\qquad DATE \qquad
\qquad

6-4 Study Guide and Intervention nth Roots

Simplify Radicals

Square Root	For any real numbers a and b, if $a^{2}=b$, then a is a square root of b.
\boldsymbol{n} th Root	For any real numbers a and b, and any positive integer n, if $a n=b$, then a is an nth root of b.
Real nth Roots of b, $\sqrt[n]{b},-\sqrt[n]{b}$	1. If n is even and $b>0$, then b has one positive real root and one real negative root. 2. If n is odd and $b>0$, then b has one positive real root. 3. If n is even and $b<0$, then b has no real roots. 4. If n is odd and $b<0$, then b has one negative real root.

Example 1: Simplify $\sqrt{49 z^{8}}$.

$\sqrt{49 Z^{8}}=\sqrt{\left(7 z^{4}\right)^{2}}=7 z^{4}$
z^{4} must be positive, so there is no need to take the absolute value.

Example 2: Simplify - $\sqrt[3]{(2 a-1)^{6}}$
$-\sqrt[3]{(2 a-1)^{6}}=\sqrt[3]{\left[(2 a-1)^{2}\right]^{3}}=-(2 a-1)^{2}$

Exercises

Simplify.

1. $\sqrt{81}$
$2 \cdot \sqrt[3]{-343}$
2. $\sqrt{144 p^{6}}$
3. $\pm \sqrt{4 a^{10}}$
4. $\sqrt[5]{243 p^{10}}$
5. $-\sqrt[3]{m^{6} n^{9}}$
6. $\sqrt[3]{-b^{12}}$
7. $\sqrt{16 a^{10} b^{8}}$
8. $\sqrt{121 x^{6}}$
9. $\sqrt{(4 k)^{4}}$
10. $\pm \sqrt{169 r^{4}}$
11. $-\sqrt[3]{-27 p^{6}}$
12. $-\sqrt{625 y^{2} z^{4}}$
13. $\sqrt{36 q^{34}}$
14. $\sqrt{100 x^{2} y^{4} z^{2}}$
15. $\sqrt[3]{-0.027}$
16. $-\sqrt{-0.36}$
17. $\sqrt{0.64 p^{10}}$
18. $\sqrt[4]{(2 x)^{8}}$
19. $\sqrt{\left(11 y^{2}\right)^{4}}$
20. $\sqrt[3]{\left(5 a^{2}\right)^{6}}$
21. $\sqrt{(3 x-1)^{2}}$
22. $\sqrt[3]{(m-5)^{6}}$
23. $\sqrt{36 x^{2}-12 x+1}$
\qquad DATE \qquad
\qquad

6-4 Study Guide and Intervention (continued) nth Roots

Approximate Radicals with a Calculator

Irrational Number \quad a number that cannot be expressed as a terminating or a repeating decimal
Radicals such as $\sqrt{2}$ and $\sqrt{3}$ are examples of irrational numbers. Decimal approximations for irrational numbers are often used in applications. These approximations can be easily found with a calculator.

Example: Use a calculator to approximate $\sqrt[5]{18.2}$ to three decimal places.
$\sqrt[3]{18.2} \approx 1.787$

Exercises

Use a calculator to approximate each value to three decimal places.

1. $\sqrt{62}$
2. $\sqrt{1050}$
3. $\sqrt[3]{0.054}$
4. $-\sqrt[4]{5.45}$
5. $\sqrt{5280}$
6. $\sqrt{18,600}$
7. $\sqrt{0.095}$
8. $\sqrt[3]{-15}$
9. $\sqrt[5]{100}$
10. $\sqrt[6]{856}$
11. $\sqrt{3200}$
12. $\sqrt{0.05}$
13. $\sqrt{12,500}$
14. $\sqrt{0.60}$
15. $-\sqrt[4]{500}$
16. $\sqrt[3]{0.15}$
17. $\sqrt[6]{4200}$
18. $\sqrt{75}$
19. LAW ENFORCEMENT The formula $r=2 \sqrt{5 L}$ is used by police to estimate the speed r in miles per hour of a car if the length L of the car's skid mark is measures in feet. Estimate to the nearest tenth of a mile per hour the speed of a car that leaves a skid mark 300 feet long.
20. SPACE TRAVEL The distance to the horizon d miles from a satellite orbiting h miles above Earth can be approximated by $d=\sqrt{8000 h+h^{2}}$. What is the distance to the horizon if a satellite is orbiting 150 miles above Earth?
\qquad
\qquad

6-4 Skills Practice
 nth Roots

Use a calculator to approximate each value to three decimal places.

1. $\sqrt{230}$
2. $\sqrt{38}$
3. $-\sqrt{152}$
4. $\sqrt{5.6}$
$5 . \sqrt[3]{88}$
5. $\sqrt[3]{-222}$
6. $-\sqrt[4]{0.34}$
7. $\sqrt[5]{500}$

Simplify.
9. $\pm \sqrt{81}$
10. $\sqrt{144}$
11. $\sqrt{(5)^{2}}$
12. $\sqrt{-5^{2}}$
13. $\sqrt{0.36}$
14. $-\sqrt{\frac{4}{9}}$
15. $\sqrt[3]{-8}$
16. $-\sqrt[3]{27}$
17. $\sqrt[3]{0.064}$
18. $\sqrt[5]{32}$
19. $\sqrt[4]{81}$
20. $\sqrt{y^{2}}$
21. $\sqrt[3]{125 c^{3}}$
22. $\sqrt{64 x^{6}}$
23. $\sqrt[3]{27 a^{6}}$
24. $\sqrt{m^{8} p^{4}}$
25. $-\sqrt{100 p^{4} t^{2}}$
26. $\sqrt[4]{16 w^{4} v^{8}}$
27. $\sqrt{(-3 c)^{4}}$
28. $\sqrt{(a+b)^{2}}$

