6-4 Study Guide and Interventionnth Roots

Simplify Radicals

Square Root	For any real numbers a and b , if $a^2 = b$, then a is a square root of b .
nth Root	For any real numbers a and b , and any positive integer n , if $an = b$, then a is an n th root of b .
Real <i>n</i> th Roots of <i>b</i> , $\sqrt[n]{b}$, $-\sqrt[n]{b}$	 If n is even and b > 0, then b has one positive real root and one real negative root. If n is odd and b > 0, then b has one positive real root. If n is even and b < 0, then b has no real roots. If n is odd and b < 0, then b has one negative real root.

Example 1: Simplify $\sqrt{49z^8}$.

$$\sqrt{49Z^8} = \sqrt{(7z^4)^2} = 7z^4$$

 z^4 must be positive, so there is no need to take the absolute value.

Example 2: Simplify $-\sqrt[3]{(2a-1)^6}$

$$-\sqrt[3]{(2a-1)^6} = \sqrt[3]{[(2a-1)^2]^3} = -(2a-1)^2$$

Exercises

Simplify.

$$1.\sqrt{81}$$

$$2.\sqrt[3]{-343}$$

3.
$$\sqrt{144p^6}$$

4.
$$\pm\sqrt{4a^{10}}$$

$$5.\sqrt[5]{243p^{10}}$$

$$6.-\sqrt[3]{m^6n^9}$$

$$7.\sqrt[3]{-h^{12}}$$

$$8.\sqrt{16a^{10}b^8}$$

9.
$$\sqrt{121x^6}$$

$$10.\sqrt{(4k)^4}$$

11.
$$\pm \sqrt{169r^4}$$

12.
$$-\sqrt[3]{-27p^6}$$

13.
$$-\sqrt{625y^2z^4}$$

14.
$$\sqrt{36q^{34}}$$

15.
$$\sqrt{100x^2y^4z^2}$$

$$16.\sqrt[3]{-0.027}$$

17.
$$-\sqrt{-0.36}$$

18.
$$\sqrt{0.64p^{10}}$$

19.
$$\sqrt[4]{(2x)^8}$$

20.
$$\sqrt{(11y^2)^4}$$

21.
$$\sqrt[3]{(5a^2)^6}$$

22.
$$\sqrt{(3x-1)^2}$$

23.
$$\sqrt[3]{(m-5)^6}$$

24.
$$\sqrt{36x^2 - 12x + 1}$$

6-4 Study Guide and Intervention (continued) **nth Roots**

Approximate Radicals with a Calculator

Irrational Number

a number that cannot be expressed as a terminating or a repeating decimal

Radicals such as $\sqrt{2}$ and $\sqrt{3}$ are examples of irrational numbers. Decimal approximations for irrational numbers are often used in applications. These approximations can be easily found with a calculator.

Example: Use a calculator to approximate $\sqrt[5]{18.2}$ to three decimal places.

$$\sqrt[3]{18.2} \approx 1.787$$

Exercises

Use a calculator to approximate each value to three decimal places.

1.
$$\sqrt{62}$$

2.
$$\sqrt{1050}$$

3.
$$\sqrt[3]{0.054}$$

4.
$$-\sqrt[4]{5.45}$$

5.
$$\sqrt{5280}$$

6.
$$\sqrt{18,600}$$

7.
$$\sqrt{0.095}$$

8.
$$\sqrt[3]{-15}$$

9.
$$\sqrt[5]{100}$$

11.
$$\sqrt{3200}$$

12.
$$\sqrt{0.05}$$

13.
$$\sqrt{12,500}$$

14.
$$\sqrt{0.60}$$

15.
$$-\sqrt[4]{500}$$

16.
$$\sqrt[3]{0.15}$$

17.
$$\sqrt[6]{4200}$$

18.
$$\sqrt{75}$$

- **19. LAW ENFORCEMENT** The formula $r = 2\sqrt{5L}$ is used by police to estimate the speed r in miles per hour of a car if the length L of the car's skid mark is measures in feet. Estimate to the nearest tenth of a mile per hour the speed of a car that leaves a skid mark 300 feet long.
- **20. SPACE TRAVEL** The distance to the horizon d miles from a satellite orbiting h miles above Earth can be approximated by $d = \sqrt{8000h + h^2}$. What is the distance to the horizon if a satellite is orbiting 150 miles above Earth?

6-4 Skills Practice

nth Roots

Use a calculator to approximate each value to three decimal places.

1. $\sqrt{230}$

2. $\sqrt{38}$

3. $-\sqrt{152}$

4. $\sqrt{5.6}$

 $5.\sqrt[3]{88}$

6. $\sqrt[3]{-222}$

 $7. - \sqrt[4]{0.34}$

8. $\sqrt[5]{500}$

Simplify.

9. $\pm \sqrt{81}$

10. $\sqrt{144}$

11. $\sqrt{(5)^2}$

12. $\sqrt{-5^2}$

13. $\sqrt{0.36}$

14. $-\sqrt{\frac{4}{9}}$

15. $\sqrt[3]{-8}$

16. $-\sqrt[3]{27}$

17. $\sqrt[3]{0.064}$

18. ⁵√32

19. ⁴√81

20. $\sqrt{y^2}$

21. $\sqrt[3]{125c^3}$

22. $\sqrt{64x^6}$

23. $\sqrt[3]{27a^6}$

24. $\sqrt{m^8p^4}$

25. $-\sqrt{100p^4t^2}$

26. $\sqrt[4]{16w^4v^8}$

27. $\sqrt{(-3c)^4}$

28. $\sqrt{(a+b)^2}$