ XJX

for some matrix X then for every α it holds that αJGα ě 0)3

(c) Since G can be written as XJX we get that G` βI is invertible
for every β ą 0.

(d) Find a closed form expression for α̂.

i. Show that the gradient of the function α ÞÑ αJGα is 2αJG.

ii. For the second expression, note that 1

2m

řm
i“1

pxα,G¨,iy ´ yiq
2

can be viewed as a regression problem w.r.t. the Gi’s.

3A matrix that satisfies one of these equivalent conditions is called a ”positive semidef-

inite matrix”. See appendix C.3 in Shai & Shai
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