Name

ALGEBRA 2 HONORS--UNIT 9 (6.1 TO 6.6) PRACTICE TEST. GLUE IN AND SHOW ALL WORK AND EXPLAIN IN WORDS HOW TO DO EACH PROBLEM AND GET AN EXTRA **CREDIT STAMP IN YOU NOTEBOOK.**

- 1. Classify $-7x^5 6x^4 + 4x^3$ by degree and by number of terms.
- 2. Use a graphing calculator to determine which type of model best fits the values in the table.

x	-6	-2	0	2	6
у	-6	-2	0	2	6

- 3. Write $4x^3 + 8x^2 96x$ in factored form.
- 4. Use a graphing calculator to find the relative minimum, relative maximum, and zeros of $y = 3x^3 + 15x^2 - 12x - 60$. If necessary, round to the nearest hundredth.
- 5. Find the zeros of y = x(x 3)(x 2). Then graph the equation.
- 6. Write a polynomial function in standard form with zeros at 5, -4, and 1.
- 7. Find the zeros of $f(x) = (x + 3)^2(x 5)^6$ and state the multiplicity.
- 8. Divide $3x^3 3x^2 4x + 3$ by x + 3.

Divide using synthetic division.

- 9. $(x^4 + 15x^3 77x^2 + 13x 36) \div (x 4)$
- 10. $(x^3 + 4 11x + 3x^2) \div (x + 6)$
- 11. Use synthetic division to find P(2) for $P(x) = x^4 + 3x^3 6x^2 10x + 8$.

Solve the equation by graphing.

- 12. $x^2 + 7x + 19 = 0$
- 13. $-8x^3 13x^2 + 6x = 0$

Factor the expression.

- 14. $x^3 + 216$
- 15. $x^4 20x^2 + 64$
- 16. Solve $125x^3 + 343 = 0$. Find all complex roots.
- 17. Solve $x^4 34x^2 = -225$.
- 18. Find the rational roots of $x^4 + 8x^3 + 7x^2 40x 60 = 0$.

Find the roots of the polynomial equation.

- 19. $x^3 2x^2 + 10x + 136 = 0$
- $20. \quad 2x^3 + 2x^2 19x + 20 = 0$
- 21. $x^4 5x^3 + 11x^2 25x + 30 = 0$
- 22. A polynomial equation with rational coefficients has the roots $5 + \sqrt{1}$, $4 \sqrt{7}$. Find two additional roots.
- 23. Find a third-degree polynomial equation with rational coefficients that has roots -5 and 6 + i.
- 24. Find a quadratic equation with roots -1 + 4i and -1 4i.
- 25. Find all zeros of $2x^4 5x^3 + 53x^2 125x + 75 = 0$.

ALGEBRA 2 HONORS--UNIT 9 (6.1 TO 6.6) PRACTICE TEST. GLUE IN AND SHOW ALL WORK AND EXPLAIN IN WORDS HOW TO DO EACH PROBLEM AND GET AN EXTRA CREDIT STAMP IN YOU NOTEBOOK. Answer Section

SHORT ANSWER

1. ANS: quintic trinomial

REF: 6-1 Polynomial Functions

2. ANS: linear model

REF: 6-1 Polynomial Functions

3. ANS: 4x(x-4)(x+6)

REF: 6-2 Polynomials and Linear Factors

- 4. ANS: relative minimum: -62.24, relative maximum: 37.79, zeros: x = -5, -2, 2
 - REF: 6-2 Polynomials and Linear Factors
- 5. ANS:
 - 0, 3, 2

REF: 6-2 Polynomials and Linear Factors 6. ANS:

 $f(x) = x^3 - 2x^2 - 19x + 20$

REF: 6-2 Polynomials and Linear Factors

- 7. ANS: -3, multiplicity 2; 5, multiplicity 6 REF: 6-2 Polynomials and Linear Factors 8. ANS: $3x^2 - 12x + 32 + -93/(x+3)$ **REF: 6-3 Dividing Polynomials** 9. ANS: $x^3 + 19x^2 - x + 9$ **REF: 6-3 Dividing Polynomials** 10. ANS: $x^2 - 3x + 7 - \frac{38}{(x+6)}$ **REF: 6-3 Dividing Polynomials** 11. ANS: 4 **REF: 6-3 Dividing Polynomials** 12. ANS: no solution **REF: 6-4 Solving Polynomial Equations** 13. ANS: 0, -2, 0.38**REF: 6-4 Solving Polynomial Equations** 14. ANS: $(x + 6)(x^2 - 6x + 36)$ **REF: 6-4 Solving Polynomial Equations** 15. ANS: (x-2)(x+2)(x-4)(x+4)REF: 6-4 Solving Polynomial Equations 16. ANS: $-\frac{7}{5}, \frac{35}{50} - \frac{35i\sqrt{3}}{50}, \frac{35}{50} + \frac{35i\sqrt{3}}{50}$ **REF: 6-4 Solving Polynomial Equations**
- REF: 6-4 Solving Polynomial Equations
 17. ANS:
 3, -3, 5, -5

REF: 6-4 Solving Polynomial Equations

18. ANS: -6, -2

REF: 6-5 Theorems About Roots of Polynomial Equations 19. ANS:

3-5*i*,3+5*i*, -4

REF: 6-5 Theorems About Roots of Polynomial Equations 20. ANS:

$$\frac{3+i}{2}$$
, $\frac{3-i}{2}$, -4

REF: 6-5 Theorems About Roots of Polynomial Equations 21. ANS:

2, 3, $i\sqrt{5}$, $-i\sqrt{5}$

REF: 6-5 Theorems About Roots of Polynomial Equations 22. ANS:

 $5 - \sqrt{1}, 4 + \sqrt{7}$

REF: 6-5 Theorems About Roots of Polynomial Equations

23. ANS: $x^3 - 7x^2 - 23x + 185 = 0$

REF: 6-5 Theorems About Roots of Polynomial Equations

24. ANS:

 $x^2 + 2x + 17 = 0$

REF: 6-5 Theorems About Roots of Polynomial Equations 25. ANS:

 $1, \frac{3}{2}, 5i, -5i$

2

REF: 6-6 The Fundamental Theorem of Algebra