
�

Operating Systems, fall 2002

Local File Systems in UNIX

Lior Amar,

David Breitgand

(recitation)

www.cs.huji.ac.il/~os

I/O: UNIX approach

• The basic model of the UNIX I/O system is a
sequence of bytes that can be accessed either
randomly or sequentially

• Applications may need various level of structure
for their data, but the kernel imposes no structure
on I/O

• Example: ASCII text editors process documents
consisting of lines of characters where each line is
terminated by ASCII line-feed character. Kernel
knows nothing about this convention

I/O stream

• The UNIX kernel uses a single data model,

byte stream, to serve all applications;

• As a result I/O stream from one program

can be fed as input to any other program;

• Pipelines can be formed;

• This is a characteristic UNIX tool-based
approach;

�

Descriptors

• Unix processes use descriptors to reference I/O
streams;

• Descriptors are small unsigned integers;

• Descriptors are obtained from system calls open(),
socket(), pipe();

• System calls read() and write() are applied to
descriptors to transfer data;

• System call lseek() is used to specify position in
the stream referred by desriptor;

• System call close() is used to de-allocate
descriptors and the objects they refer to.

What’s behind the descriptor?

• Descriptors represent objects supported by

the kernel:

• file
• pipe
• socket

File

• A linear array of bytes with at least one name;

• A file exists until all its names are explicitly
deleted, and no process holds a descriptor for it;

• In UNIX, I/O devices are accessed as files. These
are called special device files;

• There is nothing special about them for the user
processes, though;

• Terminals, printers, tapes are all accessed as if
they were streams of bytes;

• They have names in the file system and are
referred to through their descriptors.

�

Special Files

• The kernel can determine to what hardware device
a special file refers and uses a resident module
called device driver to communicate with the
device;

• Device special files are created by the mknode()
system call (by the super-user only)

• To manipulate device parameters ioctl() system
call is used;

• Different devices allow different operations
through ioctl()

• Devices are divided into two groups:

– Block devices (structured)
– Character devices (unstructured)

Devices are not created equal

• Block devices:

– Random (anywhere in the stream) access devices;

• Internal implementation is based on the notion of block, a
minimal group of bytes that can be transferred in one
operation to and from the device;

• A number of blocks can be transferred in one operation
(this is, usually, more efficient), but less then block bytes of
data is not transferred;

• To user application, the block structure of the device is
made transparent through internal buffering being
done in kernel. User process may read/write a single
byte because it works with I/O stream abstraction ����

• tapes, magnetic disks, drums, cd-roms, zip disks, floppy
disks, etc.

Devices are not created equal

• Character devices:

– Sequential access devices;

– Internal implementation often supports the notion of

block transfer,

– Moreover, in many cases the blocks supported by

character devices are very large due to efficiency

considerations (e.g., communication interfaces)

• Then why they are called character?

– Because the first such devices were terminals

• Mouse, keyboard, display, network interface,

printer, etc.

�

Devices are not created equal

File systems, organized, collections of files, are always created

on the block devices, and never on the character devices

Single physical block device can be partitioned into a number of

logical devices. Each such logical device can have its own file

system. Each such logical device is represented by its own special

device file. //take a look at /dev directory to see them

So far, it’s enough with the special files.

But we’ll get back to them later on :)

Block devices can (and usually do) support character device

Interface. But the opposite is not true.

pipe

• They are linear array of bytes as files, but they are
unidirectional sequential communication links
between the related processes (father/son);

• They are transient objects;

• They get their file names in the /tmp directory
automatically, but open() cannot be used for them;

• Descriptors obtained from pipe() system call.

• Data written to a pipe can be read only once from
it, and only in the order it was written (FIFO);

• Have limited size.

FIFO

• There is a special kind of pipes, called
named pipes;

• They are identical to unnamed pipes, except
they have normal names, as any other file,
and descriptors for them can be obtained
through open() system call;

• Processes that wish to communicate through
them in both directions should open one
FIFO for every direction.

�

Socket

• Socket is a transient object that is used for inter-
process communication;

• It exists only as long as some process holds a
descriptor on it;

• Descriptor is created through the socket() system
call;

• Sequential access; similar to pipes;

• Different types of sockets exist:

– Local IPC;

– Remote IPC;

– Reliable/unreliable etc.

To summarize, so far

• Descriptor refers to some kind of I/O stream

• But all I/O streams have the same interface:

– file

Where descriptors are?
• The kernel maintains a per-process descriptor

table that kernel uses to translate the external
representation of I/O stream into internal
representation;

• Descriptor is simply an index into this table;

• Consequently, descriptors have only local
meaning;

• Different descriptors in different processes can
refer to the same I/O stream;

• Descriptor table is inherited upon fork();
• Descriptor table is preserved upon exec();
• When a process terminates the kernel reclaims

all descriptors that were in use by this process

�

...

...

...

...

I/O streams

File Descriptor table

File Descriptor
table

File table

Process
Entry

Process
Entry

...

...

...

...

File Descriptor table

File Descriptor table

File table

Process
Entry

Process
Entry

1) pointer2fte

2) Close on exec() flag

File descriptor entry:

...

...

...

...

File Descriptor table

File Descriptor table

File table

Process
Entry

Process
Entry

1)Reference count

2) File Offset

2) Flags:

append flag

locking

no-block flag

asynchronous flag

File table entry:

�

...

...

...

...

I/O streams

File Descriptor table

File Descriptor
table

File table

Process
Entry

Process
Entry

How to refer to

I/O streams?

Streams are diverse:
-special device file:

-E.g., fds: 0,1,2

-Regular file:

-Local?

-What device?

-Remote?

-How to access?

-Non-UNIX?

-How to handle all this?

...

...

...

...

File Descriptor
table

File
Descriptor

table

File table

Process
Entry

Process
Entry

Solution: virtual file system layer

V-node structure:
• object oriented interface
between the generic file
representation and its
internal implementation
• Function table;
• References the actual
implementation:

•Local file I-node;
•Device driver;
•NFS, etc.

V-node layer

V-node interface functions consist of:

– File system independent functions dealing with:
• Hierarchical naming;

• Locking;

• Quotas;

• Attribute management and protection.

– Object (file) creation and deletion, read and write,
changes in space allocation:

• These functions refer to file-store internals specific to the file
system:

• Physical organization of data on device;

• For local data files, these functions refer to v-node refers to
UNIX-specific structure called i-node (index node) that has all
necessary information to access the actual data store.

�

Regular Local Files and I-nodes

• Information about each regular local file is
contained in the structure called I-node;

• There is 1-to-1 mapping between the I-node and a
file.

• I-node structures are stored on the file system
block device (e.g., disk) in a predefined location;

• Where it is exactly is file system implementation
specific;

• To work with a file (through the descriptor
interface) the I-node of the file should be brought
into the main memory (in-core I-node) ->

In-core I-nodes

Additional information:

1. how many file entries refer to I-node;

2. Locking status;

�

How I-nodes are identified?

• Each I-node is identified through its number

• Non-negative integer;

• This number serves as an index into the I-node list

implemented in each file system;

• And there is a file system per device, remember?

• Thus, I-node numbers have only local meaning
• How to efficiently refer to the in-core I-nodes

then?

Issues with I-nodes

• Since in-core I-node should be created for each

open file, we need a mechanism how to map the

filename into the I-node number;

• Since this is an often used operation, I-nodes

lookup and management should be efficient in

time and space;

• Since each file should be allocated an I-node

structure, we need to know what is in use, and

what is free;

�✁�

Logical View of the File System

(generic)

Directories

• In UNIX there are special files (don’t mix with special
device files) called directories;

• Directory is a file containing information about other
files;

• As a file directory has an I-node structure;

• Flag in the structure indicates its type;

• In contrast to other files, the kernel imposes a
structure on directories

• Directory is a collection of directory entries of variable
length where each entry contains mapping:

• <name, inode #>

Directories

• Directories allocated in chunks

• Each chunk can be read/written in a single

I/O operation;

– Why?

� �

Links (hard)

Hard links cannot span different file systems (local meaning only)

Links (soft)

Soft links can span the device boundaries

� �

Local File System Organization

• Classical UNIX File System (old);

• Sequentially from a predefined disk

addresses (cylinder 0, sector 0):

– Boot block;

– Superblock;

– I-node hash-array;

– Data blocks

Superblock

• Contains;

– Size of the file system;

– The number of free blocks in the file system;

– Size of the logical file block;

– A list of free blocks available for file allocation;

– Index of the next free block on the list;

– The size of I-node list;

– The number of free I-nodes on the system;

– The list of free I-nodes on the file system;

– The index of the next free I-node on the list.

I-node allocation

• As long as there is a free I-node – allocate it;

• Otherwise scan the I-node list linearly, and enter
into the super-block list of free I-nodes as many
numbers as possible;

• Remember the highest free I-node number;

• Continue with step 1;

• Next time start scanning from the remembered I-
node number; when at the end – go back to the
beginning of the I-node list.

� �

Relation between logical and physical views

Example

• Block size is 1024;

• Offset 9000:

(9000)mod(1024) = 808;

(9000)div(1024) = 8;

• Offset 350,000:
(350,000)div(1024) =

341:

75-th direct block of the

single indirect block of

the 0-th double

indirect block

(350,000)mod(1024) =

816;

� �

What’s next?

• Issues with the old UNIX file system;

• BSD FFS (new fsystem)

• Log-based file system;

• NFS.

