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ABSTRACT  

This study addresses the resource-constrained project scheduling problem with precedence 
relations, and aims at minimizing two criteria: the makespan and the total weighted start time 
of the activities. To solve the problem, five multi-objective metaheuristic algorithms are 
analyzed, based on Multi-objective GRASP (MOG), Multi-objective Variable Neighborhood 
Search (MOVNS) and Pareto Iterated Local Search (PILS) methods. The proposed algorithms 
use strategies based on the concept of Pareto Dominance to search for solutions and 
determine the set of non-dominated solutions. The solutions obtained by the algorithms, from 
a set of instances adapted from the literature, are compared using four multi-objective 
performance measures: distance metrics, hypervolume indicator, epsilon metric and error 
ratio. The computational tests have indicated an algorithm based on MOVNS as the most 
efficient one, compared to the distance metrics; also, a combined feature of MOG and 
MOVNS appears to be superior compared to the hypervolume and epsilon metrics and one 
based on PILS compared to the error ratio. Statistical experiments have shown a significant 
difference between some proposed algorithms compared to the distance metrics, epsilon 

metric and error ratio. However, significant difference between the proposed algorithms with 
respect to hypervolume indicator was not observed. 

Keywords: Project Management; Resource constrained project scheduling; Multi-objective 
optimization; Metaheuristics. 

1. Introduction 
 

 Scheduling problems have been broadly studied in literature. Among those, the 
project scheduling (PSP) has been prominent. According to Oguz and Bala [1], the PSP is an 
important problem and it is challenging for those responsible for project management and for 
researchers in the related field. As said by the authors, one of the reasons for its importance is 
that it is a common problem in a great number of real situations of decision making, such as 
problems that originate in the project management of civil construction. The PSP is 
challenging, theoretically, for belonging to the class of NP-hard combinatorial optimization 
problems [2]. Thomas and Salhi [3], for example, state that the optimal solution of the PSP is 
hard to determine, especially for large-scale problems with resource and precedence 
constraints. 

Despite several authors like Slowinski [4], Martínez-Irano et al. [5] and Ballestín and 
Blanco [6] consider that the resolution of the PSP involve several and conflicting objectives, 
few studies have been developed using this approach. According to Ballestín and Blanco [6], 
the number of possible multi-objective formulations for the PSP is very large, due to the 
countless objectives found in literature. These can be combined in several forms, thus 
generating new problems. Among the objectives that project managers are most interested in, 
according to Ballestín and Blanco [6], we can emphasize the following: 

 
 minimization of the project makespan; 

 minimization of the project earliness or lateness; 

 minimization of the total project costs; 

 minimization of the resources availability costs; 

 minimization of the total weighted start time of the activities; 

 minimization of the number of tardy activities; 

 maximization of the project net present value. 

 According to Martínez-Irano et al. [5], the multi-objective formulation of a problem 
is particularly important when the objectives are conflicting, i.e., when the objectives may be 
opposed to one another.  



In this work, the PSP with resource and precedence constraints (RCPSPRP) is 
addressed as a multi-objective optimization problem. Two conflicting objectives are 
considered in the problem: the makespan minimization and the minimization of the total 
weighted start time of the activities. 

Several multi-objective optimization methods can be found in literature to solve this 
class of problems. Such methods can be basically divided into two groups: the classic and the 
metaheuristic methods. The classic methods consist of transforming the objective function 
vector into a scalar objective function, as it is the case of the Weighted Criteria and the Global 
Criterion methods. In this case the problem is treated as a mono-objective problem. The 
metaheuristic methods use metaheuristics to generate and analyze several solutions, as well as 
to obtain a set of non-dominated solutions. Literature revisions about the multi-objective 
metaheuristic methods, as published by Jones et al. [7], show the Multi-objective Tabu Search 
(MOTS) [8], the Pareto Simulated Annealing (PSA) [9], the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) [10] and the Strength Pareto Evolutionary Algorithm II (SPEA-II) 
[11] as the most used. Due to the computational complexity of the RCPSPRP, according to 
Thomas and Salhi [3], the metaheuristic methods appear as the best form to solve it. 
According to Ballestín and Blanco [6], there are still few works that propose efficient 
methods for solving the multi-objective RCPSPRP. 

According to Ballestín and Blanco [6], Slowinski [4] was the first author to explicitly 
represent the RCPSPRP as a multi-objective optimization problem. In the last years, some 
authors have addressed the RCPSPRP this way, as is the case of Viana and Sousa [12], 
Abbasi et al. [13], Kazemi and Tavakkoli-Moghaddam [14], Hamm et al. [15], Geyer [16], 
Ballestín and Blanco [6], among others. 

Slowinski [4] applied the multi-objective linear programming to solve the RCPSPRP, 
allowing activities preemption. Renewable and non-renewable resources were considered. 
Makespan and costs minimization were choosing as objectives. Also, goal programming and 
fuzzy logic applications to the multi-objective RCPSPRP were discussed. 

The PSA and MOTS algorithms were implemented by Viana and Sousa [12] to solve 
the multi-objective PSP considering renewable and non-renewable resources. Three 
minimizing criteria were used: makespan, mean weighted lateness of activities and sum of the 
violation of resource availability. The distance metrics were used to assess the algorithms 
efficiency. 

Abbasi et al. [13] studied the multi-objective RCPSPRP considering only one 
renewable resource. Two objectives, makespan minimization and robustness maximization, 
were used. The authors incorporated these two objectives in a linear objective function and 
applied the Simulated Annealing metaheuristic to generate different solutions to the problem. 

Kazemi and Tavakkoli-Moghaddam [14] presented a mathematical model for the 
multi-objective RCPSPRP considering positive and negative cash flows. The maximization of 
net present value and makespan minimization were considered as objectives. The NSGA-II 
was used to solve the problem.  

Hamm et al. [15] have proposed an adaptation of the PSA for the multi-objective 
RCPSPRP but do not presented applications. According to authors, the differential of their 
algorithm is the rule of acceptance of new solutions, which depends on current temperature 
and of the dominance status of the neighbor solutions.  
 Geyer [16] has proposed a methodology based on the Genetic Algorithm 
metaheuristic for the multi-objective RCPSPRP. The author took into account economic and 
environmental objectives, as well as the preferences of the decision maker (project manager). 

Ballestín and Blanco [6] have presented theoretical and practical fundamentals of 
multi-objective optimization applied to the RCPSPRP. A comparison between the PSA, 
NSGA-II and SPEA-II was presented when the makespan and resources availability costs 
minimizations were considered as objectives. Also, a study of seven multi-objective 
performance measures applied to the problem and their disadvantages was presented. 
 Recently, new metaheuristic methods have arisen in literature. The main examples 
are the Multi-objective GRASP (MOG) [17], Multi-objective Variable Neighborhood Search 
(MOVNS) [18] and Pareto Iterated Local Search (PILS) [19]. Such methods have been applied 



successfully in several types of problems, as have reported in [20], [21], [22], [23] and [24]. 
Due to the success of using these new methods, variations of the MOG, MOVNS and 

PILS are analyzed in this study to solve the RCPSPRP. For this, five algorithms were 
implemented: a MOG, a MOVNS, a MOG using VNS as local search, named GMOVNS, a 
MOVNS with an intensification procedure based on [24], named MOVNS_I, and a PILS. To 
assess the efficiency of the implemented algorithms, the results obtained through the use of 
instances adapted from literature were compared through four multi-objective performance 
measures: distance metrics, hypervolume indicator, epsilon metric, and error ratio. Statistic 
experiments were also carried out aiming at verifying, if there is a significant difference 
between the algorithms regarding the used performance measures. 

From our knowledge, no article was found in literature using these new multi-
objective metaheuristic methods to solve the problem addressed in this paper. Furthermore, in 
terms of algorithms, no work was found using VNS as local search for the MOG, as was done 
in the GMOVNS. 

The rest of this paper is organized as following: in Section 2 the characteristics of the 
problem addressed in this study are described and in Section 3 the concepts of the multi-
objective optimization are presented. In Section 4 the aforementioned multi-objective 
metaheuristic algorithms are described, while in Section 5 the characteristics of the instances, 
as well as the performance measures used to assess and compare the algorithms, are laid out. 
In Section 5 the results of the conducted tests are presented and analyzed. The last section 
concludes the work. 
 
2. Problem Statement 

 
The RCPSPRP consists of, given a set A = {1, ..., n}, with n activities, and, another R 

= {1, ..., m}, with m renewable resources with predefined availabilities Bk, determining the 
start time of execution (si) of each one of the n activities, assuring that the resource level and 
the precedence relation are not violated. The execution of each activity Ai   has a duration 

(processing time) pre-determined pi, a weight ci and demand bik units of each resource Rk  . 

 The precedence relations determine that some activities need to be conducted in a 
particular sequence; that is, an activity cannot start while its precedent activities have not 
been finished. 
 Two objectives have been considered in the formulation used for the problem, the 
makespan minimization (f1(s)) and the minimization of the total weighted start time of the 
activities (f2(s)). The values of f1(s) and f2(s) are given by the Equations (1) and (2), where 
n+1 is an artificial activity (pn+1 = cn+1 = 0, bn+1,k = 0 k) that represents the last one to be 
concluded and sn+1 represents the project’s finishing time. 
 

f1(s) = Min sn+1 (1) 

f2(s) = Min 


n

i i

i

s

c

1

 (2) 

  
The choice of such objectives was based on the fact these are conflicting. The f2(s) 

represents the modified minimization of the total weighted start time of the activities. This 
objective was modified to become conflicting with f1(s). While in the objective f1(s) the 
activities must be initiated as early as possible in the objective f2(s) is the opposite. 

 
3. Some Definitions of Multi-objective Optimization 

 
For the best understanding of the developed algorithms the definition of some 

concepts of multi-objective optimization are primarily necessary. 
 

 



Definition 1 – Pareto Dominance 

 
Given the feasible solutions s and s’, it is found:  
 
1º) if fk(s) ≤ fk(s´) for all k = 1, 2, ..., l and fj(s) < fj(s´) for any j, s will be a solution 

that dominates s´; 
 2º) if fk(s´) ≤ fk(s) for all k = 1, 2, ..., l and fj(s´) < fj(s) for any j, s will be a solution 
dominated by s´; 
 3º) if fj(s) < fj(s´) for any j e fi(s) > fi(s´) for any i, s and s´ are stated non-dominated or 
indifferent. 

 
Definition 2 – Pareto Optimality 

 
A feasible solution s is named Pareto-optimal (or efficient) if there is no other 

feasible solution s´ suck that s´ dominates s, that is, a solution s´ such as fk(s´) ≤ fk(s) for all k 
= 1, 2, ..., l and fj(s´) < fj(s) for any j.  

The set of all Pareto-optimal solutions is termed Pareto-optimal front and as a result 
of the defined concepts, all the solutions that belong to the Pareto-optimal front are non-
dominated (indifferent). 

In all the algorithms proposed in this work the criterion of the Pareto Dominance was 
used, as described in this section, to assess the solutions generated along with its iterations 
and to determine the set of non-dominated solutions, denoted by D*, to be returned by the 
algorithms. 
 

4. Methodology 
 

In this section the multi-objective algorithms proposed to solve of the RCPSPRP are 
described. In the first three sub-sections the common components of the five algorithms are 
presented, such as the representation of a solution, the generation of an initial solution and the 
neighborhood structures. 
 
4.1. Representation of a Solution 

 
A solution for the RCPSPRP is represented by a list s = {s1, s2,..., sn}, where si 

indicates the start time of the execution of the activity i. 
To illustrate, let us consider the instance given in Table 1. The instance has ten 

activities (named from 1 to 10) and two renewable resources (1 and 2). The availabilities of 
the resources are, respectively, 5 and 3 units. In this table, for each activity i, the duration pi, 
the weight ci, the demand for the resources 1 and 2 (bi1 and bi2) and the successors activities 
are presented. The instance presented on Table 1 is an adaptation of Koné et al. [25]. 

 
Table 1: Data for an instance with 10 activities 

Activities 1 2 3 4 5 6 7 8 9 10 

ip  7 3 5 5 6 4 5 4 3 7 

ic
 

200 300 500 100 600 200 500 300 300 200 

1ib  0 2 3 3 2 1 1 1 1 3 

2ib  2 1 3 2 1 0 3 1 1 1 

Successors 3 6, 7 4, 9 11 1 1 5, 8 10 4 9 
 

An example of a feasible solution, not necessarily optimal, for the presented instance 
is the list s = {15, 1, 22, 30, 9, 10, 4, 10, 27, 14}. The Gantt chart representing the described 
solution for the instance is presented in Fig. 1. 



 
Fig. 1. Gantt chart for the presented solution 

 
In the presented solution it is observed that the activity 2 is the first to be executed (s2 

= 1) and the activity 4 is the last (s4 = 30). For this solution the objective functions values are: 
f1(s) = 35 e f2(s) = 606.44. 
 
4.2. Initial Solution Generation 

 
The proposed multi-objective algorithms start from an initial set of non-dominated 

solutions generated through a priority rule based scheduling heuristic. According to Kolisch 
[26], usually, this heuristic is composed of a priority rule and a schedule generation scheme 
for the determination of feasible sequencing. 

For the generation of the initial set of non-dominated solutions the serial schedule 
generation scheme (S-SGS) proposed by Kelley [27] was used. In S-SGS, activities in an 
activity list L are scheduled in the order in which they appear in L; they are scheduled at the 
earliest clock time at which the required resources become available. An activity list L is a 
precedence feasible list of all activities of the given project [32]. If more than one activity can 
be assigned at a certain clock time, the activity to be scheduled is selected based on a priority 
rule. In the S-SGS used, three different types of priority rules were used as mentioned later: 

 
(1) Lower duration: a solution s is generated by sequencing activities in non-decreasing 

order of the value of its duration; 
(2) Bigger number of successors activities: a solution s is generated by sequencing 

activities in non-increasing order of its numbers of successors activities; 
(3) Lower weight: a solution s is generated by sequencing activities in non-decreasing 

order of the value of its weight. 
 

4.3. Neighborhood Structures 

 
Local search methods usually use a neighborhood search to explore the space of 

feasible solutions of the addressed problem. The methods begin with a solution s, and 
generate a neighborhood of this solution. Such neighborhood is obtained by applying simple 
changes on solution s. 

The algorithms developed in this paper use two neighborhood structures: exchange 
and insertion. For a given solution (sequence) s, the neighborhood structures are described 
below: 

 
(1) Exchange Neighborhood (N1(s)): the neighbors of s are generated by interchanging 

two activities in the sequence. The size of neighborhood N1(s) is n(n - 1)/2. 



(2) Insertion Neighborhood (N2(s)): the neighbors of s are generated by inserting one 
activity in another position of the sequence. The size of neighborhood N2(s) is (n - 
1)2. 
 
By using the described two neighborhood structures, infeasible solutions can be 

generated due to resource constraints and precedence relations, but only the feasible solutions 
generated are considered and assessed by the algorithms. 

 
4.4. Multi-objective Metaheuristic Algorithms for the RCPSPRP 

 

4.4.1. MOG Algorithm 

 
The Multi-objective GRASP (MOG) is a multi-objective optimization algorithm 

based on the metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP) 
proposed by Feo and Resende [28]. The MOG version proposed in this work, based on 
Reynolds and Iglesia [17], is presented in the Algorithm 1.  
 

Algorithm 1: MOG 

Input: MOGmax, θ 
Output: D* 

*D ;  

For (Iter = 1 to MOGmax) do 

    s  Construction_MOG(s, θ, D*); 

    s  LocalSearch_MOG(s, D*); 

End_for; 

Return D*; 

 
As in the method proposed by Feo and Resende [28], the MOG is composed of two 

phases: construction and local search. In each one of the MOGmax iterations of Algorithm 1, a 
solution s is generated in the construction phase through an adaptation of S-SGS. This 
adaptation consists of the insertion of a randomization rate (θ) to the method, being the 
greedy function, a characteristic of GRASP, based on the priority rules described in Section 
4.2. The pseudo-code of the procedure Construction_MOG is presented in Algorithm 1.1.   
 
Algorithm 1.1: Construction_MOG 
Input: s, θ, D* 

Output: s 

s ;
 

Initialize the candidate list CL; 
Determine randomly the value ]1,0[θ ; 

Determine randomly a priority rule; 
While ( CL ) do 

    Determine RCL with the first θ % elements of CL which are based on the selected 
priority rule; 

    Select randomly an element tRCL; 

    }{tss  ; 

    Update CL; 
End_while; 
D*  non-dominated solutions of D* {s}; 

Return s; 
 



In Algorithm 1.1 the construction of a solution s starts with the generation of a list of 
activities CL that are candidates to be included in the sequencing. The CL is determined by 
the available activities to the execution, at the time instant considered, and with its precedent 
activities already being sequenced. From the CL, the value of θ, will define the restricted 
candidates list (RCL), where the greedy function is determined by the priority rule selected in 
Section 4.2, that is, the activity that has the biggest priority will be the one that will bring the 
biggest benefit by being included in the sequencing. Once the RCL is defined, an activity 
tRCL is randomly selected and inserted in s, thus being the CL updated. Finally, the 
solution s generated is assessed to be part or not of D*. Aiming at the generation of different 
solutions over the Pareto front, the value of θ[0, 1] and the priority rule to be used are 
randomly determined by each Construction_MOG procedure call.  

In the local search phase, the solution s generated by the Algorithm 1.1 is modified 
by the exchange movement (N1(s)), described in Section 4.3, in a way that new solutions are 
generated. The pseudo-code of the procedure LocalSearch_MOG is presented in Algorithm 
1.2.  

  
Algorithm 1.2: LocalSearch_MOG 
Input: s, D* 
Output: D* 

Determine randomly a neighbor solution s´  N1(s); 
For (each neighbor s´´  N1(s´)) do 
     D*  non-dominated solutions of  D*   {s´´}; 

End_for; 
Return D*; 

 
The Algorithm 1.2 starts with a random determination of a solution s´N1(s). Then 

the D* set is updated through the evaluation of all the neighbors solutions s´´N1(s´).  
 

4.4.2. MOVNS Algorithm 

 

 The Multi-objective Variable Neighborhood Search (MOVNS) is an algorithm of 
multi-objective optimization presented by Geiger [18]. Its structure is based on metaheuristic 
Variable Neighborhood Search (VNS), delineated by Mladenovic and Hansen [29]. In 
Algorithm 2 the proposed version of MOVNS, based on Ottoni et al. [24], is presented. 
 

Algorithm 2: MOVNS 

Input: r, StoppingCriterion 

Output: D* 

{s1, s2, s3}  solutions (sequencing) constructed by using 3 different priority rules; 

D*  non-dominated solutions of {s1, s2, s3}; 

While (StoppingCriterion = False) do 
    Select randomly an unvisited solution s  D*; 
    Mark(s)  True; 

    Determine randomly a neighborhood structure Ni {N1, ..., Nr}; 
    Determine randomly a solution s´  Ni(s); 
    For (each neighbor s´´  Ni(s´)) do 

         D*  non-dominated solutions of D*   {s´´}; 

    End_for; 
    If (all the solutions of D* are marked as visited) then 

        All marks must be removed; 
    End_if; 
End_while; 
Return D*; 



Algorithm 2 starts with the generation of three solutions (s1, s2, s3) using the S-SGS 
described in Section 4.2. Each of these was attained using a different priority rule. These 
solutions are, then, inter-assessed and, the non-dominated ones are stored in the D* set. 
Accordingly with Geiger [18], from each local search iteration a non-visited solution sD* is 
randomly selected and marked as visited (Mark(s)  True). A neighborhood structure 

Ni{N1, ..., Nr} is also randomly selected. Two neighborhood structures (r = 2) were used in 
Algorithm 2, as described in Section 4.3. After that, a solution s´Ni(s) is randomly 
determined and the set D* is updated through the assessment of all neighbors solutions 
s´´Ni(s´). Finally, it is checked whether all solutions belonging to D* are marked as visited. 
If they are, the marking is removed from all solutions. This procedure is repeated until the 
stopping criterion is fulfilled. 

 
4.4.3. GMOVNS algorithm 

 

The GMOVNS proposed in this study is a hybrid algorithm that combines MOG 
features with MOVNS features, described in Sections 4.4.1 and 4.4.2, respectively. The 
algorithm follows the structure described in Algorithm 1, but has modifications on the 
construction and on local search phases. The pseudo-code of GMOVNS is presented in 
Algorithm 3. 

 
Algorithm 3: GMOVNS 
Input: GMOVNSmax, θ, β 
Output: D* 

*D ;  

For (Iter = 1 to GMOVNSmax) do 
    D1  Construction_GMOVNS(θ, β, D1); 

    D1  LocalSearch_GMOVNS(D1, D*, r); 

End_for; 
Return D*; 

 
As it is observed in Algorithm 3, the GMOVNS - just like the MOG - is composed of 

two phases: construction and local search. Algorithm 3.1 describes the 
Construction_GMOVNS procedure, in which a set of non-dominated solutions D1 is generated 
on each algorithm iteration. 

 
Algorithm 3.1: Construction_GMOVNS 
Input: θ, β 

Output: D1 

1D ; 
For (Iter = 1 to β) do 

    s ;
 

    Initialize the candidate list CL; 
    Determine randomly the value ]1,0[θ ; 

    Determine randomly a priority rule; 
    While ( CL ) do 

         Let RCL be a list with the θ % first elements of CL based on the selected priority 
rule; 

        Select randomly an element t   RCL; 

        }{tss  ; 

        Update CL; 
    End_while; 
    D1  non-dominated solutions of D1 {s}; 



End_for; 
Return D1; 

 
In each one of the GMOVNSmax iterations of Algorithm 3, β solutions are generated 

during the construction phase described in Algorithm 3.1. These solutions are assessed and 
the non-dominated ones are stored in the D1 set.  All the solutions of this phase are generated 
through the same adaptation of S-SGS used in MOG. For the different solutions to be 
generated, a value for θ[0, 1] and a priority rule are randomly determined during the 
construction of each solution. 

In the local search phase of the GMOVNS, the metaheuristic VNS was proposed with 
two neighborhood structures, described in Section 4.3 and used in Algorithm 2. The VNS is 
better capable of exploring the space of feasible solutions to this problem due to its systematic 
swap of the neighborhood structure. With this, the quality of set D* can be improved. The 
pseudo-code of the procedure LocalSearch_GMOVNS is presented in Algorithm 3.2. 

 
Algorithm 3.2: LocalSearch_GMOVNS 

Input: D1, D*, r, StoppingCriterion 
Output: D* 

While (StoppingCriterion = False) do 
    Select randomly an unvisited solution s  D1; 
    Mark(s)  True; 

    Determine randomly a neighborhood structure Ni {N1, ..., Nr}; 
    Determine randomly a solution s´  Ni(s); 
    For (each neighbor s´´  Ni(s´)) do 

         D1  non-dominated solutions of D1   {s´´}; 

    End_for; 
    If (all the solutions of D1 are marked as visited) then 

        All marks must be removed; 
    End_if; 
End_while; 
D*   non-dominated solutions of D*   D1; 

Return D*; 
 

On each iteration of Algorithm 3.2 the solution s to be explored is determined 
randomly within the non-visited ones that belong to set D1 generated in the construction 
phase. Then, a neighborhood structure Ni{N1, ..., Nr} and a neighbor solution s´Ni(s) are 
chosen randomly. The D1 set is then updated through the assessment of all the neighbors 
solutions s´´Ni(s´). Finally, it is checked, if all the solutions that belong to D1 are marked as 
visited, and, if they are, the marking is removed from all solutions. This procedure is repeated 
until the stopping criterion is fulfilled. From D1 on each iteration the D* set is updated with 
the assessment of all solutions of D*D1. 

 
4.4.4. MOVNS_I Algorithm 

 

Two variants of algorithm MOVNS are found in literature. One is proposed by Ottoni 
et al. [24] and another by Arroyo et al. [23]. These variants consist of adding an 
intensification procedure to the algorithm. The intensification of the search around the best 
solution is obtained, for example by the application of small perturbations on it. The MOVNS 
with intensification, denominated MOVNS_I, proposed in this work is based on the variant 
proposed by Ottoni et al. [24] and it is described in Algorithm 4. 

 
Algorithm 4: MOVNS_I 

Input: r, StoppingCriterion 
Output: D* 



{s1, s2, s3}  solutions (sequencing) constructed by using 3 different priority rules; 

D*   non-dominated solutions of {s1, s2, s3}; 

While (StoppingCriterion = False) do 
    Select randomly an unvisited solution sD*; 
    Mark(s)  True; 

    Determine randomly a neighborhood structure Ni {N1, ..., Nr}; 
    Determine randomly a solution s´Ni(s); 
    For (each neighbor s´´Ni(s´)) do 

         D*  non-dominated solutions of D* {s´´}; 

    End_for; 
    If (all the solutions of D* are marked as visited) then 

        All marks must be removed; 
    End_if; 
    Select randomly a solution sD*;  
    D1  INTENSIFICATION(s, d);  

    D*  non-dominated solutions of D*D1; 

End_while; 
Return D*; 

 
According to Ottoni et al. [24], the intensification procedure is composed by two 

stages: destruction and reconstruction, as presented in Algorithm 4.1. 
 

Algorithm 4.1: INTENSIFICATION 

Input: s, d 

Output: D1 

rs ; 

ss p  ; 

Define randomly the weights w1 and w2[0, 1], such that w1 + w2 = 1; 
For (i = 1 to d) do 
    Let sp(j) the j-th activity of sp randomly selected; 
    Remove sp(j) from sp; 
    Insert sp(j) in sr; 
End_for; 
For (i = 1 to (d – 1)) do 

    *
pf ; 

    For (j = 1 to (n - d + i)) do 

        ´s  result of the insertion of the i-th activity from sr in the  j-th position from sp; 

        If (f(s´) < fp
*) then 

            ´* ss p  ; 

            ´)(* sff p  ; 

        End_if; 
    End_for; 

    
*
pp ss  ; 

End_for; 
For (j = 1 to n) do 
    ´s result of the insertion of the last activity from sr in the j-th position from sp; 

    D1  non-dominated solutions of D1 {s´}; 

End_for; 
Return D1; 



The intensification procedure starts with the destruction stage, in which d activities 
are removed from a solution sD* randomly selected. In out experiments, d was fixed at 4. 
This strategy results in the generation of a partial solution sp, composed by (n – d) activities, 
and of a set sr with the d activities removed from s. Then the solution s is reconstructed 
inserting (d - 1) activities of sr in sp. To do this, an activity belonging to sr is inserted in all 
possible positions of sp. The position that offers the best partial solution is selected. The 
assessment of the partial solutions is done through a weighted function given by the equation 
f = w1f1 + w2f2, where w1 and w2 are associated weights with the objective functions and w1 + 
w2 = 1. This procedure is made until (d – 1) activities of sr are inserted in sp. Finally, the last 
activity of sr is inserted in the partial solution sp in all its possible positions. All solutions 
generated by this last insertion process are assessed and the non-dominated ones are stored in 
D1. 

After the intensification procedure, the set D* is updated through the assessment of 
all D*D1 solutions. 

 
4.4.5. PILS Algorithm 

 
The Pareto Iterated Local Search (PILS) is a multi-objective optimization algorithm 

proposed by Geiger [19]. It is based on metaheuristic Iterated Local Search  (ILS) delineated 
by Lourenço et al. [30]. The basic pseudo-code of PILS is presented in Algorithm 5. 

  
Algorithm 5: PILS 

Input: r, StoppingCriterion 

Output: D* 

Determine the initial set of non-dominated solutions D*; 
Select randomly a solution sD*; 
While (StoppingCriterion = False) do 
    i  1; 

    While (i < r   StoppingCriterion = False) do 
        For (each neighbor s´Ni(s)) do 

            D* non-dominated solutions of D* {s´}; 

        End_for; 
        If ( s´  Ni(s)| s´ dominates s) then 

            ´ss ; 

            Rearrange the neighborhood structures N1, ..., Nr in some random order; 
            i  1; 

        End_if; 
        Else 
            i ++; 
        End_else; 
    End_while; 
    Mark(s)  True; 

    If ( s´D*/ s´ has not yet been visited) then 

        ´ss ; 

    End_if; 
    Else 
        Select randomly a solution s´D*; 
        s´´ PERTURBATION(s´); 

       ´´ss ; 

    End_else; 
End_while; 
Return D*; 



Algorithm 5 starts with the generation of an initial set of non-dominated solutions D*, 
using the procedure S-SGS and the priority rules from Section 4.2. After that, a solution 
sD* is randomly selected, that starts to be the current solution and all its neighborhood is 
explored. The neighborhood structures used are presented on Section 4.3 (r = 2). In case any 
neighbor solution s´Ni(s) dominates the current solution s, then s´ starts to be the new 
current solution, the neighborhood structures are then randomly reordered and the procedure 
returns to its first neighborhood structure of the new generated order. This procedure is 
repeated until all solutions belonging to D* are visited, that is, until the algorithm arrives in a 
local optimum in the explored neighborhood. Once this is done, a solution s´D* is randomly 
selected on which a perturbation is applied. The objective on perturbation a solution is to 
explore other local optimums. The perturbation used here is proposed originally by Geiger 
[19] and works as follows: after the selection of solution s´D*, one position 

4 nj  is 

randomly determined along with four consecutive activities of s´ on the positions j, j+1, j+2 
and j+3. A solution s´´ is then generated by applying the activities swap movement on 
positions j and j+3, and on the activities from positions j+1 and j+2. Thus, the activities 
before the activity on position j and those before the activity on position j+3, stay on the same 
position after the perturbation. After that the solution s´´ starts to be the current solution and 
its neighborhood is explored. In case all neighbors solutions from the one generated by the 
perturbation are dominated by any solution that belongs to D*, then the perturbation 
procedure is repeated. This procedure is repeated until the stopping criterion is fulfilled. 
 

5. Computational Experiments 
 
The five algorithms presented in this study were coded in C++ and executed on an 

AMD Turion II Dual-Core with a 2.20GHz and 4.0GB of RAM. 
The algorithms were run with the same stopping criterion (StoppingCriterion) based 

on the limit of the generated solutions. In literature, this stopping criterion is extensively used 
for performance comparison of mono and multi-objective algorithms for the PSP, as 
illustrated in [31], [6], [32] and others. Several values are found in literature, but in this work 
the limit of generated solutions equal to 5000 was used as the stopping criterion for the 
algorithms. 

In the execution of the MOG algorithm the value 100 for the MOGmax parameter was 
empirically defined. For the execution of GMOVNS, the value 10 to β and the value 100 to the 
GMOVNSmax also were empirically defined. 

 
5.1. Problems Instances 

 
According to Viana and Sousa [12] the study of multi-objective RCPSPRP involves 

some difficulties, specially related to the availability of instances shown in literature. Several 
mono-objective problems can be found, like the Project Scheduling Problem Library 
(PSPLIB), developed by Kolisch and Sprecher [33], but nothing was found by the authors 
regarding multi-objective instances. 

Due to this, 160 instances from the PSPLIB, available in [34], were used to test the 
algorithms. These instances have the numbers of activities n = 30, 60, 90 and 120. For each 
value of n, 40 instances were used, from which 4 different types of renewable resources are 
available. As the instances were used for the mono-objective RCPSPRP and they do not 
present associated weights to the activities. Thus, such weights were then generated randomly 
and uniformly distributed over the interval [1, 500]. 

Due to the fact the proposed algorithms using random choices, in the same way 
which [23] and [24], the five algorithms were run five times independently (replicates), with 
five different seeds randomly generated, for all the 160 instances. From the solutions attained 
on the five runs of an algorithm, a set of non-dominated solutions is determined for each 
instance. 

 



5.2. Performance Measures 

 
The comparison between non-dominated solution sets attained by multi-objective 

optimization algorithms is not a trivial task. Several performance measures (metrics) of multi-
objective algorithms can be found in literature, such as in [35], [36], [37], [38] and [39]. 

In this work, to assess the quality of the non-dominated solutions attained by the 
proposed algorithms, four multi-objective performance measures were used: distance metrics, 
hypervolume indicator, epsilon metric and error ratio. 

For each instance Di is the non-dominated solutions set found by the algorithm i, for i 
= 1, 2, …, h, and h is the number of assessed algorithms. From these sets a reference set, 
denoted by Ref, where Ref = {s   D1D2  ...Dh| s is a non-dominated solution}, is 
determined. The Ref set is the best known Pareto-optimal front. The performance of an 
algorithm is then measured in terms of the quality of the solution obtained by this algorithm 
regarding the solutions in Ref. Based on the Ref set, the definition of the used performance 
measures are presented as follows: 

 
  Distance metrics: measures the proximity between the solutions of set Di and the 
solutions of set Ref. It also measures the solutions spreading on set Di. The closer to zero the 
distances are, the better the quality of the solutions found by the algorithm will be. The 
formulas used to calculate the average (Dav) and maximum (Dmax) distances from the Di 
solutions compared to the Ref set are:  
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j  is the difference between the biggest and the smallest value of the objective function fj, 

considering the solutions of set Ref. 
The distances Dav and Dmax are broadly used as performance measure of multi-

objective algorithms such as in [9], [12] and [24]. 
 

Hypervolume indicator: measures the covered or dominated area by set Di. For the 
minimization of two objectives, a reference point (x, y) is used to limit this coverage, denoted 
by H(Di),  where x and y are upper bounds for f1 and f2, respectively. A larger dominance area 
indicates that the solutions attained by the algorithm generated a good coverage on the Pareto-

optimal front. The value of the hypervolume difference  ( )( iDH 
) is calculated by the 

Equation (6): 

)( iDH  = H(Ref) – H(Di) (6) 

As H(Ref) > H(Di), the smaller the value of )( iDH 
, the better the quality of set Di 

will be. In Fig. 2, the covered area by the solution sets D1 and D2 are illustrated. 
 



 
Fig. 2. Examples of areas covered by two sets of solutions 

 

As it is shown on Fig. 2, H(D1) > H(D2), therefore )( 1DH  < )( 2DH 
, which 

indicates the solutions from the D1 set are “better” than the ones from the D2 set.  
 

Epsilon metric: given a set Di and ). . . ,,( 1
a

r
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zzz   and ). . . ,,( 1

b

r
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solutions belonging to the sets Di  and Ref, respectively, the epsilon metric denoted by 

)(1
iDI  , measures the maximum normalized distance from set Di in relation to set Ref, and is 

calculated by Equation (7): 
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 Therefore, the quality of a non-dominated solutions set Di attained by an algorithm to 

a determined instance is assessed in relation to set Ref and as )(1
iDI   measures the maximum 

distance of Di in relation to Ref, thus a value close to zero of )(1
iDI   indicates a good quality 

of set Di. To use the epsilon metric to assess a Di set, the values of the objective functions 
must be normalized according to the following equation: 
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where min
if  and max

if  are, respectively, the smallest and the biggest value found to the i-th 

objective considering the solutions belonging to set Ref. Hence, the values of the objective 

function )(* sf i  calculated by Equation (8) are in the interval [0, 100]. 

 

Error ratio: indicates the percentage of the solutions that belong to set Di that don’t 
belong to set Ref. The metric based on Veldhuizen [36] and denoted by TEi, is calculated by 
Equation (9): 
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where |Di| corresponds to the cardinality of set Di and |Ref  Di| to the number of reference 
solutions originating from the set Di. According to Coello and Lamont [40], TEi = 0 indicates 
that all solutions belonging to Di are part of Ref. On the other hand, TEi = 100 indicates that 
no solutions from Di are part of Ref. Thus, the nearest to zero the value of the TEi the better is 
the performance of the algorithm. 
 
 
 
 



5.3. Computational Results 

 
 For each group of 40 instances of size n, Table 2 shows the average values (in 
seconds) of the computational time spent by each algorithm to obtain the non-dominated 
solutions sets. 
 

Table 2: Average Computational Time 

N 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 0.19 0.41 0.41 0.56 1.16 
60 0.88 3.99 2.98 4.08 11.09 
90 2.72 12.91 10.96 15.82 52.95 

120 7.73 53.75 36.46 57.62 154.71 
   
 Table 2 shows that all algorithms presented low computational effort, i.e., obtained 
the sets of non-dominated solutions in an acceptable time.  

Except Table 5, all following tables in this section presents, for each group of 40 
instances of size n, the average values of the performance measure attained by each 
algorithm. 

On Tables 3 and 4 the results attained by the algorithms in relation to the distance 
metrics are presented. On Table 3 the results regarding the average distance and on Table 4 
the results regarding the maximum distance are presented. 

 
Table 3: Distance Metrics Results – Average Distance (%) 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 15.90 18.29 13.89 3.68 6.20 
60 92.82 19.15 19.07 13.64 5.83 
90 14.59 14.50 15.14 6.52 9.81 

120 32.69 16.87 26.44 3.49 12.57 
Average 39.00 17.20 18.63 6.83 8.60 

 
Table 4: Distance Metrics Results – Maximum Distance (%) 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 64.70 49.15 55.77 12.53 20.23 
60 297.51 62.79 78.53 35.48 21.04 
90 47.53 40.66 38.35 14.86 29.85 

120 88.30 44.42 107.61 14.18 37.20 
Average 124.51 49.26 70.06 19.26 27.08 

 
Through Tables 3 and 4, it is verified that the MOVNS_I algorithm is the one that 

produces lower average values, that is, closer to zero, from the average and maximum 
distances to the majority set of instances. The MOVNS_I didn’t attain lower average values to 
the set of instances with n = 60 only where PILS showed better results.  

As presented in Section 5.2, the distance metrics measures the proximity between the 
solutions of a set Di and the solutions of set Ref. Therefore, the higher the percentage of 
solutions of Di in the Ref set, the lower tends to be the values of the distance metrics. The 
values of the distance metrics tend to be smaller, but those values also depend of the distance 
between Di solutions and solutions belonging to Ref set obtained by other algorithms. For 
each group of 40 instances of size n, Table 5 shows average percentages of solutions obtained 
by the MOVNS_I and PILS algorithms which are part of Ref set. 

 
 



Table 5: Average Percentages of Solutions of the MOVNS_I and PILS in the Ref Set 

n 
Algorithm 

Difference 
MOVNS_I PILS 

30 56.75 59.79 3.04 
60 27.08 55.48 28.48 
90 36.70 38.64 1.94 

120 42.11 44.16 2.05 
 
Table 5 shows that algorithms had presented very close values for the average 

percentage except for the set with n = 60. In this case the percentage difference was 28.48%. 
For the groups of instances in which the difference between the average percentages was 
small, the MOVNS_I algorithm had presented better results for Dav and Dmax, even the PILS 
showing higher percentage. However, when the difference between these average percentages 
was large, as in the case of the instances set with n = 60, better values for the distances was 
obtained by the PILS. Therefore, the MOVNS_I had presented in most cases a better 
performance regarding the distance metrics. 

On Table 6 the values attained by the proposed algorithms regarding the hypervolume 
indicator are presented. 

 
Table 6: Hypervolume Indicator Results 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 927.60 485.50 360.20 386.90 369.10 
60 1803.00 747.20 501.50 1249.30 739.00 
90 2712.60 2420.60 2021.00 2275.60 2399.30 

120 5358.00 5841.00 3654.40 3727.40 3881.40 
Average 2700.30 2373.58 1634.28 1909.80 1847.20 

  
 Through Table 6 it is verified that the GMOVNS algorithm presented lower average 
values, compared with the other algorithms, from the hypervolume indicator for all sets of 
instances.  

On Table 7 the results attained by the proposed algorithms are shown regarding the 
epsilon metric. 
 

Table 7: Epsilon Metric Results 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 1.45 1.91 1.22 1.85 1.24 
60 1.41 1.72 1.30 1.51 1.46 
90 1.91 1.87 1.59 1.93 1.84 

120 1.34 1.68 1.24 1.94 1.49 
Average 1.53 1.80 1.34 1.81 1.51 

    
Through Table 7 it is verified that the GMOVNS is the algorithm that produces lower 

average values for the epsilon metric for all sets of instances. 
On Table 8, the values attained by the algorithms proposed regarding the error ratio 

are presented. 
 

Table 8: Error Ratio Results (%) 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 77.14 40.74 59.60 43.25 40.21 
60 86.13 74.70 66.89 72.92 44.52 
90 89.67 62.13 75.10 63.30 61.36 



120 91.42 90.50 67.09 57.89 55.84 
Average 86.09 67.02 67.17 59.34 50.48 

 
As it can be observed on Table 8, the PILS algorithms presented, in all sets of 

instances, a lower average value for the error ratio. This means that, based on error ratio, the 
algorithm PILS was superior to the others.  
 
5.3.1. Analysis of the Results 

 
Based on the average values of the computational time spent by each algorithm to 

obtain the non-dominated solutions sets, we can see that  all the algorithms were 
computationally eficeintes, obtaining sets of solutions in an acceptable time. For all the 
instances sets, the MOG and PILS algorithms had presented the lowest and highest average 
computational time, respectively. 

Results attained from the computational experiments, showed that the GMOVNS 
algorithm had best performance. The GMOVNS has generated better results for two of the 
four multi-objective performance measures assessed: hypervolume indicator and epsilon. This 
means that the GMOVNS algorithm produces a better coverage for the Pareto-optimal front 
and that the non-dominated solutions generated by this algorithm are closer to the Ref set. 

Regarding the distance metrics, in general, the MOVNS_I algorithm has obtained the 
lowest average values for this metric. Therefore, the MOVNS_I has achieved better distributed 
solutions throughout the Ref set. 

For all the instances sets, the PILS algorithm had obtained the better results for the 
error ratio. The PILS had presented, on average, the higher percentage of solutions belonging 
to the Ref set. 

 
5.4. Statistical Analysis 

 
The experiments that follow aim at verifying, if there is a significant difference 

between the algorithms proposed in this paper, concerning the multi-objective performance 
measures used. These experiments were conducted with the assistance of the Minitab® 
computational package on its 16th version. It is emphasized here that this experimentation 
enables the researchers to make inferences to the population of all instances. 

To conduct the experiments, the statistical technique Analysis of Variance (ANOVA) 
was chosen, as described by Montgomery [41]. The interest is then to test the equality of the 
population means (μ) to the five implemented algorithms against the inequality of the means. 

In the ANOVA application two hypotheses were tested: 
 

543210 :  H  (1) 

 

jiH  :1  for at least one pair (i, j), with i, j = 1, 2, 3, 4, 5 and ji  (2) 

 
In the test (1)-(2), the null hypothesis (1) represents the equality of the population 

means hypothesis in relation to the analyzed multi-objective performance measure on the five 
algorithms, that is, it conjectures that there is no significant difference between these 
algorithms regarding the metric. The hypothesis (2), on the other hand, conjectures the 
opposite. 

However, to apply the ANOVA, the sample data should be normally distributed in 
this case, and the population variances (σ2) approximately equal between the factor levels, 
regarding the algorithms proposed here. 

Although the test is based on the supposition that the sample data should be normally 
distributed, according to Kulinskaya et al. [42], this hypothesis is not critical when the sizes 
of the samples are at least 15 or 20. Once all the samples on this work have the equal size to 
160 (number of instances used) for each algorithm, thus, the normality is not critical. Hence, 



the normality premise is verified for all the algorithms regarding all metrics. To use the 
ANOVA it is needed, then, the verification of only the variances proximity between the data 
from the algorithms regarding each metrics. For this, the following hypotheses were tested: 
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10 :  H  (3) 

22
1 : jiH    for at least one pair (i, j), with i, j = 1, 2, 3, 4, 5 and ji  (4) 

In the test (3)-(4), the null hypothesis (3) represents the equality of the population 
variances hypothesis in relation to the analyzed multi-objective performance measure on the 
five algorithms. The hypothesis (4) conjectures the opposite. 

By applying these hypothesis tests is possible to calculate a test statistic that allows us 
to accept or reject the null hypothesis. In Statistical Inference is usual to represent this test 
statistic for p-value. From the value of this test statistic and of a criterion for 
acceptance/rejection is possible to conclude, with a significance level α defined a priori, 
which of the hypotheses accept. That is, if α ≥ p-value rejects H0. All the tests in this section 
have been executed with a significance level α = 0.05 (5%).  

Nevertheless, the ANOVA does not tell us which pairs of algorithms present 
significant differences, that is, result in different means to each assessed metric. To answer 
this question the method of the Least Significant Difference (LSD), also known as the 
Fisher’s method [41], is used.  

All the tables of ANOVA results presented in this section show the calculated value 
of the p-value, the sample means, the sample standard deviations and the interval limits with 
95% of confidence on the population means from the analyzed multi-objective performance 
measure, in accordance with each algorithm.  

 
 Distance Metrics  

 

For the distance metrics the hypothesis test (3)-(4) was used to verify the proximity of 
variances between the data of all algorithms. The p-value statistics calculated for this test was 
equal to 0.078 for the average distance, and 0.054 for the maximum distance. Once α < p-

value for both distance metrics, the variance equality hypothesis is accepted between the 
population data to the five algorithms. Therefore, once the premise is verified, the ANOVA is 
applied to the concerning data from the metrics. 

The application of ANOVA to the average distance data allowed us to calculate the 
values presented in Table 9. 

 
Table 9: The results of ANOVA for the Average Distance 

p-value       
0.025 

Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

Mean 39.0 17.2 18.6 6.8 8.6 
Standard 
Deviation 

103.4 29.1 31.6 10.7 10.7 

IC (μ, 95%) (5.9; 72.1) (7.9; 26.5) (8.5; 28.7) (3.4; 10.2) (5.2; 12.0) 
 
According to the results on Table 9, p-value = 0.025. Therefore, it can be stated that 

the null hypothesis should be rejected, that is, as α ≥ p-value, there are enough statistical 
evidences to conclude that the average values regarding the average distance are different on 
each algorithm. By using the LSD method, it can be stated that there are statistical evidences 
showing that the average values, regarding the average distance, are different within the 
following algorithm pairs: MOG  MOVNS_I and MOG  PILS. 

The application of ANOVA to the maximum distance data allowed us to calculate the 
values presented on Table 10. 



Table 10: The results of ANOVA for the Maximum Distance 
p-value 
0.002 

Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

Mean 124.5 49.2 70.1 19.3 27.1 
Standard 
Deviation 

311.4 59.3 137.1 19.9 28.1 

IC (μ, 95%) (24.9; 224.1) (30.3; 68.2) (26.2; 113.9) (12.9; 25.7) (18.1; 36.1) 
 

According to the results on Table 10, p-value = 0.002. Therefore, it can be stated that 
the null hypothesis should be rejected, that is, as α ≥ p-value, there are enough statistical 
evidences to conclude that the average values regarding the maximum distance are different 
on each algorithm. By using the LSD method, it can be stated that there are statistical 
evidences showing that the average values regarding the maximum distance, are different 
within the following algorithm pairs: MOG  MOVNS, MOG  MOVNS_I and MOG  PILS. 

 
 Hypervolume Indicator 

 
For the hypervolume indicator it was verified the proximity of variances between the 

data of all algorithms by the hypothesis test (3)-(4). The calculated p-value statistics was 
equal to 0.567 and, as α < p-value, the hypothesis of the variances equality between the 
population data on the five algorithms is accepted. Once verified the premise, the ANOVA is 
applied to the data of this metric.  

The application of ANOVA to the hypervolume indicator data allowed us to calculate 
the values presented on Table 11. 

 
Table 11: The results of ANOVA for the Hypervolume Indicator 

p-value 
0.452       

Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

Mean 2700.0 2374.0 1634.0 1910.0 1847.0 
Standard 
Deviation 

3099.0 3159.0 2235.0 2729.0 2958.0 

IC (μ, 95%) (1709.2; 
3691.4) 

(1363.4; 
3383.8) 

(919.4; 
2349.2) 

(1037.0; 
2782.6) 

(901.1; 
2793.3) 

 
According to the results on Table 11, p-value = 0.452. Therefore, it can be stated that 

the null hypothesis should be accepted, that is, as α < p-value, there are enough statistical 
evidences to conclude, with a 5% significance level (α = 0.05), that the average values 
regarding the hypervolume indicator equal within all algorithms. 

 
 Epsilon metric 

 
For the epsilon metric it was verified the proximity of variances between the data of 

all algorithms by the hypothesis test (3)-(4). The calculated p-value statistics was equal to 
0.082 and, as α < p-value, the hypothesis of the variances equality between the population 
data on the five algorithms is accepted. Once verified the premise, the ANOVA is applied to 
the data of this metric.  

The application of ANOVA to the epsilon metric data allowed us to calculate the 
values presented on Table 12. 

 
Table 12: The results of ANOVA for the Epsilon Metric 

p-value 
0.024       

Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

Mean 1.53 1.80 1.34 1.81 1.51 
Standard 0.81 0.97 0.48 0.83 0.56 



Deviation 
IC (μ, 95%) (1.27; 1.79) (1.48; 2.11) (1.18; 1.49) (1.54; 2.07) (1.33; 1.68) 

 
According to the results on Table 12, p-value = 0.024. Therefore, it can be stated that 

the null hypothesis should be rejected, that is, as α ≥ p-value, there are enough statistical 
evidences to conclude that the average values regarding the epsilon metric are different 
between the algorithms. By using the LSD method, it can be stated that there are statistical 
evidences showing that the average values, regarding the epsilon metric, are different within 
the following algorithm pairs: GMOVNS  MOVNS and GMOVNS  MOVNS_I. 

 
 Error ratio 

 
For the error ratio the hypothesis test (3)-(4) was used to verify the proximity of 

variances between the data of all algorithms. The calculated p-value statistics was equal to 
0.002 and, as α > p-value, the hypothesis of the variances equality between the population 
data on the five algorithms is rejected. Therefore, this premise is not verified, and 
consequently, the ANOVA cannot be applied to this metric’s data. As a result, the Kruskal-
Wallis non-parametric test [43] was used. The difference from ANOVA to the Kruskal-Wallis 
non-parametric test is that the later, instead of working with means, uses population medians 
( ). The test can be used to verify the medians equality of two or more populations and, 

applying to this work, tests the following hypothesis: 
 

543210 :  H  (5) 

 

jiH  :1  for at least one pair (i, j), with i, j = 1, 2, 3, 4, 5 and ji  (6) 

 
In the test (5)-(6), the null hypothesis (5) represents the equality of the population 

medians hypothesis in relation to the error ratio on the five algorithms, that is, it conjectures 
that there is no significant difference between these algorithms regarding this metric. The 
hypothesis (6), on the other hand, conjectures the opposite. 
 For this test of hypothesis, the p-value statistics calculation brought the value 0.000. 
Once the significance level α = 0.05 is adopted and α > p-value, the median equality between 
the population data on the five algorithms should be rejected. Hence, it is statistically 
concluded that the algorithms differ in error ratio. By comparing the pairs of algorithms, it 
can be stated that there are statistical evidences that the median values from the error ratio are 
different between: MOG  MOVNS, MOG  GMOVNS, MOG  MOVNS_I, MOG  PILS, 
MOVNS  PILS and GMOVNS  PILS. 
 

6. Conclusions 
  
 This work addressed the resource-constrained project scheduling problem with 
precedence relations as a multi-objective optimization problem, having two optimization 
criteria that were tackled: the makespan minimization and the minimization of the total 
weighted start time of the activities. 

To solve the problem, five algorithms were implemented: MOG, MOVNS, MOG 
using VNS as local search, denominated GMOVNS; MOVNS with intensification procedure 
based on Ottoni et al. [24], denominated MOVNS_I; and PILS. 

The algorithms were tested in 160 instances adapted from literature, and compared 
using four multi-objective performance measures: distance, hypervolume, epsilon and error 
ratio. Based on the results attained from the computational experiments, we can see that  all 
algorithms were computationally efficient, obtaining sets of non-dominated solutions in an 
acceptable time, and three conclusions were obtained: first, the MOVNS_I has shown to be 
superior than the other algorithms on the majority of instances, regarding the distance metrics; 



second, the GMOVNS is superior regarding the hypervolume indicator and the epsilon metric; 
and third, the algorithm PILS is superior regarding the error ratio. Statistical experiments 
were conducted and have revealed that there is a significant difference between some 
proposed algorithms concerning the distance, epsilon, and error ratio metrics. However, 
significant difference between the proposed algorithms with respect to hypervolume indicator 
was not observed. 
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Dear Reviewers, 

We would like to thank for their relevant comments. They have contributed to the 

improvement of our work.  

In the following pages we highlight changes made and answers for their comments. 

Reviewers' comments: 

Reviewer #1:  

Even if the originality of the methods can be discussed, because it is a simple adaptation 

to the problem addressed for some of them, this is a good and well structured paper. The 

analysis of the experimental data is very Excellent.  

(1) However a few turns of phrase sometimes complex and lengthy can be simplified. 

The proposed changes in the text were relevant and, therefore, performed. It was made, 

also, a review in the text verifying paragraphs which can be simplified, reducing the turns of 

phrase. The review was made especially in the Statistical Analysis section. 

Reviewer #2: 

The authors applied five multi-objective metaheuristics: MOG, MOVNS, GMOVNS, 

MOVNS_I and PILS, to solve the resource-constrained project scheduling problem with 

precedence relations, and aimed to minimize two criteria: the makespan and the total weighted 

start time of the activities. The proposed algorithms use strategies based on the concept of 

Pareto Dominance to search for solutions and determine the set of non-dominated solutions. 

Four multi-objective performance measures: distance metrics, hypervolume indicator, epsilon 

metric and error ratio, were adopted to evaluate and compare the five heuristics. 

The authors were appreciated for their efforts in conducting the set of computational 

tests to analyze the performances of the five heuristics for solving the multi-objective 

RCPSPRP. Nevertheless, this work lacks theoretical contributions to the existing literature, as 

the authors just applied or adapted several existing algorithms to solve an existing problem. 

Specific comments are given as follows. 

(1) The authors did not provide an adequate literature review on multi-objective RCPSPRP. In 

this manuscript, the authors mentioned "According to Ballestín and Blanco [6], the number of 

possible multi-objective formulations for the PSP is very large, due to the countless objectives 

found in literature", but no specific references or examples were given. At least, the authors 

need to review solution algorithms to multi-objective RCPSPRP. 

It was inserted in the manuscript (page 3, paragraphs 3-10) a literature review about the 

multi-objective RCPSPRP. This literature review presents some objectives and algorithms used 

in the resolution of the problem. The literature review is below. 

According to Ballestín and Blanco [6], Slowinski [4] was the first author to explicitly 

represent the RCPSPRP as a multi-objective optimization problem. In the last years, some 

authors have addressed the RCPSPRP this way, as is the case of Viana and Sousa [12], Abbasi 

et al. [13], Kazemi and Tavakkoli-Moghaddam [14], Hamm et al. [15], Geyer [16], Ballestín 

and Blanco [6], among others. 

*Detailed Response to Reviewers



Slowinski [4] applied the multi-objective linear programming to solve the RCPSPRP, 
allowing activities preemption. Renewable and non-renewable resources were considered. 
Makespan and costs minimization were choosing as objectives. Also, goal programming and 
fuzzy logic applications to the multi-objective RCPSPRP were discussed. 

The PSA and MOTS algorithms were implemented by Viana and Sousa [12] to solve 
the multi-objective PSP considering renewable and non-renewable resources. Three minimizing 
criteria were used: makespan, mean weighted lateness of activities and sum of the violation of 
resource availability. The distance metrics were used to assess the algorithms efficiency. 

Abbasi et al. [13] studied the multi-objective RCPSPRP considering only one 

renewable resource. Two objectives, makespan minimization and robustness maximization, 

were used. The authors incorporated these two objectives in a linear objective function and 

applied the Simulated Annealing metaheuristic to generate different solutions to the problem. 

Kazemi and Tavakkoli-Moghaddam [14] presented a mathematical model for the multi-

objective RCPSPRP considering positive and negative cash flows. The maximization of net 

present value and makespan minimization were considered as objectives. The NSGA-II was 

used to solve the problem.  

Hamm et al. [15] have proposed an adaptation of the PSA for the multi-objective 

RCPSPRP but do not presented applications. According to authors, the differential of their 

algorithm is the rule of acceptance of new solutions, which depends on current temperature and 

of the dominance status of the neighbor solutions.  

 Geyer [16] has proposed a methodology based on the Genetic Algorithm metaheuristic 
for the multi-objective RCPSPRP. The author took into account economic and environmental 
objectives, as well as the preferences of the decision maker (project manager). 

Ballestín and Blanco [6] have presented theoretical and practical fundamentals of multi-
objective optimization applied to the RCPSPRP. A comparison between the PSA, NSGA-II and 
SPEA-II was presented when the makespan and resources availability costs minimizations were 
considered as objectives. Also, a study of seven multi-objective performance measures applied 
to the problem and their disadvantages was presented. 

 
(2) In addition, the authors did not explain the reason why they aimed to minimize the 

makespan and total weighted start time of activities, despite that there were several objectives 

considered in the literature. 

According to Martínez-Irano et al. [5], the multi-objective formulation of a problem is 

particularly important when the objectives are conflicting, i.e., when the objectives may be 

opposed to one another. (Page 2, paragraph 3) 

Therefore, the choice of such objectives was based on the fact these are conflicting.  

This justification was inserted in the manuscript (page 4, paragraph 7). 

(3) While the authors aimed to minimize the total weighted start time, in Eq.(2), they actually 

took the sum inversed start times. 

The objective f2(s) (Eq. 2) represents the modified minimization of the total weighted 

start time of the activities.  This objective was modified to become conflicting with f1(s). While 

in the objective f1(s) the activities must be initiated as early as possible in the objective f2(s) is 

the opposite. (Page 4, paragraph 7) 

 

(4) In section 4.3, the proposed two neighborhood structures: exchange and insertion may lead 

to infeasible solutions, due to resource constraints and precedence relations. 



By using the proposed two neighborhood structures, infeasible solutions can be 

generated due to resource constraints and precedence relations, but only the feasible solutions 

generated are considered and assessed by the algorithms. 

This justification was inserted in the manuscript (page 7, paragraph 1). 

(5) The reference set approach described in Section 5.2 can only be used to determine the 

relative performances of the five algorithms. We cannot judge whether or not the problem is 

effectively and efficiently solved by the algorithms. The reference set are constructed using the 

solutions obtained by the algorithms under comparison. What if all there algorithms are not 

good. There lacks an absolute benchmark. 

The ideal would be to compare the results obtained by the algorithms with the Pareto-

optimal set. However, this set is not always known or available. In these cases, the Pareto 

approximation set of the union of sets obtained by the different algorithms is used as the 

reference set. 

As there were no results in the literature for the multi-objective RCPSPRP with the 

same characteristics as studied in this work, the efficiency of the algorithms only can be 

assessed based on the reference set (Ref), which is the best known set of solutions to the 

problem. This procedure is used in most studies which deal multi-objective optimization, as is 

the case of Viana and Sousa [12], Arroyo et al. [20], Arroyo et al. [23], Ottoni et al. [24], among 

others. 

According to Ballestín and Blanco [6], is necessary to be created exact algorithms 

capable of calculating the Pareto-optimal set for many important problems as the multi-

objective RCPSPRP. The generated solutions would be used to compare and assess the sets of 

solutions obtained by metaheuristic algorithms.  

(6) The four measures were used to determine the relative effectiveness of the five algorithms. 

What about the computational efficiency? 

It was inserted in the manuscript (page 16, paragraphs 1-2) the results and comments 

regarding computational efficiency of the algorithms. The results and comments are below. 

For each group of 40 instances of size n, Table 2 shows the average values (in seconds) 

of the computational time spent by each algorithm to obtain the non-dominated solutions sets. 

 

Table 2: Average Computational Time 

n 
Algorithm 

MOG MOVNS GMOVNS MOVNS_I PILS 

30 0.19 0.41 0.41 0.56 1.16 

60 0.88 3.99 2.98 4.08 11.09 

90 2.72 12.91 10.96 15.82 52.95 

120 7.73 53.75 36.46 57.62 154.71 

   
 Table 2 shows that all algorithms presented low computational effort, i.e., obtained the 
sets of non-dominated solutions in an acceptable time.  
 



(7) The five algorithms were run ONLY five times for each instance. This is not enough to get 

meaningful results. 

 The choice of running the five algorithms only five times for each instance was based in 

the following papers: 

- Arroyo JEC, Ottoni RS, Oliveira AP. Multi-objective Variable Neighborhood Search 

Algorithms for a Single Machine Scheduling Problem with Distinct Due Windows. Electronic 

Notes in Theoretical Computer Science 2011;281:5-19. 

- Ottoni RS, Arroyo JEC, Santos A G. Algoritmo VNS Multiobjetivo para um Problema de 

Programação de Tarefas em uma Máquina com Janelas de Entrega. In: Proceedings of the 18th 

Simpósio Brasileiro de Pesquisa Operacional, Ubatuba, Brasil; 2011. 

This choice was based on papers above where their authors had published several works 

regarding multi-objective metaheuristic methods using this procedure. 

(8) For table 2 and table 3, the authors need to analyze and explain why MOVNS_I did not 

attain lower average values to the set of instances with n = 60, not just report the results. 

Regarding this comment, the analysis below was inserted in the manuscript (page 16, 

paragraph 6, and page 17, paragraph 1). 

As presented in Section 5.2, the distance metrics measures the proximity between the 

solutions of a set Di and the solutions of set Ref. Therefore, the higher the percentage of 

solutions of Di in the Ref set, the lower tends to be the values of the distance metrics. The values 

of the distance metrics tend to be smaller, but those values also depend of the distance between 

Di solutions and solutions belonging to Ref set obtained by other algorithms. For each group of 

40 instances of size n, Table 5 shows average percentages of solutions obtained by the 

MOVNS_I and PILS algorithms which are part of Ref set. 

 

Table 5: Average Percentages of Solutions of the MOVNS_I and PILS in the Ref Set 

n 
Algorithm 

Difference 
MOVNS_I PILS 

30 56.75 59.79 3.04 

60 27.08 55.48 28.48 

90 36.70 38.64 1.94 

120 42.11 44.16 2.05 

 

Table 5 shows that algorithms had presented very close values for the average 

percentage except for the set with n = 60. In this case the percentage difference was 28.48%. 

For the groups of instances in which the difference between the average percentages was small, 

the MOVNS_I algorithm had presented better results for Dav and Dmax, even the PILS showing 

higher percentage. However, when the difference between these average percentages was large, 

as in the case of the instances set with n = 60, better values for the distances was obtained by the 

PILS. 

(9) In Section 5.4, the authors selected ANOVA to verify and compare solutions of algorithms. 

This approach requires some strong assumptions. There are other statistical approaches, such as 

response surface methods, that can be used in this regard. 



There are other methods could be used, but due to statistical knowledge of the authors, 

we opted for use of the ANOVA. The using of the Minitab® computational package has 

assisted in the obtaining and analysis of results. 

(10) In Section 5.4, the same equation (1), (3), (5), and (7) were used in different tests. This is 

really confusing. What is u? 

 The equations (1), (3), (5) and (7) represent the same hypothesis in different tests, i.e., 

each equation is related to a different multi-objective performance measures. 

The Statistical Analysis section was reviewed and this equation was presented only once 

(page 18, paragraphs 8-9), facilitating the understanding of tests. 

In equations (1), (3), (5) and (7), “μ” represent the population means. The definition of 

“μ” is found in the manuscript (page 18, paragraph 7, line 3). 

(11) The authors definitely need to provide a section to discuss the implications and differences 

of the computational results. 

It was inserted in the manuscript (page 18, paragraphs 2-5) a section that discusses 

implications and differences of the computational results. The section is below. 

5.3.1. Analysis of the Results 

 

Based on the average values of the computational time spent by each algorithm to 
obtain the non-dominated solutions sets, we can see that  all the algorithms were 
computationally eficeintes, obtaining sets of solutions in an acceptable time. For all the 
instances sets, the MOG and PILS algorithms had presented the lowest and highest average 
computational time, respectively. 

Results attained from the computational experiments, showed that the GMOVNS 

algorithm had best performance. The GMOVNS has generated better results for two of the four 

multi-objective performance measures assessed: hypervolume indicator and epsilon. This means 

that the GMOVNS algorithm produces a better coverage for the Pareto-optimal front and that the 

non-dominated solutions generated by this algorithm are closer to the Ref set. 

Regarding the distance metrics, in general, the MOVNS_I algorithm has obtained the 

lowest average values for this metric. Therefore, the MOVNS_I has achieved better distributed 

solutions throughout the Ref set. 

For all the instances sets, the PILS algorithm had obtained the better results for the error 

ratio. The PILS had presented, on average, the higher percentage of solutions belonging to the 

Ref set. 

 

(12) In Section 6, the authors mentioned that "Statistical experiments were conducted and have 

revealed that there is a significant difference between the proposed algorithms concerning the 

distance, epsilon, and error ratio metrics", but this is inconsistent with the statistical result in 

Section 5.4, where the authors said "there are enough statistical evidences to conclude that the 

average values regarding the hypervolume indicator equal within all algorithms". 

The statistical experiments have revealed that there is a significant difference between 

some proposed algorithms regarding to three multi-objective performance measures assessed: 

- Distance metrics:  



- Average: MOG  MOVNS_I and MOG  PILS;  

- Maximum: MOG  MOVNS, MOG  MOVNS_I and MOG  PILS;  

- Epsilon: GMOVNS  MOVNS and GMOVNS  MOVNS_I; 

- Error ratio MOG  MOVNS, MOG  GMOVNS, MOG  MOVNS_I, MOG  PILS, 

MOVNS  PILS and GMOVNS  PILS.  

According to statistical experiments, the algorithms only showed no significant 

difference with respect to hypervolume indicator, on a 5% significance level.  

The multi-objective performance measures are used to quantitatively compare the 

algorithms with respect to characteristics of the sets of non-dominated solutions obtained by 

them. Each metric compare a different characteristic.  

Regarding the distance metrics, for example, characteristics of the solutions sets 

assessed are the proximity between the solutions of the sets and the solutions of the Ref set and 

the distribution of the solutions throughout the set. In this case, algorithms pairs MOG  

MOVNS_I and MOG  PILS showed different characteristics to the average distance and 

algorithms pairs MOG  MOVNS, MOG  MOVNS_I and MOG  PILS to the maximum 

distance. 

Therefore, the algorithms can present or not differences in the characteristics of their 

solutions sets. The Statistical Analysis was performed to verify this. 

Also, these results are based on statistical analysis considering a 5% significance level. 

If another significance level smaller than p-value is used in the tests, then other algorithms pairs 

could present significant difference with respect to assessed multi-objective performance 

measures. 


