Logarithmic Functions and Their Graphs (3.3)

Changing Between Logarithmic and Exponential Form

If x > 0 and $0 < b \ne 1$ then

 $log_b x = y$ if and only if $b^y = x$

Evaluating Logarithmic and Exponential Expressions

- a. $\log_2 16 =$
- b. $\log_3 243 =$
- c. $\log_7 \sqrt{7} =$
- d. $\log_{11} 1 =$
- e. $2^{\log_2 8} =$
- f. $3^{\log_3 9} =$

Common Logarithms → Base 10

*

 $y = log x if and only if <math>10^y = x$

Evaluating Common Logarithms

- a. log 1000 =
- b. $\log \sqrt[3]{10} =$
- c. $\log 1/100 =$
- d. $10^{\log 7} =$
- e. $\log 56.4 =$
- f. $\log 0.39 =$

Solving Simple Logarithmic Equations

Solve each equation by changing it to exponential form.

a.
$$\log x = 5$$

b.
$$log_3x = 4$$

c.
$$log_5x = 2$$

Natural Logarithms → Base e

$$y = log_e x = ln x$$
 if and only if $e^y = x$

Evaluating Natural Logarithms

a.
$$\ln \sqrt{e} =$$

c.
$$ln e =$$

d.
$$\ln e^7 =$$

e.
$$e^{\ln 5} =$$

f.
$$\ln 31.2 =$$

g.
$$\ln 0.93 =$$

Graphs of Logarithmic Functions

$$f(x) = e^{x}$$

$$f^{1}(x) =$$

$$f(x) = 10^{x}$$

$$f^{-1}(x) =$$

Transforming Logarithmic Graphs

Describe how to transform the graph of $y = \ln x$ or $y = \log x$ into the graph of the given function.

a. g(x) = ln(x + 3)

b.
$$f(x) = \ln(x - 2)$$

c.
$$h(x) = 2 \log x$$

d.
$$g(x) = -2 + \log x$$

