\qquad
\qquad
\qquad

4-7 Study Guide and Intervention
 Transformations of Quadratic Graphs

Write Quadratic Equations in Vertex Form A quadratic function is easier to graph when it is in vertex form. You can write a quadratic function of the form $y=a x^{2}+b x+c$ in vertex from by completing the square.

Example: Write $y=2 x^{2}-12 x+25$ in vertex form. Then graph the function.
$y=2 x^{2}-12 x+25$
$y=2\left(x^{2}-6 x\right)+25$
$y=2\left(x^{2}-6 x+9\right)+25-18$
$y=2(x-3)^{2}+7$
The vertex form of the equation is $y=2(x-3)^{2}+7$.

Exercises

Write each equation in vertex form. Then graph the function.

1. $y=x^{2}-10 x+32$
2. $y=x^{2}+6 x$
3. $y=x^{2}-8 x+6$

\qquad
\qquad
4. $y=-4 x^{2}+16 x-11$
5. $y=3 x^{2}-12 x+5$
6. $y=5 x^{2}-10 x+9$

4-7 Study Guide and Intervention ${ }_{\text {(continued) }}$ Transformations of Quadratic Graphs

Transformations of Quadratic Graphs Parabolas can be transformed by changing the values of the constants a, h, and k in the vertex form of a quadratic equation: $y=a(x-h)^{2}+k$.

- The sign of a determines whether the graph opens upward $(a>0)$ or downward $(a<0)$.
- The absolute value of a also causes a dilation (enlargement or reduction) of the parabola. The parabola becomes narrower if $|a|>1$ and wider if $|a|<1$.
- The value of h translates the parabola horizontally. Positive values of h slide the graph to the right and negative values slide the graph to the left.
- The value of k translates the graph vertically. Positive values of k slide the graph upward and negative values slide the graph downward.

Example: Graph $y=(x+7)^{2}+3$.

- Rewrite the equation as $y=[x-(-7)]^{2}+3$.
- Because $h=-7$ and $k=3$, the vertex is at $(-7,3)$. The axis of symmetry is $x=-7$. Because $a=1$, we know that the graph opens up, and the graph is the same width as the graph of $y=x^{2}$.
- Translate the graph of $y=x^{2}$ seven units to the left and three units up.

\qquad
\qquad
\qquad

Exercises

Graph each function.

1. $y=-2 x^{2}+2$
2. $y=-3(x-1)^{2}$
3. $y=2(x+2)^{2}+3$

4-7 Skills Practice

Transformations of Quadratic Graphs

Write each quadratic function in vertex form. Then identify the vertex, axis of symmetry, and direction of opening.

1. $y=(x-2)^{2}$
2. $y=-x^{2}+4$
3. $y=x^{2}-6$
4. $y=-3(x+5)^{2}$
5. $y=-5 x^{2}+9$
6. $y=(x-2)^{2}-18$
\qquad
\qquad
7. $y=x^{2}-2 x-5$
8. $y=x^{2}+6 x+2$
9. $y=-3 x^{2}+24 x$

Graph each function.

10. $y=(x-3)^{2}-1$

11. $y=-\frac{1}{2}(x+2)^{2}$

12. $y=(x+1)^{2}+2$

13. $y=-3 x^{2}+4$

14. $y=-(x-4)^{2}-4$

15. $y=x^{2}+6 x+4$

