
Supporting Creativity and User Interaction in CS 1
Homework Assignments

Tammy VanDeGrift
University of Portland

5000 N Willamette Blvd.
Portland, OR 97203

503-943-7256

vandegri@up.edu

ABSTRACT

In this paper, we describe CS 1 programming assignments that

encourage design creativity and that utilize user testing. All course

assignments allowed for some student-defined specifications;

some assignments required user tests to encourage interaction

with other people. The open-ended nature of the assignments

supported students’ creativity and motivation to learn. The user

tests provided a platform for students to share their creations and

knowledge about computing with others. Both the creative aspect

and sharing aspect of the assignments led to students taking

ownership of their work. Overall, 41 of 44 (93.2%) students

enjoyed the open-ended nature of the assignments and sharing

programs with users also enhanced their understanding of their

programs and computing concepts.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Computer Science Education

General Terms

Documentation, Human Factors

Keywords

Novice programmers, motivation, user interaction, creativity

1. INTRODUCTION
“I hear and I forget. I see and I remember. I do and I understand.”
Confucius. Like most university computing courses, our CS 1

students understand the most about computing and programming

when constructing their own programs, generally outside of

formal instructional time. Like most universities, our students are

expected to spend two hours on coursework outside of class for

every hour inside class [1]. This poses an interesting challenge for

computing faculty: out-of-class time is where the learning unfolds

and develops, so homework assignments should be intentionally

designed to engage students in the learning process.

There are several models for designing programming assignments

for introductory computing students. Each model has advantages

and disadvantages for learning and assessment. For example, one

homework model uses precise program specifications, so grading

can be automated through test case comparisons between the

model solution and the student’s solution [10, 13]. This model

may be necessary to assess large sets of programming

assignments. Another example model uses lab-like problems

where students complete functions and methods either from

scratch or by extending existing code. This has the advantage that

students can get automatic and immediate feedback on a shorter

piece of the solution, but may not showcase the creative and

design aspects of software development [5, 6].

In our approach, we used three design principles in developing the

programming assignments: 1) every assignment includes open-

ended elements to encourage students to decide how to define part

of the specification and provide latitude for students to be creative

in their design and implementation, 2) over half of the

assignments have a required user interaction session to encourage

the idea that programs are written for other users, and 3) a written

summary accompanies each assignment; some written summaries

ask students to write a user manual, other summaries ask students

to supply their test cases, and other summaries ask students to

supply class diagrams. The purpose of the summaries is to

challenge students to describe their programs in English and

reflect on the design, implementation, and testing process, while

scaffolding good documentation habits.

The media computation approach for CS 1 has been successful in

providing context and outlets for creativity for students [4]. One

of the assignments used in our CS 1 course has elements of media

computation (image transformations). Like [4], there were several

motivating factors in developing assignments with elements of

creativity: provide an opportunity for students to take ownership

and pride in their work and to support learning. Another approach

described in [8] is to use creative thinking exercises to encourage

students to learn about computation; these exercises were not part

of the programming itself but focused more on novelty,

challenging existing patterns, broadening knowledge and using

new environments for stimuli.

The learning theory supporting this programming assignment

approach is constructivism [3, 9]. Constructivism is the idea that

students build their own interpretations of the material based on

their own models and experiences. It also relates to Vygotsky’s
zones on proximal development [14]. Challenging students to

exercise their creativity allows each student to explore at a level

that is closest to their zone of proximal development. Also,

explaining their code and program to a potential user scaffolds the

expansion of their zone of proximal development.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SIGCSE '15, March 04 – 07, 2015, Kansas City, MO, USA

Copyright 2015 ACM 978-1-4503-2966-8/15/03…$15.00
http://dx.doi.org/10.1145/2676723.2677250

Another consideration in the development of this homework

assignment approach is the target audience. Students who were

born in the early 1980’s to the late 1990’s comprise the millennial

generation [2]. While it is dangerous practice to stereotype an

entire generation, some general trends describe this population of

students. Traits of Generation Y include customization (students

want to personalize their things and experiences), creativity

(students are more right-brained than left-brained), authority

(students want to have ownership and authority), and connected

(students are tightly connected to peers and family). The design of

the homework assignments in our CS 1 course takes these

generational qualities into consideration. By allowing students to

customize their solutions, they can exercise creativity and take

authority over the design and development of their programs.

Secondly, students can exercise their connectedness with others

through the user interaction and user tests of their solutions. Note

that connected is part of the SIGCSE 2015 conference theme.

2. STUDY
This study expands on the work in [12] that describes the

injection of creativity in CS 1 programming assignments. The

study reported here seeks to examine if the use of creativity-

supported assignments motivates students to learn and the impact

on learning when students share their programs with users. The

hypotheses for this study are two-fold: 1) allowing students to

exercise creative freedom motivates students to learn and

complete homework, 2) asking students to share their programs

with non-programmers engages their learning.

In general, we sought to understand what motivates students to

complete programming assignments. Second, will students be

motivated to go beyond what is asked in the basic homework

requirements? These questions relate to studies regarding student

motivation (intrinsic versus extrinsic) and grades. Lin, McKeachie

and Kim found that college students with medium extrinsic and

high intrinsic motivation have higher course grades than students

with low or high extrinsic motivation [7]. Students may be better

served when emphasis is on learning and reflection on learning

instead of exam and homework grades.

2.1 Context
The University of Portland is a comprehensive, private Catholic

university serving ~3700 undergraduate students. The course is

CS 203, Introduction to Computer Science, taught in two sections

in spring 2012 by the same professor. The two sections had

common assignments, lectures, exams, and in-class activities. Java

is used to emphasize problem-solving and computer science

concepts. In total, 44 students gave consent to be in this study.

The course is required for Computer Science, Electrical

Engineering, Math, and Physics majors. Other students can take

CS 203 to fulfill elective credits. Of the 44 students, 31 (70.5%)

were male and 13 (29.5%) were female. Most students were

majoring in computer science, but there was some diversity

among the majors: 19 CS, 8 EE, 4 Math, 4 General Engineering, 2

Biology, 2 Mechanical Engineering, 1 Sociology, 1 Psychology, 1

Economics, 1 Education, and 1 Undeclared.

2.2 Homework Assignments
The course included ten assignments. Eight were one-week

assignments and two were two-week assignments, split into two

parts. In general, students submitted an assignment or part of an

assignment every week of the semester. As mentioned previously,

every homework assignment had a creative entity and most

encouraged students to extend the program beyond the basic

requirements. HW 2, 3, 4, 5, 8, and 9 required user interaction and

a summary of the user test in the written report. Table 1 briefly

describes each homework assignment. See

https://sites.up.edu/sigcse2015/ for the full text of each

assignment.

Table 1: Descriptions of homework assignments

Assignment Objective Creative Bit Primary CS Concepts

Addressed

1: Fortune Teller Get first Java program

written/compiled; use of

variables, input and output

Students chose their own fortunes to present to the

user, along with the calculation for their ‘lucky

number’.

Variables

I/O

Compilation and

Execution

2: Madlib Create a Madlib story,

replacing user-input into

story with some user input

modified using String

methods.

Students chose their own Madlib story and missing

words. The assignment required that they perform

certain operations, such as capitalize just the first

letter of the word, switch the order of a two-word

phrase, etc., but students chose where to place these

operations in their stories.

I/O

String manipulation and

Java-defined String

methods

3: Graphical Greeting

Card

Create a graphical greeting

card

Students designed the graphics, wrote the code to

generate the image, and processed user input (such

as the card recipient’s name, the sender’s name, the
desired color, etc) for the custom card.

I/O with dialog boxes

Java Graphics (JApplet,

Graphics class)

Selection statements

4: Golf Simulation Create a 2D golf landscape

and draw a ball flying

through the air, given the

user’s launch angle and
velocity.

Students chose how the background of the golf hole

was graphically designed. They could include wind

direction and speed (optional input).

Java Graphics

Selection statements

Loops (to draw the ball

path)

5: Wheel of Fortune Create a textual Wheel of

Fortune game. Users guess a

letter and the locations of the

guessed letters are presented

to the user.

Students chose the list of potential phrases that

could be used as the puzzle. Students could also

enhance the game with ‘spinning the wheel’,
earning money, vowels costing money, and

supporting multiple players.

Random numbers

Selection statements

Loops

Arrays

Methods

6: Library Design Create UML diagrams for

two different classes that

would be included in the

software to support library

users, borrowing books,

and/or searching the library’s
collection. (The University

Library was going through a

physical renovation at the

time, so this system was

relevant to the students.)

Students chose the two classes they designed. UML

Class design

Methods

Instance variables

Types

7: Game Player class

implementation

Create and implement a Java

class to represent a game

character for a game of their

choice. For example, the

class could represent a player

in a car racing game, a board

game, etc.

Students chose what game they wanted to model for

the player in that game.

Class implementation

Instance variables

Methods

Constructors

8: Image

Transformations

Implement six different

image filters, such as convert

color to grayscale, shift right,

create a border, create high

contrast, brighten, etc.

Students chose their own filters to implement. Some

did edge detection, blurring, brightening, pixilation,

sepia, etc.

Arrays of objects (the

picture was a 2D array of

Pixel objects)

Java Interfaces

Nested loops

9: Inheritance

(Choose your own

project)

Design and create a program

of the student’s choice, as
long as the program includes

inheritance. The inheritance

relationship should make

sense and not be contrived to

satisfy the assignment.

The entire assignment. Inheritance (class

extension)

Class relationships

Polymorphism

10: Palindromes and

Files

Create a program to search

for palindromes in the

English language (provided

as a text document)

Students had to choose some other property to

search for (such as words containing the substring

‘cs’, the number of English words longer than 15

characters).

Recursive methods

File I/O

Exceptions

2.3 Data Collection and Analysis
The primary data for this study were responses to an IRB-

approved end-of-semester paper survey. The survey was

administered on paper to encourage a high response rate and to

distinguish this survey as separate from the regular on-line course

evaluation survey. See Appendix 1 for the full list of survey

questions; note that the actual survey instrument spanned multiple

pages. This paper focuses on the questions related to creativity in

assignments, student motivation, and connectedness regarding the

user tests. The open-ended survey responses were coded using

content analysis with emergent categories [11]. An individual

response may be coded into more than one theme. For example,

one student wrote in response to what they liked best about the

homework assignments: “They helped me learn the material and

gave me practice coding. Also, the room to be creative with

assignments was nice.” This response was coded into the

categories “skill-development” and “creativity”. The researcher

then went back and re-coded all responses to confirm that the

emergent themes were complete and consistent.

3. RESULTS
Results related to creativity, student motivation, user interaction,

and overall impact are reported in the subsections below.

3.1 Impact of Creativity
The feature of assignments having creative, open-ended, and

flexible components came up as the most popular answer to what

students liked best about the homework assignments. Note that

students were not told the reasons for this study and this question

came before any mention of creativity in the survey questions.

Figure 1 shows the top five answers for what students liked best

about the homework assignments. 38.6% of students responded

that the flexibility, creativity, and open-endedness is what they

liked best.

Figure 1: Top 5 Answers: What students liked best about

homework assignments

Other reasons that one to two students gave included: wanted to

see what CS is like, feeling of accomplishment, additional

enrichment in the assignments, they are fun, they have user tests,

instructor gives good feedback, can get partial credit, they are

challenging, and not too hard.

When asked at the end of the survey if they liked the open-ended

nature of the assignments, 41 of the 44 (93.2%) responded that

they enjoyed it.

3.2 Impact of Student Motivation
Students were asked via an open-ended question what factors led

them to complete homework assignments. Not surprisingly,

grades and impact to final grade was the most popular answer. 33

of 44 students said they wanted to get a good grade or the

homework scores impacted the final grade. However, only 10

students reported just grades as the only motivator to complete

assignments. Other reasons included: interested in how computers

work and interest in material (11), wanted to learn concepts (9),

wanted to practice programming and improve skills (9), they were

fun and satisfying (9), they related to my career (3), and I was

capable in completing them (1). In summary, 34 of 44 (77.3%)

students had motivations other than grades or in addition to good

grades for completing the homework. Students saw value in the

task itself (intrinsic) beyond just earning points (extrinsic).

3.3 Impact of User Interaction
User tests were required for HW 2, 3, 4, 5, 8, and 9. Summaries of

the user tests were part of the written documentation that

accompanied the code submission for each student. Students

reported the number of different people with whom they shared

their programs over the entire semester. The average number of

unique people per student was 3.4, with a minimum of 1 to a

maximum of 10. Of those with whom they shared programs, 1.81

people showed an interest in computing. Of the 44 respondents,

most shared the programs with friends. The data is as follows: 43

shared with friends, 13 shared with parents, 1 shared with another

professor, 10 shared with siblings, and 5 shared with others

(girlfriends, housemates, resident assistant, family friend). When

they shared their programs, many computing concepts came up

during the user tests. Figure 2 shows the self-reported topics

(listed in reverse order of presentation in lecture) and number of

students who explained that topic when sharing their code.

Figure 2: Summary of topics and number of students who

described the topics during user tests

Students were also asked if the requirement of sharing a program

with a user altered when they started the assignment. The

instructor’s hypothesis was that students would start assignments

that required user tests earlier than assignments that did not

require user tests. 34 of 44 (77.3%) responded that sharing the

program with another person had no impact on when they started

the assignment. Nine (20.5%) responded that they started sooner

for those that had user tests and one (2.3%) responded that they

started later for those that had user tests. In addition to impact of

start time, students were asked if showing their program to

another person influenced their effort. 27 of 44 (61.4%) students

said it did not influence their effort.

Finally, the students were asked what surprised them when they

showed their programs to users. Figure 3 shows the summary of

what surprised the CS 1 students during user tests. In some cases,

the user helped the CS 1 student make improvements to the

program. One student stated, “They seemed to care about things I

didn't think they would or they always had suggestions most of

which I used.” This statement was coded as “improvements”.
Overall, having users run their programs showcased that people

try to input invalid data, people do not read instructions, and

testing with other people helped the programmer find bugs.

Figure 3: Surprising user test experiences

3.4 Overall Impact in the Course
Overall, students were satisfied with the homework assignments

in the course. When asked what could be improved, 15 (34.1%)

respondents said nothing – they were already well-designed. No

other category of responses had more than four respondents.

Students’ favorite assignments were HW 8 (12 respondents), HW

4 (11 respondents), and HW 9 (10 respondents). Creativity in the

form of graphical art seems motivating for students. The least

favorite assignment was more scattered in terms of responses, but

the assignment getting the most votes was HW 6 (11

respondents). HW 6 was a class design-only assignment, and

students likely missed the chance to program on this assignment.

In order to assess if students went beyond the explicit homework

requirements, students were asked if they completed additional

enrichment (optional extensions for no formal credit) during the

semester and if they wrote programs that were not assigned as part

of the class. 27 (61.3%) completed additional enrichment and 15

(34.1%) wrote programs that were not part of the course

(examples include games, sorting numbers, animations, poker

game, puzzles, vector experiments, calculators, image

transformations, an audio player, and printing random messages.)

Finally, the turn-in rate for homework was high, indicating that

students took the course and the assignments seriously. Of 510

possible homework submissions (51 students x 10 assignments),

505 assignments were submitted for grading. The average grades

per assignment ranged from 87.2% (HW 10) to 96.0% (HW 1).

Even though each homework assignment had open-ended parts,

each specification included a grading rubric: 7 points code

completion, 7 points code design, and 6 points reflection paper.

4. DISCUSSION
Bias and threats to validity: As with most studies, this study had

potential biases in the results. In total, 51 students took CS 203 in

spring 2012 and 44 of the 51 gave consent to use their data in the

study. It could be that the 44 were not the most representative

sample of the students taking the course. Students may have

responded more positively in the survey since the instructor had

access to the survey responses; however, students were assured

that the surveys would be sealed in an envelope until after final

grades were submitted. Also, the instructor left the classroom

while students completed the survey.

The results regarding creativity indicate that this millennial

generation of students may be inspired by the chance to customize

and personalize. Over 25% of students stated, without prompting,

that the creativity/open-ended nature of the assignments was one

of the features they liked best about the homework in the course.

Sharing the programs through user tests gave students the

opportunity to have share and get feedback about their programs.

While the construct of authority or ownership was not explicitly

studied or measured, it appears as “I get to do the solution myself
and get to do something unique” as the reason eight students
offered as to what they liked best about homework.

Although this study presents many of the strengths in giving

creative, open-ended programming assignments, this practice does

pose challenges. Using creative, open-ended assignments in large

classes reduces the amount of automation one can use when

grading. At University of Portland, the CS 203 course section size

is generally 35 or fewer students, so individual execution of

student programs for grading is feasible. If an instructor wants to

use automation, perhaps the basic set of features could be graded

automatically with scripts and the unique features graded by hand.

If done modularly, this approach could work. Another potential

drawback of giving students creative freedom is that later in the

curriculum, students design and implement software systems to a

given specification. However, we decided that getting CS 1

students excited about programming by letting them be creative

outweighs the risk of students not conforming to set requirements

in later courses. More than half of CS 203 students are not CS

majors, so giving them practice in defining programs they want to

create and then creating them will serve them well as they use

computing as a tool in their careers.

5. CONCLUSION
This paper describes the design aspects of homework assignments

and study for a CS 1 course. The design elements include: 1)

required and open-ended program specifications, 2) user tests for

more than half the assignments, and 3) written documentation that

accompanies the code. The results indicate that, not surprisingly,

this millennial generation is motivated to complete work for a

grade; but, more than that, they appreciate the opportunity to

connect with users and connect their creativity with coding.

6. ACKNOWLEDGMENTS
We thank the introductory computer science students who

participated in this study and the course. The author is

appreciative of Dr. Karen Eifler, Professor of Education, for

fruitful discussions about this work.

7. REFERENCES
[1] Berrett, Dan. 2012. Carnegie, the Founder of the Credit-

Hour, Seeks Its Makeover. The Chronicle of Higher

Education. December 5, 2012.

[2] Elmore, T. 2010. Generation iY: Our Last Chance to Save

Their Future. Poet Gardener Publishing.

[3] Gonzalez, G. 2004. Constructivism in an introduction to

programming course. Journal of Computing Sciences in

Colleges. 19(4). 299 – 305.

[4] Guzdial, M. 2013. Exploring Hypotheses about Media

Computation. In Proceedings of the International Computing

Education Research Conference (ICER). 19 – 26.

[5] Hovemeyer, D. et al. 2014. Using and sharing programming

exercises to improve introductory courses. In Proceedings of

the 45th ACM Technical Symposium on Computer Science

Education. 737.

[6] Kumar, A. Problets – The Home Page. URL:

http://problets.org. Last accessed September 4, 2014.

[7] Lin, Y., McKeachie, W., and Kim, Y. 2003. College student

intrinsic and/or extrinsic motivation and learning. Learning

and Individual Differences. 13. 251–258.

[8] Miller, L.D. et al. 2014. Integrating Computational and

Creative Thinking to Improve Learning and Performance in

CS1. In Proceedings of ACM Special Interest Group for

Computer Science Education. 475 – 480.

[9] Piaget, J. 1950. The Psychology of Intelligence. New York:

Routledge.

[10] Sherman, M., Bassil, S., Lipman, D., Tuck, N., and Martin,

F. 2013. Impact of auto-grading on an introductory

computing course. Journal of Computing Sciences in

College. 28(6). 69 – 75.

[11] Stemler, S. 2001. An Overview of Content Analysis.

Practical Assessment, Research & Evaluation. 7(17).

http://pareonline.net/getvn.asp?v=7&n=17 Last accessed

September 4, 2014.

[12] VanDeGrift, T. 2007. Encouraging creativity in introductory

computer science programming assignments. In Proceedings

of the American Society for Engineering Education

Conference (ASEE).

[13] Vander Zanden, B., and Berry, M. 2013. Improving

automatic code assessment. Journal of Computing Sciences

in College. 29(2). 162 – 168.

[14] Vygotsky, L. S. 1978. Mind in society: The development of

higher psychological processes. Cambridge: Harvard

University Press. 79 – 91.

Appendix 1: Survey Questions

Overall Feedback

1. Overall, what did you like best about CS203 homework assignments?

2. Overall, what would you suggest to improve the CS203 homework assignments?

3. Here is a list of assignments that you completed for CS203. Put an “F” next to the assignment that was your favorite. Put an “L” next to
the assignment that was your least favorite. Include any comments/feedback about your choices below.

 Assignment Topics

 Homework 1: Fortune Generator input, output, arithmetic

 Homework 2: Madlib Strings

 Homework 3: Greeting Card Graphics, conditionals

 Homework 4: Golf Simulation Graphics, loops, conditionals

 Homework 5: Wheel of Fortune Arrays, loops, conditionals

 Homework 6: Library Design Class design

 Homework 7: GamePlayer Class implementation (instance variables, methods, constructors)

 Homework 8: Image Transformations 2D Arrays, arrays of objects

 Homework 9: Choose Your Own Inheritance

 Homework 10: Palindromes File I/O, recursion

Comments on choices (if any):

4. What factors motivated you to complete the CS203 assignments?

User Tests

5. Several homework assignments asked you to have a friend execute your program and to solicit his/her feedback.

a. With how many *different* people did you share one of your homework programs? ______________

b. Of those with whom you shared your programs, how many showed an interest in computer science or programming?

c. For each person below, check the box if you shared at least one of your homework programs with them:

□ a friend (peer), □ a parent/guardian, □ a professor, □ a sibling, □ other ___________________________

d. Did you explain any computer science or programming concepts when you shared your programs with other users? No/Yes

If so, which concept(s) did you explain?

e. Recall that some homework assignments required you to share your program with a friend and some did not. Select the statement that

best fits your experience by checking the box.

□ In general, I finished the programs that I shared with a friend earlier (with respect to the due date) than those that I did not share

with a friend.

□ In general, I finished the programs that I shared with a friend later (with respect to the due date) than those that I did not share

with a friend.

□ Having a friend run my program had no influence on how early I finished my programs with respect to the due dates.

f. Did having a friend run your programs influence your effort or affect the quality of your programs? Explain why or why not.

g. Describe any results from your user tests (friends running your programs) that surprised you.

Open-Ended Assignments

6. Most of the CS203 assignments had an open-ended component that you got to choose to implement. For example, in the image

processing homework (HW 8), you designed and implemented an image filter of your choice. In the greeting card homework (HW 3), you

designed the greeting card picture and text. In the madlib homework (HW 2), you designed your own story.

a. Did you enjoy the open-ended parts of the homework assignments? No/Yes/Not applicable

b. Why or why not?

c. Most of the assignments had additional enrichment opportunities (not graded for points) to further your knowledge. Did you complete at

least one additional enrichment feature during the semester? No/Yes

7. Did you write any Java programs for your own use (not for graded HW in CS203) during the semester? No/Yes

If so, what did the program(s) do?

8. Do you have any other comments about the homework assignments in CS203? If so, put them here:

