Geometry Notes G.1 Inductiv	Mrs. Grieser		
Name:	D)ate:	Block:
Introduction to Logic			
What comes next?			
a) $9^2 = $,	b) 12345·9 =	, c) 2,	4,,,
$99^2 = $,	12345.18 =	,	
$999^2 = $,	12345.27 =	,	
$9,999^2 = $,	=		
$99,999^2 = $,			
=			

- How did you know what came next in the above examples?
- You used **inductive reasoning**; you looked for a pattern, and applied it as a rule.

Examples of **conjectures** using inductive reasoning:

- All ice I have ever observed in cold, therefore all ice is cold.
- The sun has risen every day of my life, therefore it will rise tomorrow.
- I have always gotten an A in math class, therefore I will get an A in this math class
- All members of a sample got well from a medication, therefore the entire population will get well from this medication.
- •

What are some problems with inductive reasoning?

What is useful about inductive reasoning?

• Use inductive reasoning to **<u>disprove</u>** a conjecture by finding a <u>**counterexample**</u>

Example: All odd numbers are prime.

Prove this conjecture **false** by finding a **counterexample**, an odd number that is not prime.

- A counterexample to this conjecture is the number _____.
- An example of a conjecture that uses inductive reasoning that can be disproved by a counterexample is (give the counterexample, too): ______

Vocabulary Review Fill in the descriptions for each term...

Notation/Term	Description
conjecture	
inductive reasoning	
counterexample	

Geometry Notes G.1 Inductive Reasoning, Conditional Statements Mrs. Grieser Page 2

Conditional Statements

Conditional Statements (If-Then):

• Examples:

If an animal meows, then it is a cat.

- If the weather is nice, then I will wash the car.
- \circ If 2 divides evenly into x, then x is a positive number.
- Your turn: _____
- Sometimes have to put into if-then form...
 - All birds have feathers
 - Two angles are supplementary if they are a linear pair.

Forms of Conditional Statements

Notation: Let p represent the hypothesis of a conditional, and q represent the conclusion

- If p then q also written as $p \rightarrow q$; stated as "p implies q"
- Conditionals have converse, inverse, and contrapositive statements
- Example 1: All birds have feathers
- **Conditional**: If an animal is a bird, then it has feathers
- **Converse**: $q \rightarrow p$; exchange hypothesis and conclusion
- **Inverse**: $\sim (p \rightarrow q)$ or $\sim p \rightarrow \sim q$; negate hypothesis and conclusion
- **Contrapositive**: ~*q* → ~*p*; converse of the inverse
- Example 2: Two angles are supplementary if they are a linear pair.
- Conditional: ______
- Inverse ______
- Contrapositive ______

Geometry Notes G.1 Inductive Reasoning, Conditional Statements Mrs. Grieser Page 3

Write the conditional if-then form, converse, inverse, and contrapositive forms of the following statements. Assuming the original statement is true; decide whether the other forms are true or false.

1) All cats are mammals.	2) Baseball players are	3)
if-then:	athletes.	All180° ∠s are straight∠s.
	if-then:	if-then:
converse:		
inverse:	converse:	converse:
contranositive:	inverse:	inverse:
contrapositive.	contranositive:	
		contrapositive:

You Try...

1) Guitar players are	2) All Great Danes are large.	3) A polygon is regular if it is
musicians.	if-then:	equilateral.
if-then:		if-then:
converse:	converse:	converse:
inverse.	inverse:	
	contrapositive:	inverse:
contrapositive:	-	contrapositive:

- What can we inductively conclude about the converse and inverse of a statement?
- What can we inductively conclude about a conditional statement and its contrapositive?

Biconditional Statements

- Statements where the **original** statement and **converse** are **BOTH true**
- Use the words "if and only if" (IFF)
- Notation: $p \leftrightarrow q$
- Example: An animal meows IFF it is a cat. Other examples?
- Which of the previous examples are biconditional?

Geometry Notes G.1 Inductive Reasoning, Conditional Statements Mrs. Grieser Page 4

Compound Logic Statements

- conjunction: A compound logic statement formed using the word and
- **disjunction**: A compound logic statement formed using the word **or**
- Example:
 - o p: Joes eats fries q: Maria drinks soda
 - o $p \wedge q$: Joe eats fries and Maria drinks soda
 - o $p \lor q$: Joe eats fries or Maria drinks soda
 - A conjunction is true IFF only both parts are true
 - A disjunction is false IFF only both parts are false
- You try: Write the statement in symbolic form, or translate the symbols to English...
- a: We go to school on a holiday b: Arbor Day is a holiday c: We work on Arbor Day
- 1) We work on Arbor Day or Arbor Day is a holiday.
- 2) Arbor Day is a holiday and we do not work on Arbor Day._____
- 3) If we go to school on a holiday and Arbor Day is a holiday then we work on Arbor Day
- 4) *a* ∧ *c*
- 5) $b \lor c \land \sim a$
- 6) $(\sim a \wedge b) \rightarrow c$ _____

Vocabulary Review

F		
Term	Description	Notation
conditional	A logical statement that has a hypothesis and conclusion;	$p \rightarrow q$
statement	can be put in the form "if-then."	
hypothesis	The "if" part of a conditional statement.	р
conclusion	The "then" part of a conditional statement.	<i>q</i>
negation	The opposite of the original statement or clause.	~ <i>p</i>
converse	The statement formed if the hypothesis and conclusion are switched.	$q \rightarrow p$
inverse	The statement formed by negating both the hypotheses and conclusion.	$\sim p \rightarrow q$
contrapositive	The statement formed by writing the converse of the inverse.	$\sim q \rightarrow p$
biconditional statement	A statement whose converse is equivalent to the original form of the statement; contains "if and only if" (IFF).	$p \leftrightarrow q$
equivalent statements	Statements that have the same truth value (true or false).	N/A
conjunction	Compound logic statement using and.	$p \wedge q$
disjunction	Compound logic statement using or.	$p \lor q$