
An Efficient Sequential BTRS Implementation

by

Myron Decker King

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the ~ S iNsTTUT E

MASSACHUSETTS INSTITUTE OF TECHNOLOGY L

MAR 0 5 2009
February 2009

L Bi ARI ES
© Massachusetts Institute of Technology 2009. All rights reserve.

A uthor /. '. .. .

Department of Electrical Engin'ering

Certified by

.. . .':'.'"

and Computer Science

February 1, 2009

Arvind

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

-7

Accepted by

Terry P. Orlando

Chairman, Department Committee on Graduate Students

ARCHIVES

An Efficient Sequential BTRS Implementation

by

Myron Decker King

Submitted to the Department of Electrical Engineering and Computer Science

on February 1, 2009, in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes the implementation of BTRS, a language based on guarded atomic

actions (GAA). The input language to the compiler which forms the basis of this work is a

hierarchical tree of modules containing state, interface methods, and rules which fire atomi-

cally to cause state transitions. Since a schedule need not be specified, the program descrip-

tion is inherently nondeterministic, though the BTRS language does allow the programmer

to remove nondeterminism by specifying varying degrees of scheduling constraints. The

compiler outputs a (sequential) single-threaded C implementation of the input description,

choosing a static schedule which adheres to the input constraints. The resulting work is

intended to be used as the starting point for research into efficient software synthesis from

guarded atomic actions, and ultimately a hardware inspired programming methodology for

writing parallel software. This compiler is currently being used to generate software for a

heterogeneous system in which the software and hardware components are both specified

in BTRS.

Thesis Supervisor: Arvind

Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to acknowledge the contributions of Nirav Dave with whom I collaborated on

this work. Without his valuable insight, and technical excellence, this project might never

have gotten off the ground. Equally important was the input and guidance of my advisor

Arvind. This research was funded in part by Nokia Inc.

Contents

Contents 7

List of Figures 9

1 Introduction 11

1.1 Hardware-Inspired Methodology 12

1.1.1 Guarded Atomic Actions 13

1.2 A New Way of Thinking 14

1.3 Intended Application 14

1.4 Organization . 15

2 Compiling A System of Rules 17

2.1 Single Rule Compilation 17

2.1.1 Actions Composed in Parallel 18

2.1.2 Guarded Actions 20

2.2 Multiple Rule Compilation 22

3 BTRS: A Language of Guarded Atomic Actions 23

3.1 BTRS Syntax 24

3.2 Semantics of Rule Execution in BTRS 25

3.3 Action Composition 27

3.4 Conditional versus Guarded Actions 29

7

3.4.1 Strict Method Calls and Non-Strict Lets 30

3.4.2 Derived Rules 30

4 Compilation Scheme 33

4.1 Syntax Directed Compilation 33

4.1.1 The Details . 36

4.1.2 The Cost of Laziness 36

4.2 Compiler Phases 39

4.2.1 Internal Representation 39

4.2.2 ATS Parse 42

4.2.3 ATS Transform 42

4.2.4 Type Checking 44

4.2.5 Optimization 45

4.2.6 Rule Scheduling 50

4.2.7 C Generation 54

5 Input Language Details 57

6 Evaluation 63

6.1 H .264 63

6.2 Performance/Correctness 66

6.2.1 Performance Analysis 66

7 Related Work 69

Bibliography 73

List of Figures

BTRS Grammar for a Module

BTRS Execution Procedure

Operational Semantics of BTRS Actions . . .

Operational Semantics of BTRS Expressions

Action and Expression Merging

When-Related Axioms on Actions

BTRS Scheduling Language

. 25

... 26

. 27

. 28

.............. 29

. 30

.............. 3 1

4-1 Syntax-Directed Translation of BTRS Actions and Expressions into C++ ..

4-2 Syntax-Directed Translation of BTRS Module Definitions, Helper Func-

tions, Top-level Driver, and Register Class Definition

4-3 BTRS Compiler

4-4 Fake use Introduction

5-1 Simplified view of BSC

6-1 H.264 Decoder Block Diagram

7-1 Features of Explicitly Parallel Languages

3-1

3-2

3-3

3-4

3-5

3-6

3-7

10

Chapter 1

Introduction

Concurrent programming is challenging even for experienced programmers. This is due in

part to the fact that limited progress has been made in finding better ways of expressing par-

allelism in software. New programming models are required which allow programmers to

exploit safely and effectively the ever increasing parallelism made available by new gener-

ations of processors and other programmable substrates. Throughout its history, hardware

design has focused on parallel systems and could therefore provide a good model for the

development of more generic concurrent software programming techniques. The problem

with most hardware languages is that they are too low level (close to gate representations)

for a natural translation in to efficient software.

In order to illustrate the importance of efficient software AND hardware generation,

consider the process of writing device drivers or embedded software. Suppose that a system

composed of both software components (running on a CPU) and hardware components

(connected by a Bus) must be built. The software interacts with the hardware through

some predefined interface. Often the initial choice of design partition will later prove to

be less than ideal, requiring substantial change to both the hardware and software. If the

hardware and software were written in the same language, repartitioning the design would

require only a change in the designation of compilation targets for the modules crossing

the boundary.

Solutions to the two aforementioned challenges are related insofar as both would both

make use of the generation of efficient software from a language which employs successful

techniques borrowed from hardware design. The work in this thesis is based on the notion

that a hardware-design-inspired methodology will make it easier to write parallel software

that is less susceptible to pitfalls such as deadlock, and inconsistency, which plague pro-

grams written in sequential languages (C, C++, Java, etc.) using synchronization primi-

tives such as semaphores and locks. The proposed methodology is based on the use of

Guarded Atomic Actions, which combined with distributed control and guarded interfaces,

will serve as a starting point for the generation of efficient parallel software.

The solution described in this thesis is a single-threaded, sequential implementation of

the formal semantics of BTRS[3], a language closely related to the commercially available

Bluespec System Verilog (BSV). It is believed that this could become an effective tool both

in stand-alone software environments and in integrated HW/SW codesign scenarios.

1.1 Hardware-Inspired Methodology

The following principles have been found to be very effective in hardware design: [7] [5]

1. Resource Awareness: In order to share resources effectively, they cannot be virtu-

alized. The explicit multiplexing of resources requires domain specific knowledge

which is extremely difficult, often impossible, to derive automatically. One funda-

mental difference between a hardware and software implementation of an algorithm

is whether the data is moved over the algorithm (HW) or the algorithm is moved over

the data (SW). When implementing an algorithm in software, it is often most efficient

to place the data in system memory and iterate over it, mutating it until the memory

contains the final result. This is referred to as "moving the algorithm over the data".

A hardware design, on the other hand, might consist of one or more FSMs for each

stage of the algorithm, and some memory where the data is stored. Each stage of

computation modifies the data and passes it to the next stage of algorithm, with the

first stage fetching from and the final stage storing to memory. This approach is

clearly "moving the data through the algorithm".

2. Distributed Control and Guarded Interfaces: It is important that control decisions are

not left up to the compiler, but are instead encoded explicitly into the system descrip-

tion. Intertwining control and data-path has proven advantageous. This approach is

different from most parallel languages which describe only local interactions. We

use guarded interfaces to describe these aspects of a program, making it easier to

avoid intractable concurrency errors.

3. User Control of Parallel exploitation: Many sequential algorithmic control structures

are too hard for compilers to parallelize. A language which requires explicit descrip-

tion of parallel control will allow the programmer to easily expose parallelism, and

provide clear compositional semantics.

1.1.1 Guarded Atomic Actions

One of the biggest difficulties in writing parallel code is the lack of composability. Gen-

erally, through painstaking manual effort, parallel libraries can be written, but when more

than one parallel libraries are composed, the semantics are generally unclear and the results

are often less than satisfactory. The reason for this is that the composable abstractions used

in software, such as objects and methods, lend themselves well to sequential composition,

but have no clear parallel semantics. Ideally a language should define clear compositional

semantics in both parallel and sequential cases.

Problems in current approaches to parallelism also arise because SW abstractions tend

to hide resources (cpu, memory, etc.), and rely on the compiler and runtime to multiplex

their use. Modem compiler techniques fail to do this efficiently on all but the simplest

(embarrassingly parallel) of algorithms. A possible solution to this problem is to manually

implement space multiplexing, which is the practice of assigning different parts of a par-

allel computation to different physical resources (computation nodes). This breaks down

when the number of resources (cpu cores) do not equal the number of threads. While im-

proving resource usage, this approach does nothing to alleviate the previously mentioned

problems of using an inherently sequential language to describe a parallel process. Space

multiplexing also raises the specter of interprocess communication, which can be very ex-

pensive and is difficult for compiler tools to analyze without a lot of auxiliary information

(production and and consumption rates, etc.)

Guarded Atomic Actions are a substantially higher level of abstraction than standard

RTL and have been shown to be an effective tool in designing hardware, a task which

requires both clear parallel semantics as well as resource awareness. It is possible that they

can prove just as effective in the generation of parallel software.

1.2 A New Way of Thinking

Thinking about parallel programming as a synthesis process from a set of modules with

proper (guarded) interfaces and clear compositional semantics may point to a new paradigm

in which the programmer can easily express an algorithm that avoids obscuring parallelism.

The need for a software language encapsulating our hardware-inspired methodology gave

rise to the definition of the BTRS language. The semantics of BTRS are an extension of

BSV.

1.3 Intended Application

An immediate use for this technology can be found in the automatic generation of device

drivers in HW/SW codesign environments. The eventual goal is to provide an unchanging

hardware abstraction layer to software developers and allow hardware developers to freely

change their implementation without requiring constant manual updates to the low-level

driver software. The gap between what the user program "sees" and what the hardware

implements would be automatically generated by this compiler.

This compiler could also be used for the generation of software designed to run in multi-

core environments. This is the subject of future research, with many exciting possibilities

in the area of rule scheduling.

1.4 Organization

This thesis begins with a brief sketch of the compilation challenges, and is followed by

a formal description of the semantics of the BTRS language. A detailed discussion of

the compiler implementation along with a specification of the syntax directed compilation

scheme is given. The paper ends with a description of the application used to evaluate the

compiler, an evaluation section, and a brief discussion of related work. The compiler is

implemented in Haskell and generates C/C++. A working knowledge of Haskell, C/C++

and Bluespec System Verilog is assumed.

16

Chapter 2

Compiling A System of Rules

In our methodology, programs consist of state (of type S) and rules to modify the state (pure

functions of type S --+ S). At the highest level, compiling a piece of software specified

as a collection of rules and modules (state) is quite simple: assemble all the rules into a

list and create a main function which iterates over the list, executing the rules on the state

sequentially in their listed order. In this fashion, it should be apparent that the quality of

the generated software is directly related to the efficiency of the rule specifications.

2.1 Single Rule Compilation

Since rules are pure functions which mutate the program state, one of the challenges of

compiling them efficiently (in isolation) is to minimize the amount of temporary state re-

quired to implement the correct semantics. There is an additional complication in that

the rules being considered here have two significant features not encountered in standard

sequential programming languages. The rules are described in detail in the following sec-

tions.

2.1.1 Actions Composed in Parallel

All state updates (actions) within a rule are composed in parallel. Furthermore, the lan-

guage semantics imply that rules are executed in complete isolation producing effects that

are invisible to other rules in execution. Lastly, all state is read in parallel at the begin-

ning of the rule execution and all updates are committed in parallel at the end of execution.

Consider the following rule containing two register updates:

rule A;

rl <= r2+1;

r2 <= rl+1;

endrule

Translating this rule into sequential C requires the introduction of shadow state in order to

achieve the parallel semantics:

void A() {

tl = rl.read();

t2 = r2.read();

rl = t2+1;

r2 = tl+1;

In addition to simple registers, the notion of state can be augmented with hierarchically

structured modules with interface methods that mutate the state within the module or return

a value. Since modules can be flattened, they do not add or or subtract from the expresiv-

ity of the previous picture composed exclusively of rules and simple registers. This will

become an important part of the language since it allows the programmer to partition state

and functionality and allocate resources accordingly. Consider the following rule consist-

ing of two user-module action-method invocations, and the corresponding definitions of

the actions:

rule B;

sub_mod.actionl () ;

sub_mod.action2();

endrule

method SubMod: :actionl ();

rl <= r2+1;

r2 <= rl+2;

endmethod

method SubMod: :action2 ();

r3 <= r2+1;

r4 <= r3+1;

endmethod

A straightforward translation of rule B requires that submod be shadowed since the actions

must appear to be executed in parallel. In addition, the definition of sub_mod must be

augmented with a copy constructor and some notion of parallel merging, so that the results

of executing actionl and action2 in parallel can be correctly exposed. The action methods

are translated to C in a similar fashion as rule A in the previous example. Below is a

translation of rule B, with the assumption that submod is of type SubMod:

void B() {

shadowl = SubMod(sub_mod);

shadow2 = SubMod(sub_mod);

shadowl. actionl ();

shadow2.action2 ();

sub_mod.parMerge (shadowl);

sub_mod.parMerge (shadow2);

This example shows that implementing parallel semantics may increase the amount

of required shadow state dramatically, since state must be shadowed at each level of the

module hierarchy. Performing the analysis to reduce the amount of shadow state is a major

focus of the compilation effort.

2.1.2 Guarded Actions

Each rule and method is guarded by a boolean condition and can only "fire" when that

condition is true. There is no partial firing; if any guard within a rule fails, the entire rule

will fail. Action guards are not to be confused with conditional execution. A guard failure

on any constituent action of a composite action will cause the entire composite action itself

to fail. If an action fails, it does not update any state. Consider rule B defined in the previous

example. The given translation is not quite correct, since it does not take into account the

possibility that actionl or action2 could fail. The translation below takes this possibility

into account and augments the actions and rule with guards. The keyword when is used to

denote a guard condition.

rule B when condl;

sub_mod.actionl ();

sub_mod.action2 ();

endrule

method SubMod::actionl() when cond2;

rl <= r2+1;

r2 <= rl+2;

endmethod

method SubMod::action2() when cond3;

r3 <= r2+1;

if (a) then r4 <= r3+1; endif

endmethod

The updatede C translation is given below. The implementation of action2 illustrates the

difference between guard failure and normal conditional execution:

void B() {

if (condl) {

try

shadowl = SubMod(submod);

shadow2 = SubMod(submod);

shadowl. actionl () ;

shadow2.action2 ();

tl = rl.read();

t2 = r2.read();

}catch (error e){throw e;}

sub_mod.parMerge (shadowl);

sub_mod.parMerge (shadow2);

}else{throw (guard_failure);}

void SubMod: :actionl () {

}

void SubMod: :action2()

if (cond2){

tl = r2.read();

t2 = r3.read();

r3 = t2+1;

if (a) r4 = tl+l;

}else{throw (guard_failure) ; }

This translation makes use of try/catch blocks to avoid partial state updates due to guard

failures. There is a large overhead assciated with these constructs in C++, making this quite

an inefficient translation. Optimizing these cases is an important part of the compilation

effort.

2.2 Multiple Rule Compilation

Finding an efficient schedule within the constraints specified by the programer is an equally

important aspect of the software generation process. Derived rules create new rules by

composing other rules either in parallel or as a sequence. Such constructs present unique

challenges as well as optimization oportunities, as inter-rule optimizations present them-

selves. As of the writing of this thesis, little effort has been spent on this aspect, though

future work will likely focus on it more.

Chapter 3

BTRS: A Language of Guarded Atomic

Actions

BTRS a language of guarded atomic actions based on the hardware description language

Bluespec System Verilog (BSV). It has a lot in common with transactional memory sys-

tems, although there are some significant semantic differences. Both rely on atomicity (of

the transactions or actions), which provides natural semantics for such systems since the

behavior of a parallel program can always be understood in terms of some sequential ex-

ecution of atomic actions. Usng the jargon of transactional memories, a transaction either

succeeds (commits all its variable updates) or fails (behaves like a "no-op"). The idea of

"optimistic concurrency" is also very important in Transactional Memory (TM) systems.

Optmistic concurrency describes a situation where many transactions try to execute simul-

taneously, though some may have to retry when a conflict with another atomic transaction

is detected. The notions of concurrency and atomicity in TM systems apply to BTRS pro-

grams as well. BTRS guarded atomic actions differ from transactional memories in several

important ways:

1. BTRS atomic actions have explicit internal parallelism, meaning that the language

used to describe the atomic actions is not a sequential language. This is extremely

important since we are based on an HDL which naturally exploits highly parallel

subactions. Similarly, HDLs are built on the idea that users specify all the updates

that are made at the end of each clock cycle, which corresponds to the behavior of

BTRS.

2. BTRS atomic actions are influenced by the idea that in synchronous hardware sys-

tems, registers are read at the beginning of a clock cycle and updated at the end of

the clock cycle. This means that the actions that can be performed in one clock cycle

do not require any explicit shadow state. For example, one can perform the swap of

two registers in one atomic action without needing any temporary variable.

3. Guards in atomic actions indicate when expression or actions are invalid. This pro-

vides a mechanism for safely composing parallel atomic actions. The safe use of

methods in a guarded atomic actions is enforced through the use of modules with

guarded interfaces. Guards can cause an action can fail even when it actually is

executing in isolation.

These properties of guarded atomic actions create new challenges in software compilation

and form the core of BTRS, which roughly corresponds to BSV after "static elaboration,"

i.e.,after typechecking, constant propagation and module instantiations. To make the lan-

guage more suitable for software specification, BTRS adds a sequential connective in ad-

dition to the parallel connective. The semantics have been described previously [4] in the

context of hardware description. For the sake of completeness, the complete language de-

scription has been included. The rest of this chapter is taken directly from the original

paper [4] with a few modifications. The figures (3-1, 3-2, 3-3, 3-4, 3-5, 3-2, 3-6, and 3-7)

are included without modifications.

3.1 BTRS Syntax

A grammar for BTRS is given in Figure 3-1. A BTRS program consists of 2 parts: a set

of state elements and a set of guarded atomic actions or rules which represent the state

changes. State consists of modules, which are accessed through interface methods. Mod-

ules can contain their own internal state, as well as rules, which modify state internal to

that module. The language provides some primitive modules, such as the Register, which

form the basis for all program state.

It should be apparent to the reader that all communication between processes in a lan-

guage describe in this manner is explicit by definition. This turns out to have important

ramifications in the compiler implementation.

m ::= Module name

[Register r v] // Regs w/ initial values

[Rule R a] //Rules

[ActMeth g Ax.a] //Action method

[ValMeth f Ax.e] //Value method

a ::= r := e // Register update

Sif e then a // Conditional action

aII a // Parallel composition

a ; a // Sequential composition

a when e // Guarded action

(t = e in a) //Let action

m.g(e) // Action Methcall g of m

e ::= r // Register Read

II c // Constant Value

II t // Variable Reference

I e op e // Primitive Operation

e ? e: e : e //Conditional Expression

e when e // Guarded Expression

(t = e in e) // Let Expression
m.f(e) // Value Methcall f of m

op::= & & I I ... // Primitive operations

Figure 3-1: BTRS Grammar for a Module

3.2 Semantics of Rule Execution in BTRS

Every action or rule in BTRS modifies the state deterministically. The nondeterminism in

a description is introduced by the choice in the order of execution of these rules. The range

of behaviors that a collection of modules and rules can produce is succinctly described in

Repeatedly:

1. Choose a rule in some module to execute

2. Compute U, the set of register updates, by evaluating the rule's action according to the rules

given in Figure 3-3.

3. Update all the registers according to U.

Figure 3-2: BTRS Execution Procedure

the Figure 3-2. Notice that this procedure uses nondeterministic choice which may affect

the final behavior, making a BTRS program more like a specification. How we resolve this

nondeterminism in the design is very important for the quality of the implementation. In

cases where performance is important, the designer may wish to define the scheduler. In

less important cases, designers can leave the decision to the compiler or merely provide

hints.

We present the operational semantics of a rule execution in BTRS using SOS-style

evaluation rules (Figures 3-3, 3-4, and 3-5), where --+ means either expression evaluation

or the effect of an action. The meaning of each composite atomic action will be explained

in terms of its constituent actions.

Let S represent the values of all the registers before the rule executes. The effect of

executing an atomic action will be represented by U, the set of register updates implied

by the execution. Conflicting updates to the same register produce a dynamic error. Our

system can easily handle dynamic errors, but doing so would clutter the presentation. For

the purposes of this thesis, we will assume that the sufficient static analysis has been applied

to all system to prevent dynamic errors from occurring.

The semantic machine is incomplete in the sense that there are cases where the execu-

tion gets stuck because none of the rules in Figure 3-3 apply. In such cases we will say that

the action produced no updates. This allows us to present a much more succinct set of rules

which are not cluttered by having to deal with I propagation.

So far, there doesn't seem to be anything particularly novel about BTRS. The less

Action Rules:

(S, U, B)- e v, v # NR
reg-update (S, U, B) - r :=e -- U[v/r]

if-true (S, U, B) H- e --* true, (S, U, B) Ha - U'

(S, U, B) H if e then a -* U'

(S, U, B)- e - false
if-false

(S, U, B) - if e then a -- U

(S, U, B) - e -* true, (S, U, B) - a -* U'

(S, U, B) H- a when e -- U'

(S, U, B) H a, U1 , (S, U, B) - a2 - U2

par (S, U, B) a, I a2 -U1 U 2

(S, U, B) H a- U, (S, Ui, B) a2 - U2

seq (S, U, B) H al ; a2 - U2

a-let-sub (S, U, B) - e -* v, (S, U, B[v/t]) - a *U'

(S, U, B) - t = e in a -* U'

(S, U, B)- e -* v, ,v # NR,

m.9 = (At.a), (S, U, B[v/t]) - a --* U'
a-meth-call

(S, U, B) H m.g(e) -* U'

Each action rule produces a list of register updates given an environment (S, U, B) where S represents the

register state, U is the observable updates, and B represents the local bindings. NR represents the "not-

ready" value and can be stored in a binding, but not assigned to a register. The strictness of method calls

is enforced by checking that parameter values are not NR. Initially U and B are empty and S contains the

value of all registers. If the system gets stuck because no rule is applicable, it is assumed than an empty U

is returned.

Figure 3-3: Operational Semantics of BTRS Actions

standard aspects of this language involve action composition and the semantics of action

guards.

3.3 Action Composition

The language provides two ways to compose actions together: parallel composition and

sequential composition. If two actions A 1 A2 are composed in parallel both observe the

Expression Rules:

reg-read (S, U, B) F r -- (U + +S)(r)

const (S, U, B) -- c -* c

variable (S, U, B) F- t -- B(t)

(S, U, B) F e1 - vi, 2v1 NR

(S, U, B) - e 2 - v 2 , v2 NR
op (S, U, B) F el op e2 -* vl op v2

(S, U, B) F- e --* true, (S, U, B) -e2 - v
tri-true

(S, U, B) - el ? e2 e3 ~ v

(S, U, B) F el -* false, (S, U, B) F e3 -- v
tri-false

(S, U, B) F- ei ? : 2 e3 - v

(S, U, B) H e2 -* true, (S, U, B) el -* v
e-when-true

(S, U, B) F- ei when e2 - v

(S, U, B) -e2 - false
e-when-false

(S, U, B) F- el when e2 -* NR

(S, U, B) - e1 -* vi, (S, U, B[v/t]) F- e2 - v2

(S, U, B) F t = el in e2 - 2

(S, U, B)- e -v, v 7 NR,

m.f = (At.eb), (S, U, B[v/t]) F- eb -* v'

e-meth-call
(S, U, B) F- m.f(e) -*v

Each expression rule is evaluated in an given an environment (S, U, B) where S represents the register

state, U is the observable updates, and B represents the local bindings. NR represents the "not-ready" value

and can be stored in a binding, but not assigned to a register. The strictness of method calls is enforced by

checking that parameter values are not NR. One can think of ++ as list concatenation.

Figure 3-4: Operational Semantics of BTRS Expressions

same initial state and do not observe each other's updates. Thus the action rl := r2 I r 2

rl swaps the values in registers r, and r2. Since rules themselves are deterministic, there is

never any ambiguity due to the order in which subactions complete. If two actions update

the same state element then they cannot be composed in parallel. Because of conditional

actions one can only determine approximately if a parallel composition is legal. However,

it is preferable if such an error is disallowed by static checking in an earlier compilation

step.

Sequential composition is more in line with other languages with atomic actions. The

Merge Functions:

U1 U2 = error if 3r. r FH v1 E U A {r 1 * V2 } T U2

otherwise U1 U U2

{}(x) =1

S[v/t](x) = v if t = x

otherwise S(x)

When composed, Actions and Expressions are merged using these rules

Figure 3-5: Action and Expression Merging

action A 1; A 2 represents the execution of A1 followed by A 2. A 2 observes the full effect of

A1 . No other action observes Al's updates without also observing A 2's updates.

3.4 Conditional versus Guarded Actions

BTRS has both conditional actions (ifs) as well as guarded actions (whens). These are

similar as they both restrict the evaluation of an action based on some condition. The

difference is their scope of effect: conditional actions have only a local effect whereas

guarded actions have a global effect. If an if's predicate evaluates to false, then that action

doesn't happen (produces no updates). If a when's predicate is false, the subaction (and

as a result the whole atomic action that contains it) is invalid. One of the best ways to

understand the differences between whens and ifs is to examine the axioms in Figure

3-6.

Axioms A. 1 and A.2 collectively state that a guard on one action in a parallel composi-

tion affects all the other actions. Axiom A.3 deals with a particular sequential composition.

Axioms A.4 and A.5 state that guards in conditional actions are reflected only when the

condition is true, but guards in the predicate of a condition are always evaluated. A.6 deals

with merging when clauses. A.7 and A.8 translate expression when-clauses to action

when-clauses. Axiom A.9 states that top-level whens in a rule can be treated as an if and

vice versa.

A.1 (al when p) I a2 (a a2) when p

A.2 al I (a2 when p) (al a2) when p

A.3 (al when p) ; a2 (al ; a2) when p

A.4 if (ewhenp) thena - (if e then a)

when p

A.5 if e then (a when p) - (if e then a)
when (p V -e)

A.6 (a when p) when q a when (pA q)

A.7 r := (e when p) (r := e) whenp

A.8 m.h(e when p) - m.h(e) when p

A.9 Rule n if p then a Rule n (a when p)

Figure 3-6: When-Related Axioms on Actions

3.4.1 Strict Method Calls and Non-Strict Lets

We have chosen non-strict lets and function calls because they permit more useful algebraic

laws for program transformation. However, we have chosen strict method calls because

each method represents a concrete resource in our implementation. Additionally, modular

compilation would be impossible (or greatly complicated) without this exception. With

lazy method calls, all interface types would need to be augmented with an implicit valid

bit, while the propagation of failure (I) would be ill-defined, especially in the case of a

heterogeneous (HW/SW) implementation. These facts can be seen in our SOS rules in

Figure 3-3, and 3-4. Notice that both a-let-sub and e-let-sub rules store the value of an

expression, even if it was NR, i.e.,, 1, in the bindings B. However, such a value cannot

be stored in a register (see reg-update rule), passed to an expression (see a-meth-call and

e-meth-call rules) or used by a primitive operation (see op rule).

3.4.2 Derived Rules

The final aspect of BTRS is the notion of Derived rules. In short, derived rules are new

rules created by combining primary rules using the combinators listed in Figure 3-7.

Compose Combinator: The compose rule combinator takes two rules as input arguments

and produces a rule which behaves like the sequential composition of the two. The seman-

tics of the new rule are:

compose (Rule A al when pl, Rule B a2 when p2) =

Rule AB (al when pl); (a2 when p2)

The presence of a guard following a sequential connective raises some important questions,

which will be addressed in a following section discussion the lifting of when guards. The

notable issue, though is that the successful firing of rule AB is only assured when both p1

and p2 are true, but pl must be evaluated with the effects of al visible. Because of the

sequential semantics of the primary specification, this new rule is guaranteed to be correct,

under the execution semantics described previously.

Par Combinator: The par rule combinator takes two rules as input and produces a rule

which behaves like the parallel composition of the two rules. As opposed to the Compose

combinator, we now must ensure the mutual exclusivity of the two sub-rules since arbitrary

parallel composition could introduce new behavior. We are left with two choices. On

one hand we could enforce mutual exclusivity, lifting the guards and taking their union as

demonstrated here:

Rule AorB (if pl then al) I (if p2 then a2)

when (pl V p2)

On the other hand to guarantee correctness of this combinator on arbitrary rules, we could

apply the combinator with the following semantics, guaranteeing that in our new rule we

only ever enable one of the rules:

par(Rule A al when pl, Rule B a2 when p2) =

Rule AB (if pl then al) (if p2 then a2)

when (pl (p2)

Restrict Combinator: Sometimes we want to express some sort of mutual exclusion, with

particular priority. This last combinator does just that:

DR::= R

I compose(DR, DR)

par(DR, DR)

restrict(DR, DR)

Figure 3-7: BTRS Scheduling Language

restrict(Rule A al when pl, Rule B a2 when p2)=

Rule AB a2 when (-pl A p2)

Apart from the semantic richness these rule combinators add, there are advantages in com-

bining rules, since the compiler can do inter as well as intra rule optimization.

Chapter 4

Compilation Scheme

4.1 Syntax Directed Compilation

Each BTRS module is compiled into a C++ class and its rules and methods into class

methods. Calling a rule or method on a module instance performs that method on the state

and returns the corresponding result. The compilation of actions relies on building shadow

registers (in general, shadow modules) to hold speculative state. If the rule fails, these

shadows are discarded. To keep track of shadows, the "original" state is recorded well

as the most current active shadow for each register. Initially the state map points to the

physical values for each register and the shadow map is empty. State maps are consulted to

determine the most recent shadow to use for a register read. To perform a register write, we

make a shadow if one does not already exist. This shadow analysis is completely static and

there is no run-time overhead involved. We use throw and try-catch mechanisms to handle

guard failures. The syntax-directed compilation is illustrated using the following example

BTRS rule which operates on three int registers: rl,r2, and r3:

rule R1

((rl := rl + 1 when pl) I (r2 := rl + 2 when p2))

; (if c then (r3 := rl + 1 when p
3))

This rule translates to the following procedure:

01 void RLR1() {

02 try{

03 if (!pl){throw guard_failure;}

04 Reg<int> rl_shadow(rl);

05 rl_shadow.write(rl.read() + 1);

06 if (!p2){throw guard_failure;

07 Reg<int> r2_shadow(r2);

08 r2_shadow.write(rl.read() + 2);

09 Reg<int> r3_shadow(r3);

10 if(c){

11 if (!p3){throw guard_failure;}

12 r3_shadow.write(rl_shadow.read() + 1);

13 }

14 // Commit shadows

15 rl.seqMerge(rl_shadow);

16 r2.seqMerge(r2_shadow);

17 r3.seqMerge(r3_shadow);

18 } catch(int i);

19 1

Lines 3-5 correspond to the first action where the effect of throw is to jump out of the try

block and therefore the rule. Similarly, lines 6-8 correspond to the second action. Notice

that in the third action, the throw happens only when the condition c is true and the guard

p 3 is false. Also notice that in order to keep all the shadows in scope for the final commit,

the shadow for r 3 is built before entering the conditional statement. All three actions read

r 1, but the first two read the original value while the third one reads the shadow value

as dictated by the semantics of parallel and sequential action composition. The sequential

merges in lines 15-17 commit the updates to the shadows into the original register state.

This example also suggests that each C++ class corresponding to a BTRS module

will need a copy constructor to make shadows, and two merge operators parMerge and

s eqMe rge to merge different shadows of the module in parallel or sequence respectively.

The following example illustrates how the parallel merge parMe rge is used:

rule R1

((mod.actionMethodA() when pl) I

(mod.actionMethodB()when p2))

01 void RL_R1() {

02 try{

03 if (!pl){throw guard_failure;}

04 Mod<> mod_shadowA(mod);

05 if (!p2){throw guard_failure;}

06 Mod<> mod_shadowB(mod);

07 mod_shadowA.actionMethodA() ;

08 mod_shadowB.actionMethodB() ;

09 mod.parMerge (mod_shadowA);

10 mod.parMerge (mod_shadowB);

11 } catch(int i);

12 }

The difference between the parallel and sequential merges lies in how the modified

bits on the fundamental state elements (those which implement user specified state) are

handled. Currently, the only primitive modules we implement that hold user state are a few

different varieties of FIFOS, Registers, and Register Files. In all non-primitive modules,

the implementation of both parMerge and seqMerge is merely to invoke the corresponding

merge routines recursively on all sub modules. In primitive modules, the parallel merge

operation unions the final modified bits with that of the copy being merged in, while the

sequential version always overwrites them. This provides a mechanism which can be used

to detect conflicts.

The final output of the BTRS compiler is a collection of C++ classes which each im-

plement the rules and methods specified in the design, a copy constructor, a parallel merge,

and a sequential merge routine. In concert with a top-level driver loop which instantiates

the objects and drives the rule execution as specified by a particular schedule, we can effi-

ciently implement any BTRS program.

4.1.1 The Details

The Syntax Directed Compilation of the BTRS actions and expressions into C++ is ex-

pressed as Haskell pseudo-code in Figure 4-1. BTRS statements translate directly into C

statements, while BTRS expressions produce a tuple consisting of a list of C statements

and a C expression. The C statements need to be evaluated before the expression. As an

example, consider the following expression written as stylized compiler IR:

OLet [a = modl.meth()] in (f(a,a+1))

which would return the tuple consisting of a list of (one) statements and the expression

corresponding to the value of the let expression:

([CStmt (T a = modl.meth())], f(a,a+1))

The translation procedures for both expressions and statements take (as arguments) addi-

tional statements which will be evaluated before the statements generated by the current

object. The statements and expressions produced by the procedures (prefixed with "C")

roughly correspond to the C programming language and are trivially converted to their tex-

tual representations. The procedures in Figure 4-1 invoke getActiveState and readState to

manipulate and read the visible shadow (active) state. These are defined in Figure 4-2.

In addition to the compilation of expressions and actions, the program must have struc-

ture. Modules are translated into C++ classes, and schedules synthesized to driver routines.

The specified schedule is implemented as a rule in the top-level module. The syntax di-

rected compilation strategy for these elements is given in Figure 4-2. Unlike most trans-

actional systems we have significant freedom in choosing the order of rule execution. The

scheduling decisions may have a significant impact on the locality and parallelism exploited

in execution.

4.1.2 The Cost of Laziness

It is well known that non-strictness has a cost associated with it. In the case of BTRS, this

might have meant that every expression would have returned a predicated value, i.e.,the

genA :: State -> BTRSAction -> (CStmt, State)

genA s [[r := e]]l = (se ++ [gen] ++ [mod.write(ce)], sl)

where (gen, mod, sl) = getActiveState(s,r)

(se , ce) = genE sl e

genA s [[m.g(e)]] = (se ++ [gen] ++ [mod.g(ce)], sl)

where (se, ce) = genE s et

(gen, mod, sl) = getActiveState(s,m)

genA s [[if e then a]] = (se ++ gens ++ [if(ce) { ca }], s2)

where (se, ce) = genE s e

(gens,sl) =

foldl (λ (g,s) mname. (g++gl,sl) where (gl,sl) = getActiveState s) (writtenModules

(ca, s2) = genA sl a

genA s [[a when e]] = (se ++ [if(!ce) (throw GuardFail;) ca;], sl)

where (se, ce) = genE s e

(ca, sl) = genA s a

genA s [ft = et in a]] = (st ++ [t = ct;] ++ ca, sl)

where (st, ct) = genE s et

(ca, sl) = genA s a

genA s [[al;a2]] = (cal++ca2, s2)

where (cal, sl) = genA s al

(ca2, s2) = genA sl a2

genA s [[alla2]] = (cal ++ ca2 ++ merges, sl)

where news = State {initMap=(activeMap s)+(initMap s),activeMap=emptyMap}

(cal, sl) = genA news al

(ca2, s2) = genA news a2

merge modvar = case (sl[modvar], s2[modvar]) of

(Just x, Just y) -> (x.ParMerge(*y);, Just x)

(Just x, Nothing) -> ([1 , Just x)

(Nothing, Just y) -> ([] , Just y)

(Nothing, Nothing) -> ([1 , Nothing)

(merges, am) = unzip (map merge subModules)

sl = State {initMap = initMap(s), activeMap = am)

genE :: State -> BTRSExpr -> (CStmt, CExpr) -- The CStmts must be evaluated before the CExpr

genE s [[c]] = ([], translateConst[[c]])

genE s [[t]] = ([], t)

genE s [[el op e2]] = (sl ++ s2, cl (translateOp op) c2)

where (sl, cl) = genE s el

(s2, c2) = genE s e2

genE s [[ep ? et : ef]] = (sp ++ st ++ sf, cp ? ct : cf)

where (sp, cp) = genE s ep

(st, ct) = genE s et

(sf, cf) = genE s ef

genE s [[e when ew]] = (se ++ sw ++ [if (!cw) throw GuardFail;], ce)

where (se, ce) = genE s [[e]]

(sw, cw) = genE s [[ew]]

genE s ([t = et in eb]] = (st ++ [t = ct;] ++ sb, cb)

where (st, ct) = genE s [[et]]

(sb, cb) = genE s [[eb]]

genE s [[r]] = ([], getReadState(s,r).read())

genE s [[m.f(e)]] = (se, getReadState(s,r).f(ce))

where (se, ce) = genE s [[e]]

Figure 4-1: Syntax-Directed Translation of BTRS Actions and Expressions into C++

Maybe type in Haskell. Removing this overhead would result in strict semantics, which

are in conflict with the BTRS definition. Alternately, this problem can be fixed by stati-

cally lifting whens out of let-bound expressions and value methods and remembering their

genDefaultDriver modDef = void main { Module top = modDef(); // Construct module

while(1) top.RunRules();}}\\

genModuleDef :: BTRSModuleDef -> C_ClassDef

genModuleDef [[ModDef name submodules rules meths]] =

class name{genSubmodPtrs submodules

public:

genConstructors submodules

genRule rules

genMethDef meths

void ParMerge(Module& x); foreach submod. submod.ParMerge(*x.submod);}

void SeqMerge(Module& x);{foreach submod. submod.SeqMerge(*x.submod); }

void RunRules(){ foreach rule. rule();} };

inits = State {initMap = makeMap state, activeMap = emptyMap)

commitState s = (merges, sl)

where merges = map (λ mod. (initMap s)[mod].SeqMerge(*mod);) (activeMap s)

sl = s {activeMap = emptyMap)

getActiveState(s, modname) I (modname \rightarrow v) \in (activeMap s) = ([], v, map)

getActiveState(s, modname) I otherwise = (gen, v, sl)

where gen = [v = ModCopy(initMap(s)[modname]);]

sl = s {activeMap = (activeMap s) + {modname \rightarrow v}}

getReadState(s, modname)

getReadState(s, modname)

getReadState(s, modname)

(modname \rightarrow v) \in (activeMap s) = v

(modname \rightarrow v) \in (initMap s) = v

error ("Nonexistant Module" ++ (show modname))

genRule :: BTRSRule -> ClassMemberFunction

genRule[[Rule name a]] = void name(){ try{ ca; commitState(s)) catch(int i);)

where (ca, s) = genA inits a

genMethDef :: BTRSMethodDef -> C_MemberFunction

genMethDef [[ActMeth $name \lambda x.a$]] = void name(argT x){ca;

where argT = typeInfo g

(ca, ρ) = genA inits a

genMethDef [[ValMeth $name \lambda x.e$]] = retT name(argT x){se;

where (se, ce) = genE inits e

(retT,argT) = typeInfo f

commitState(s)

return ce;}

class Reg {

bool modified;

int state;

public:

Reg(){ modified = false; state = 0; // init value }

Reg(Reg& x){modified = false; state = x.state} // make shadow

int read(){ return state;};

int write(int x){state = x; modified = true;};

void ParMerge(Reg& r){ state = *r.read(); modified 1= true;

if(modified && r -> modified) {throw Error;)}} // double Par write

void ModMerge(Reg& r){ state = *r.read(); modified J= *r.modifed; }};

Figure 4-2: Syntax-Directed Translation of BTRS Module Definitions, Helper Functions,

Top-level Driver, and Register Class Definition

original position with respect to any conditional code. If conditional use is not exercised

in a particular firing, then the guard failure exception is not thrown, resulting in lazy let

semantics. This lifting is accomplished during one of the compiler optimization phases.

4.2 Compiler Phases

The BTRS compiler employs a multi-phase approach in performing the compilation of

a program specification. These phases are depicted in Figure 4-3 and discussed in the

following sections. The top-level compiler function (main) is in CompileATS.hs and all

the compiler phases are invoked in the function "compile" in that file.

Figure 4-3: BTRS Compiler

4.2.1 Internal Representation

The program structure is represented as an array of Module Definitions, defined by the

structure ModuleDef shown below:

data ModuleDef =

ModuleDef {

modDefAttrib :: Attrib,

modDefName :: ModuleDefName,

modDefArgs :: [BindName],

modDefLocalDefs :: BindList,

modDefSubMods :: [ModuleInst],

modDefRules :: [Object],

modDefMethods :: [MethodDef],

modDefIsNameSpace:: Bool

deriving(Eq, Show, Data, Typeable)

Each ModuleDef's type is its name, and contains a list of sub modules which takes the

form of a list of tuples pairing scoped identifiers with other ModuleDefNames. With a

programmer-specified root module, there is enough information to construct a complete

module hierarchy. The other fields are relatively self explanatory: modLocalDefs binds

names which are used throughout the module definitions rules (modDefRules) and methods

(modDefMethods).

A recurrent theme throughout the IR data structures is the inheritance of Haskell type

classes Data and Typeable. The Data typeclass exposes a canonical representation of an

algebraic datatype's structure. The Typeable typeclass exposes type information, allowing

the Haskell compiler to determine the type of an object by inspection. Together these two

typeclasses allow for very powerful yet concise representations of compiler transformations

such as the example below:

liftParWhensObj :: Object -> Object

liftParWhens_Obj o = ...

liftParWhens :: (Data a) => a -> a

liftParWhens = everywhere (mkT liftParWhens_Obj)

The operation could be interpreted as: "traverse the entire program structure, and every

time you find an object of type tt, transform it using the function trans, which is of type

tt - tt". This style of generic programming is a very powerful feature of the Haskell

programming language.

While ModuleDefs are the building blocks of the module hierarchy and encapsulate all

intermodule communication, the actual computation contained in the rules and methods is

represented using the [recursive] algebraic datatype Object, shown below:

data Object

= OSeq Attrib

OPar Attrib

ORestrict Attrib

OLit Attrib

OPrim Attrib

OBoundVar Attrib

OMethCall Attrib

OWhen Attrib

OIf Attrib

OWhile Attrib

OWhileGuard Attrib

OLet Attrib

OApply Attrib

ORule Attrib

OLocalGuard Attrib

deriving(Eq, Show, Ord,

[Object]

[Object]

[Object] Object

Value

PrimName

BindName

MethodName

Object Object

Object Object Object

Object Object

Object

BindList Object

[Object]

RuleName Object

Object

Data, Typeable)

OSeq and OPar are the sequential and parallel composition of actions. ORestrict restricts

the execution of its third parameter (presumably some action) by the successful execution

of its second parameter (a list of actions). This is very close to the semantics of the se-

quential composition. Following that are literals, primitives, bound variables, and method

calls. OWhen guards the second argument with the return value of the third (a Boolean

value). OLocalGuard is similar to OWhen, except that it provides a barrier for guard-lifting

(described in a following section). OWhile and OWhileGuard are both looping structures,

except one relies on a guard failure to exit the loop while the other has an explicit loop

condition. OApply is used to apply methods (functions etc.) to arguments. The semantics

of ORule and OLocalGuard are identical, providing a mechanism to shield the scope of a

guard failure. In the IR, all datatypes have an Attribute field, which stores (among other

things) the type of a particular instantiation.

The IR is sufficiently simple (effectively annotated BTRS) that the optimization phases

can be viewed as source to source transformations, with the SDC occurring in the final

stage of C generation. All the arithmetic data types for the IR are defined in Types.hs.

4.2.2 ATS Parse

Parsec, an industrial strength, monadic parser combinator library for Haskell [10] was

selected to parse the input language. The Sequential connective is currently introduced

through a side channel in which a schedule (or various scheduling constraints) are supplied

to the compiler. The parse phase constructs a structure that is roughly equivalent to the

internal representation (IR), storing all ancillary information in state tables for later use.

For reasons discussed in the following chapter, the input language to this compiler is in a

form known as ATS. The code for this phase is located in ATSParse.hs and BTRSParse.hs.

4.2.3 ATS Transform

In this phase of the compilation, the output of the Parse phase is transformed into the com-

piler's IR. Though the same data structures are used between these two phases, there are

particular structural invariants which are enforced between all compiler phases to reduce

the complexity of the tree traversals. It would have been possible to restrict patterns that

are considered illegal through the definition of the data types used to build the IR, but in

an attempt to keep the IR data types clean and simple, this approach was chosen. There

are some heavy-weight transformations which occur in this phase, since we need to handle

some unfortunate features in ATS. This phase should be as a source to source transforma-

tion which smooths out some of the idiosyncrasies of the input structure. These are all

contained in the function doATSTransform, which is located in the file Transform.hs

A primitive library of polymorphic functions and modules was introduced to ease the

task of programming. The first task is to handle the these primitives. This is accomplished

by first exposing all primitive functions as global bind-names. Since all types in our IR

are monomorphic, these primitives need to be inlined so that type-specialization can occur.

After that, there are a number of small fix-ups designed to cannonicalize various logical

structures after which let bindings are topologically sorted. Next, all name bindings are lo-

calized from the Module context to their particular rule or method. While this does involve

the duplication of some bindings, there are performance advantages in having many smaller

localized bind-lists over one global module-context namespace. One invariant enforced is

that let expressions can contain no unused let bindings.

Another important issue is that of ActionValues, which are part of the ATS syntax but

which have been deemed unnecessary in BTRS since they are syntactic sugar for combina-

tions of value and action methods. The following pseudo code illustrates a typical use of

an action value:

OLet [an =

,bn = mod.ActionValue() -- wants just the "value" part

,cn = ...]

in

OPar [mod.ActionValue() -- wants just the "action" part

,mod.Actionl ()

,mod.Action2 (bn)]

It is possible to decompose the ActionValue into its action and value components, however

a substantial increase in code duplication was observed, especially in guard evaluation. In

addition, any side-effects of the action-value might then be observed in a different order

due to action reordering resulting from the change in data dependencies. Bluespec Inc.

compiles ATS to efficient hardware, so our initial correctness metric was trace equivalence

with the Bluesim simulator. The correct ordering dependencies had to be maintained to

avoid reordering the sequential interpretation of the parallel action composition contained

in OPar. An efficient approach which both avoided code duplication and maintained trace

equivalence with Bluesim involves the introduction of a fake use (shown in Figure 4-4).

The data-flow edges remain unchanged, prohibiting the binding of bn to be moved below

the original location of the "action" component of the ActionValue invocation. The result

is a single invocation of the ActionValue, which simplifies matters greatly and cuts down

significantly on the amount of buffered state.

I I

bn = mod.av() g * bn = mod.av()

mod.av() fakeuse(bn)

KZ bn

SLet-Expression Let-Expression I
L------ -- -- -- -- -- -- -- -- -- ------ L------ -- -- -- -- -- -- -- -- -- -----

Figure 4-4: Fake use Introduction

Next, all name bindings are pushed to the lowest possible point in the data-flow graph.

This has obvious benefits when generating conditional code, and is also one of the IR

invariants. More importantly, this phase is used to localize when-guards which is a require-

ment in supporting lazy let semantics. A final round of small clean-up passes designed to

regularize structure completes the conversion of ATS to IR.

4.2.4 Type Checking

Though type complete, the ATS input language is not fully annotated. The presence of

primitive functions adds a degree of polymorphism which needs to be resolved. For com-

plete type unification, proviso annotation is also required. Primitive function types are

accompanied by provisos, specifying relations between the types. Take, for example the

following annotation for the primitive function extract:

PrimDef{ pname = mkBN "extract",

pstrtype = "forall n m o. (TSubl 1 2 m) =>

Bit n -> Bit o -> Bit o -> Bit m",

pctrans = prim_expr_extract}

Notice that that the proviso on the type of the primitive extract function indicates that the

difference between the first and second bit widths results in the third width. This is what

one would expect, given an intuitive understanding of bit extraction. With these annotations

on our primitive functions, we are able to fully annotate the types of every object in our

module list using the following standard type unification algorithm:

1. Assign a new type variable to each object.

2. Initialize a type environment where each type variable is unknown.

3. Unify types in a top-down traversal, each time you encounter a primitive function

or an existing type annotation, enrich the type environment, generating new type

variables as needed. Store the provisos for final fix up.

4. At this point, each type variable should map to a concrete type, if they don't, apply

the provisos.

5. Assert an error if there are remaining unknown type variables.

4.2.5 Optimization

The Optimization phase contains great potential for increasing the efficiency of generated

code. Unfortunately, this thesis is being written before much exploration has been under-

taken in this area, but this will be developed further as we refine our compilation techniques.

Currently, two major optimizations (seqPars, and liftParWhens) are undertaken along with

some minor fix ups.

The optimization seqPars finds actions composed in parallel and, sequentializes them

under certain conditions. To motivate this optimization, consider the following IR snippet,

which sequentially composes three actions on the same module:

OSeq [mod.actionMethodA()

, mod.actionMethodB ()

, mod.actionMethodC()]

As specified by our syntax directed compilation scheme, this would generate the following

C code:

Mod<> mod_shadowA(mod);

mod_shadowA.actionMethodA();

mod. seqMerge (mod_shadowA);

Mod<> mod_shadowB(mod);

mod_shadowA.actionMethodB ();

mod.seqMerge (mod_shadowB);

Mod<> mod_shadowA(mod);

mod_shadowA. actionMethodC () ;

mod.seqMerge(mod_shadowC);

Consider the semantics of the Sequential connective (described in Section 3.2) which stip-

ulate that a sequential composition succeeds iff all the composed actions in the sequence

successfully execute. Since a method failure throws an exception, we can optimize the

previous sequence as shown below with the understanding that the final state commit will

be bypassed if any of the actions fail. Sequential compositions require a constant sized

shadow state, whereas the amount of shadow state for parallel compositions in creases as a

function of the number of actions being composed.

Mod<> mod_shadow(mod);

mod_shadow.actionMethodA ();

mod_shadow.actionMethodB ();

mod_shadow.actionMethodC ();

mod. seqMerge (mod_shadow);

Since a sequential implementation of BTRS can execute sequences more efficiently than

parallel compositions, removing parallel compositions has significant performance benefits

as there is a large overhead to simulating them on a sequential machine. To demonstrate the

process of sequentializing parallel compositions, consider the structure where two actions

are composed in parallel:

OPar [mod.actionMethodA()

Smod.actionMethodB()]

where actionMethodA, actionMethodB, and actionMethodC are defined as as follows:

Module mkMod(ModIFC);

Reg(t) a <- mkReg();

Reg(t) b <- mkReg();

Reg(t) c <- mkReg();

method Action actionMethodA();

a <= c+1;

endmethod

method Action actionMethodB ();

b <= a;

endmethod

method Action actionMethodC ();

c <= a+l;

endmethod

endmodule

Efficient shadow management is of greatest importance to the performance of the generated

code. With no optimization, the implementation of this composition would require mod to

be shadowed three times. A quick analysis of the implementations of the actionMethods

shows that a sequential composition results in the same state change as their parallel com-

position, but requiring only half the shadow state. Notice, though, that there is no sequential

interpretation for the parallel composition of actionMethodA and actionMethodC.

The manner in which this optimization is performed is really quite simple. First a

graph is created where each node in the graph corresponds to an action in the parallel

sequence. An edge from action A to action B indicates state written in B is read in A. Cycles

indicate dependencies which are non-sequentializable, and a topological sort will produce

the correct order in which to sequentially compose the actions. A further refinement of

this procedure breaks non-sequentializable actions into parallel compositions of their sub-

actions. Without breaking atomicity or changing the semantics of the original program,

this increase in granularity allows for the sequentialization of some of these sub-actions.

This technique effectively descends down the module hierarchy until we reach the point

where the minimal amount of state needs to be shadowed. This action relies on knowledge

of whether an action can fail, or not. This analysis is performed by looking for embedded

when clauses.

Shadow state serves two purposes: it implements parallel composition, and guarantees

atomicity by requiring that an action complete successfully before committing its state. In

the absence of potential guard failures, seqPars can remove all non-essential uses of shadow

state in a program. The next optimization, liftParWhens, is directly related this point. If we

can lift all when clauses out of methods and rules, we can tell before invoking it, whether

or not it will fail, and assemble the corresponding action more efficiently. Consider the

following snipped of IR:

(ORule "rl" (OPar [(OWhen mod.actionMethodA() guardA)

, (OWhen mod.actionMethodB() guardB)]))

This rule, consisting of the parallel composition of two guarded actions would produce the

following C code:

void rl () {

try{

if(!guardA) throw guard_failure;

Mod<> mod_shadowA(mod);

mod_shadowA.actionMethodA() ;

Mod<> mod_shadowB(mod);

if(!guardB) throw guard_failure;

mod_shadowB . actionMethodB() ;

mod.parMerge (mod_shadowA);

mod.parMerge (mod_shadowB);

} catch (int i);

There is a large performance overhead in using try/catch to handle potential guard fail-

ures. If the guards (both explicit and implicit) could all be lifted to the top-level, we could

determine before its execution whether a rule will succeed or not, removing the need for

try/catch blocks entirely. It turns out that this will only work for parallel actions since

the guard of a sequenced action cannot be lifted. It needs to be evaluated in an environ-

ment where the state changes of the previously executed actions are visible. As a result,

a companion CANFIRE* method is created for each rule and then incorporated into the

final scheduling logic. Lifting the parallel guards of the previous example produces the

following C code:

bool CAN_FIRE_rl () {

return (guardA && guardB);

}

void rl () {

Mod<> mod_shadowA(mod);

mod_shadowA.actionMethodA () ;

Mod<> mod_shadowB(mod);

mod_shadowB.actionMethodB () ;

mod.parMerge(mod_shadowA);

mod.parMerge(mod_shadowB);

}

4.2.6 Rule Scheduling

While substantial effort has gone into compiling the rules efficiently, there are limits to the

optimization of individual rules that significantly improve the code quality of a sequential

implementation. Rule scheduling offers the potential for additional optimization opportu-

nities, but the work in this area is only in the beginning stages. Depending on the target

architecture a maximally parallel schedule partitioned to avoid resource conflicts would be

preferable, while a single-core machine might work best under a schedule as simple as a

brain-dead loop over all the rules.

Suppose the programmer has specified a system in which two rules interact with a

memory. rulel writes consecutive addresses starting at zero, while rule2 reads from con-

secutive addresses starting at the same point. With no specified rule priority, the wrong

scheduling order might result in the reading of uninitialized memory. It is unlikely that the

programmer will recognize that they have under-specified the system, because the error is

hidden by the schedule. Problems may arise if a new (though still legal) rule schedule is

selected, since the design may cease to function as desired. By then, it would be difficult to

determine whether the error is in the specification or the compiler. The resolution usually

involves removal of scheduling non-determinism. This was the case with the more complex

designs which were used to test the compiler, with the unfortunate side effect of removing

the possibility to perform any meaningful experiments with different schedules.

To implement all user specified and compiler derived schedules, a number of schedul-

ing combinators were developed whose semantics are a super set of the derived rule com-

binators described in Section 3.4.2. Further work is required to make the test applications

robust enough so that they can be used to evaluate the effect of different derived rules. They

are currently used only as a convenient mechanism for expressing general rule schedules.

These combinators prove to be quite useful since any schedule can be expressed as a single

derived rule, which is generated in the scheduling phase.

4.2.6.1 Scheduling Combinators

Try Combinator: The Try combinator, of type Rule --+ Rule, creates a derived rule

which isolates any guard failures. The following example uses this scheduling combinator

to construct a rule which will never fail.

try(Rule A al when pl) = Rule A'(if pl then al) when True

Compose Combinator: Suppose we wanted to create a rule which implements the sched-

ule that fires all the rules A..C in a sequence. It should be obvious that the Compose com-

binator (which is of type Rule - Rule -+ Rule) is the right choice. Using the compose

combinator in isolation doesn't result in a very useful schedule:

Compose (Rule A a when pa,

Compose(Rule B b when pb,

Rule C c when pc)) =

Rule ABC (a when pa); (b when pb); (c when pc)

This has the obvious flaw that if any of the predicates fail, the entire rule fails and no state

will ever get committed. Wrapping each primary rule in the try combinator will give use

a much more reasonable derived rule, where each rule is "tried" in sequence.

Restrict Combinator: Given two rules rulel and rule2, this combinator produces a rule

whose guard is the union of rulel's guard and the inverted guard of rule2. This produces

a very straightforward combinator of type Rule -- Rule -- Rule, which encodes rule

priorities.

Restrict(Rule A a when pa, Rule B b when pb) = Rule ArB (a when pa A -pb)

Loop Combinator: This combinator is not part of the BTRS's rule scheduling syntax, but

it is thought that it might be useful in the future. It's semantics are to fire repeatedly until

the guard fails in this manner:

loop(Rule A a when p) = Rule AA (while p a) when True

PAR Combinator: As its name suggests, this combinator composes the bodies of mutually

exclusive rules as follows:

PAR(Rule A a when pa, Rule B b when pb) =

Rule ApB (OPar[a,b] when pa A pb)

4.2.6.2 Esposito Schedules

In addition to the derived rules which are part of the BTRS language definition, we support

a particular format of schedule annotation which is output by the Bluespec compiler (for

reasons discussed in the following chapter) and introduced through a side channel as it is

not part of the BTRS language. For historical reasons, this is referred to as the Esposito

schedule.

The Bluespec compiler targets the maximally parallel schedule for which there is a

corresponding sequential interpretation. Since it is optimized for hardware generation,

the maximal parallelism makes intuitive sense. The motivation behind an insistence on a

sequential interpretation is that it makes it possible to reason about the effect of a particular

rule in isolation. Without this restriction, rules exhibit different behavior depending on the

rule schedule. Lack of sequentializability would also violate the execution semantics of

BTRS, as described in 3.1. The example shows how a system of rules and a corresponding

Esposito schedule can be converted into an equivalent specification consisting of a single

derived rule:

rule blocked-by

a [b]

b [c]

c [d]

d []

order

[a,b,c,d]

which would produce a schedule of the the form:

let a'= try(restrict(a,b))

b'= try(restrict(b,c))

c '= try (restrict (c,d))

d'= try(d)

in

compose(a; (compose b; (compose c/d)))

4.2.6.3 Schedule Optimization

In addition to these combinators, a few attempts at schedule optimization were made,

though the effectiveness of these experiments were inconclusive as any improvements were

vastly overshadowed by the extremely inefficient nature of our input programs (ATS). One

such attempt involved the creation of rule sensitivity lists through static data-flow analysis.

The motivation for this was the prohibitively large size of some of the rule guards, resulting

from our aggressive guard lifting. The idea behind this optimization is that once a rule's

guard has evaluated to false, there is no need to re-evaluate it unless the guard's read-state

has been written.

Apart from submitting a complete schedule requiring the use of hierarchical names

to refer to rules at various depths in the module hierarchy, the programmer can specify

scheduling restrictions on a per-module basis in either Esposito or BTRS formats. These

are then applied in a bottom-up manner to the module hierarchy, propagating constraints

between modules based on the use of interface methods. This approach can lead to an error

condition since it is possible to specify an unimplementable schedule because the user is

allowed to explicitly refer to interface methods when giving a sequential interpretation of a

module's behavior in isolation. Consider the example where module B is a sub-module of

A, each module has rules x and y. Module B has interface method foo, which is invoked

by A's rule x, and method bar, invoked by A's rule y. The following ordering constraints

are contradictory:

Module A:

order [x,y]

Module B:

order [x,bar,y,foo]

Obviously, it is impossible to implement this rule schedule, which brings up a grey area

in the proposed rule-scheduling approach. In the section on derived rules (3.4.2) we in-

troduced a mechanism for scheduling rules, but not methods. At some level, scheduling

methods is unnecessary if the programmer is interested in expressing the restrictions only

on the global scale, though often thinking about global schedules is prohibitively complex,

making it desirable to reason about local interactions in isolation.

For a sequential implementation, the ultimate goal in the scheduling process is to gener-

ate a schedule which has a closer relationship to the implemented algorithm than a simple

iteration over all the rules, though it is unclear whether this will have any performance

benefit. This is the subject of ongoing investigation.

4.2.7 C Generation

C generation is conceptually one of the simpler aspect of the compilation task, although the

implementation is one of the more complex, so as to improve the efficiency of the generated

code. The SDC is outlined in Figures 4-2, and 4-1. The function generateC is overloaded,

so for all constructs requiring shadowed state, the function guaranteeShadowState is in-

voked to make sure that all modified state has been duplicated, and that the shadows are

mapped to the correct names. This amounts to keeping a stack for each variable name on

which to push and pop the shadows as they are created and merged.

4.2.7.1 C Library Implementation

A substantial library of primitive functions and modules is assumed and must be imple-

mented in order to execute programs, consisting of the usual suspects handling all logical

and bit-wise operations, as well as some more exotic data formatting and printing utilities.

Having the largest effect on the performance of the generated code is the implementation

of the library modules, foremost among which were the Wide data type, Registers, Register

Files, and FIFOS. Initial implementations showed excessive copying during shadow cre-

ation and merging. To mitigate the overhead of shadowing, lazy primitive modules which

copied data only "on demand" were implemented.

The impact of lazy library modules depends on the ability of the optimization seqPars

to minimize the amount of shadowed state. A lazy module copies data only on demand,

which usually means that it is being modified. Consider the case of a register file: a register

file being used concurrently in parallel would need to have two shadows created. Once

modified, the parallel merge operation is then used to commit the state while checking for

conflicts. Keeping non-committed updates in a linked-list structure and referring all reads

back to the original module allows shadow creation to avoid copying any of the user-visible

state. Because each lazy module has a pointer back to the state it is shadowing, a reader

can always access the most recently written version. Similar approaches were taken for the

registers and FIFOS.

56

Chapter 5

Input Language Details

With no special interest in designing yet another input language, the decision was made to

hook into Bluespec Inc's BSV compiler (BSC). While this approach has some significant

problems, there are equally significant benefits in being able to leverage the substantial

capabilities of BSC's front-end and all the designs which are currently implemented in

BSV (an important point when trying to exercise a compiler). The liabilities in using BSC

as the front-end stem from the fact that BSC is a closed-source proprietary compiler. Since

there is no access to the source code, debugging information dumped between compilation

phases is used to reverse-engineer their internal representation.

As shown in Figure 5-1, the front end consists of two phases, type-checking (resolution)

and static elaboration. After the first phase, the BSV program is in a form known as I-

Syntax, which amounts to a fully-typed A-calculus. The static elaboration phase leaves the

program in a form known as ATS. ATS is fully typed and fully elaborated, consisting of a

module hierarchy, rule and method definitions, and local bindings. In this form, it is very

close to BTRS, as described in Section 3.2.

We have the option of using I-Syntax as the input language, though to do so would

require us to implement our own static elaborator which is a prohibitive amount of work.

It would seem then that using ATS is the natural choice except for the fact that all of the

data-type information and much of the program structure (information which could help us

BSV I-Syntax ATS

S Type Static

Checking I I Elaboration

Front End

BSC Phase3 **** Target
code

Back End
L ---------------------------------------

Figure 5-1: Simplified view of BSC

generate more efficient software) has been removed. The only data types in ATS are bit

vectors.

Choosing BSC's ATS over I-Syntax as our input language meant choosing type and

data-flow re-construction over re-implementing the static elaborator. Since BSC is targeted

for efficient hardware generation, lots of valuable program structure is removed by the

front-end. In general, the problem of static elaboration is quite difficult. There are certain

types of structures which are preferably elaborated by BSC, which we classify as structural

elaboration. An example of this is shown below where the loop is instantiating interface

methods (the library function fifoToPut will itself be inlined):

// Type Declaration:

interface Vector#(3, Put#(type t))) in;

// Implementation:

// instantiate fifos

Vector#(3, FIFO#(t)) in_fifos <- replM(mkFIFO());

// implement the interface methods

in = map(fifoToPut, in_fifos)

becomes:

infifos_0 <-

infifos 1 <-

infifos_2 <-

method in_0

method inl

method in_2

mkFIFO ();

mkFIFO();

mkFIFO ();

= fifoToPut(in_fifos_0);

= fifoToPut(in_fifos_1);

= fifoToPut(in_fifos_2);

Other static elaboration corresponds to the actual data-flow description, such as the example

shown here:

// Type Declaration:

Vector#(3, Reg#(Bit(n))) ba <- replM(mkReg());;

Iv = 0;

i = 0; i <= 3; i=i+l)

Iv + ba[i]

ba_0

ba_l1

ba_2

Iv_0

Iv_l

<- mkReg();

<- mkReg();

<- mkReg();

= 0 + ba_0.read()

= Iv_0 + ba_l.read()

FIFO# (t)

FIFO#(t)

FIFO#(t)

interface

interface

interface

bec

// Loop:

Bit# (n)

for (Int

begin

Iv =

end

omes:

Reg#(t)

Reg#(t)

Reg#(t)

Bit# (n)

Bit# (n)

Bit#(n) iv_2 = Iv_0 + ba_2.read()

Obviously, this kind of structure can be very efficiently expressed in software and its re-

moval is unfortunate.

Lastly, there are certain library primitives such as dynamically-indexable arrays which

are unfortunately inlined since they have quite natural and efficient implementations in SW.

The example below shows this behavior in which BSC turns array indexing into a cascaded

if statement, which is a natural implementation in hardware, but is horribly inefficient in

software.

// Type Declaration:

Vector#(3, Reg#(Bit(n))) a <- replM(mkReg());;

// some function:

return a[x];

becomes:

Reg#(t) a_0 <- mkReg();

Reg#(t) a_l <- mkReg();

Reg#(t) a_2 <- mkReg();

return (if (x==0) return a_0

else if(x==l) return a_l1

else if(x==2) return a_3)

Similar bit blasting occurs when using Structs, turning what could be a simple member

selection into a complicated (and very expensive) bit-extraction procedure. Of course, it

is possible to reconstruct the Data-flow structures, data types, and some of the primitive

functions through the use of pattern-matching and data-flow analysis. Work in this area is

ongoing, though it is not reflected in the performance numbers reported in this thesis.

Perhaps the biggest problem of all, is that significant work would be required to add the

Sequential Connective to the BSV language. We currently use an ad-hoc solution which

introduces this operator through a side channel. How we eventually solve this problem is

the subject of ongoing negotiations with Bluespec Inc.

62

Chapter 6

Evaluation

To evaluate the approach, a BSV specification of the H.264 video decoder was. Some

time will be spent describing the application in order to more clearly discuss the hazards

associated with its performance. This particular application was chosen since it appears

to be a good candidate for eventual HW/SW synthesis. Some parts of the computation

(described in the next section) seem well suited for software while others would benefit

from hardware acceleration.

6.1 H.264

The H.264 Advanced Video CODEC is an ITU standard for encoding and decoding video

with a target coding efficiency twice that of H.263 and with comparable quality to H.262

(MPEG2) [8, 13]. H.264 enables PAL (720 x 576) resolution video to be transmitted

at 1Mbit/sec. The BSV specification used in this evaluation was written by Chun-Chieh

Lin, with the ultimate goal of ASIC implementation. The ASIC target greatly affected

the decoder architecture (taking on a very different character that an FPGA or Software

implementation might have), and is documented in his Masters Thesis [11].

The computational requirements of decoding H.264 video vary depending on video

resolution, frame rate, and level of compression used. At the low end, mobile phone appli-

cations favor videos encoded in the QCIF format (176 x 144) at 15 frames per second. At

the high end of the spectrum, HD-DVD videos are encoded at 1080p (1920 x 1080) at 60

frames per second.

H.264 reconstructs video at the granularity of 16 x 16 pixel macroblocks, which may

be further subdivided in some decoding steps. H.264 uses two main techniques to reduce

the number of bits necessary to encode video. Intraprediction infers macroblocks in a

frame from other previously-decoded spatially-local macroblocks in the same frame. In-

terprediction infers macroblocks from indexed macroblocks in previously decoded frames.

Figure 6-1 shows a block diagram of the H.264 decoder.

NAL Unwrap: The Network Adaptation Layer (NAL) interprets sequences of bits and

marks the stream with the coarse grain packeting information, effectively working as a

stream parser. The NAL also extracts high-level control information and passes it down-

stream to subsequent blocks. This stage is not computationally intensive and could easily

end up as software.

Entropy Decoder: The H.264 CODEC uses variable-length entropy coding to encode in-

tegers. Two techniques are used to accomplish this: CAVLC(Context Adaptive Variable

Length Coding) and CABAC(Context Adaptive Binary Arithmetic Coding). Both tech-

niques feature context-aware bit-mappings that vary during decoding. This step is accom-

plished by setting up look-up tables in memory, and directed by control bits parsed by the

NAL Unwrap phase.

Inverse Transformation and Quantization: H.264, like many video CODECs, represents

data via a fixed prediction, based on previously decoded image data coupled with a resid-

ual error value representing the difference between the fixed prediction and the original

image. A lossy, low-pass discrete cosine transformation is employed to develop a compact

representation of the residual values. H.264 also allows variable quantization of DCT co-

efficients to enhance coding density. DCT's parallelize well and are therefore well suited

to hardware.

Intraprediction: Video frames have a high amount of spatial similarity. Intraprediction

use previously decoded, spatially-local macroblocks to predict the next macroblock. In-

traprediction works well for low-detail images.

Interprediction: In video, temporally local frames often exhibit only small differences.

Interprediction attempts to capitalize on this similarity by encoding macroblocks in the

current frame using a reference to a macroblock in a previous frame and a vector repre-

senting the movement that macroblock took to a 1 pixel granularity. The decoder uses

an interpolation process known as motion compensation to generate the prediction value.

This phase is computationally intensive, requiring massively parallel computation as well

as substantial memory bandwidth.

Deblocking Filter: Since lossy compression used to encode pixel blocks in H.264, decod-

ing errors appear most visibly at the block boundaries. To remove these visual artifacts,

the H.264 CODEC incorporates a smoothing filter into its encoding loop. However, not all

inter-block discontinuities are undesirable; edges in the original image may naturally occur

on block boundaries. H.264 incorporates fine-grained filter control to preserve these edges.

Buffer Control: H.264 does not require interpredicted images to depend on temporally-

local, temporally-ordered images. Rather, frames can be predicted from previously de-

coded frames corresponding to frames far in the past or future of the video. Buffer control

maintains a set of previously decoded frames and is responsible for handling the in-stream

requests to access (e.g.,delete, prediction logic reads, writes from deblocking) these frames

in its store.

We note in passing that H.264 decoding entails a large amount of computation (as many

as 30 8-bit or 16-bit fixed-point multiplies per pixel). Most of these computations take place

in four blocks - Inverse Quantization, Inter- and Intra- prediction and the Deblocking filter.

In addition, it involves the movement of large amounts of data, the implications of which

are discussed below.

6.2 Performance/Correctness

The application is correctly compiled, though it leaves much to be desired in way of per-

formance. The complexity of this application required considerable time and effort (about

two man-years) to get the compiler to sufficient maturity. Our benchmark infrastructure

used a bit-wise comparison to ensure the correctness of our decoded video against that of

the reference decoder. As it currently stands, the produced code is about 300x slower than

the hand-coded C reference implementation.

6.2.1 Performance Analysis

Central to the hardware-inspired methodology is the notion of moving the data through the

algorithm, rather than moving the algorithm over the data. The former is well suited for

hardware generation, while in software passing a pointer is a far more efficient method of

communication, especially if the message is quite large. A sensible compiler optimization

would try to infer module structure such that we could replace entire modules with a more

SW friendly implementation. Take for example, the following snippet of a direct translation

of a buffered FIFO with the interface methods enq and deq, and first:

template<typename T> class SizedFIFO{

inline T first (){

return arr[deqIdx];

}

inline void enq(T x){

modified_enq = true;

arr[enqIdx] = x;

(++enqIdx) %= maxCount+l;

}

inline void deq() {

modifieddeq = true;

(++deqIdx) %= maxCount+l;

Fifos like this are primarily used to pass data between modules and are used to connect

the pipeline stages of the H.264 design. Notice that the interface methods first and enq

copy the data. If this process is parametrized with wide datatypes, a common occurrence

in the designs we have seen, a simple data-flow token transfer can incur a serious memory

access overhead. An implementation using pointers would be far more efficient, though it

is unclear the extent to which we could perform the necessary structural modifications to

the module hierarchy. So far, effort has been spent trying to optimize the code as it has

been written, but it is this kind of optimization which would allow us to replace a literal

translation of a HW FIFO (as shown above) with a more efficient SW version that will

allow us to compete with hand-written code.

The H.264 program specification we compiled consists of roughly eight stages, each of

which is connected by a FIFO similar to the one previously described. The memory con-

taining the video stream is copied at least eight times while being decoded. Additionally,

within each pipeline stage, the data is copied multiple times, since we are effectively sim-

ulating a hardware design using software. This inherently hardware-centric specification,

combined with the deficiencies of ATS discussed in Section ?? explain the relatively poor

performance.

Most of the pipeline stages of the H.264 decoder are implemented in a distributed (max-

imally parallel) and latency-insensitive manner. This implies that the modules themselves

have ample internal buffering (generally at least one frame's worth). Within the modules

implementing each pipeline stage, multiple threads of execution (rules) work on the data

in parallel. In hardware, this is ideal, though in software, it implies extensive copying of

the data as it is taken from the frame-buffer, to the registers or local memory used by an

individual rule. For example, in Intraprediction, there are a number of parallel work units,

each of which processes a single macro block. These blocks are copied multiple times be-

fore their processing is complete. The question central to this type of problem is whether

the Compiler should be able to convert these types of control structure to equivalent SW-

friendly forms, or if the programmer should specify the system differently depending on

the target (HW or SW).

Chapter 7

Related Work

This chapter is not intended to be a comprehensive review of all parallel languages. Instead,

the defining features of BTRS are identified and examples of other languages which share

these features are given. The novelty of BTRS semantics lie in the combination of guarded

atomic actions combined with user-level scheduling for software synthesis. Our scheme

does not require the programmer to fully specify a schedule, but instead allows the user to

specify particular scheduling restrictions only where necessary. The programmer has the

freedom to under-specify the system, giving the compiler a larger space of rule schedules

to explore. The result is four very powerful language features:

1. Explicit Communication: Since we have no pointers or reference types, problems

associated with aliasing are completely avoided, easing the task of optimizing in

multi-threaded contexts.

2. Non-determinism: Leaving non-determinism in the specification gives the compiler

greater range in searching for efficient rule schedules.

3. Guards and Atomicity: rules executing it isolation with explicit guards is a natural

way to think about parallelism, since the semantics of composition are very clear.

4. Functional Language Features: purely functional code (no side effects) lends itself

naturally to describing parallel computation, easing the burden of optimization.

The code used to describe the logic in the rules is specified in the functional paradigm,

familiar to many programmers (though all actions or side-effects take place in parallel).

Conventional compiler techniques can be leveraged to optimize these code blocks once a

rule schedule has been established. What the BTRS compiler adds to this picture is the

exploitation of the high-level information inferred from the structure of the rules and user-

supplied scheduling constraints.

MIT has a rich tradition of parallel programming language research. Of great relevance

are the [relatively recent] languages pH[1] (an explicitly parallel functional language) and

its close relative Id[12]. Id is an explicit data-flow language implying single assignment.

For the sake of generating efficient code at the computational nodes, M-Structures and I-

Structures were used to get around this, much in the same way that Haskell uses Monads

to allow for the use of the imperative programming paradigm. In the case of BTRS, we

can embed arbitrary computation within rules, and are not subject to this kind of restric-

tion. StreamIT[14] develops a similar network of computation nodes (Filters, as they are

referred to), though it is a language which has been specialized towards streams. In BTRS,

a Filter could be represented as either a single rule or a module, though unlike StreamIT,

BTRS does not require the specification static rates of consumption and production. These

approaches have achieved varying degrees of success in tackling the challenges of express-

ing parallelism. The semantics of these languages differ quite significantly, though insight

into their implementation is quite valuable.

Perhaps the closest semantic relative to BTRS is the language Unity [2], which is based

on Dijkstra's notion of non-deterministic guarded commands [6]. The table in Figure 7-1

enumerates the four defining features of BTRS and lists other explicitly parallel languages

which share those features.

Note that languages with explicit communication models are not necessarily non-deterministic.

CSP employs sequential processes exchanging messages, and Occam is an implementation

based directly on Hoare's CSP. Ada is not necessarily thought of as a parallel language, but

it does define tasking and rendezvous features as language primitives in parallel contexts.

Non-determinism Explicit Communication Functional Atomicity

Unity CSP MultiLisp Transactional Memory

PCN Occam QLisp Unity

CSP Ada Id

PARLOG Orca Sisal

Concurrent Smalltalk

Cantor

StreamlT

Figure 7-1: Features of Explicitly Parallel Languages

Orca defines shared objects which use broadcasting and Cantor was designed for use in

programming fine-grained hardware supported parallelism. Lastly, Concurrent Smalltalk

has a notion of distributed data structures with methods which are used for communication.

The Liquid Metal project has a surprising amount in common with BTRS. Semantically

it is very different since it is Java based and sequential. Like BTRS, though, the designers

are trying to create a system where modules can be arbitrarily synthesized to either hard-

ware or software [9]. The interesting feature is that particular restrictions on HW-synthesis

candidates give a natural translation of these modules to StreamlT. Liquid metal also suf-

fers from a more restrictive computational model for those modules which could potentially

end up on the FPGA.

72

Bibliography

[1] Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and Rishiyur S.

Nikhil. Semantics of pH: A parellel dialect of Haskell. In Haskell Workshop, 1995.

[2] K. Mani Chandy. Parallel program design: a foundation. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1988.

[3] Nirav Dave, Arvind, and Michael Pelauer. Scheduling as Rule Composition. In

Proceedings of Formal Methods and Models for Codesign (MEMOCODE), 2007.

[4] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Composition. In Pro-

ceedings of Formal Methods and Models for Codesign (MEMOCODE), Nice, France,

2007.

[5] Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer, and Muralidaran Vija-

yaraghavan. Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA. In

MEMOCODE, pages 97-100, 2007.

[6] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453-457, 1975.

[7] Kermin Fleming, Myron King, Man Cheuk Ng, Asif Khan, and Muralidaran Vija-

yaraghavan. High-throughput Pipelined Mergesort. In MEMOCODE, pages 155-158,

2008.

[8] ITU-T Video Coding Experts Group. Draft ITU-T Recommendation and Final Draft

International Standard of Joint Video Specification, May, 2003.

[9] Shan Shan Huang, Amir Hormati, David F. Bacon, and Rodric M. Rabbah. Liquid

Metal: Object-Oriented Programming Across the Hardware/Software Boundary. In

ECOOP, pages 76-103, 2008.

[10] Daan Leijen. Parsec, a fast combinator parser. 2001.

[11] Chun-Chieh Lin. Implementation of H.264 in Bluespec System Verilog, 2007.

[12] R. S. Nikhil. Id language reference manual (version 90.1). Technical Report 284-2,

1991. citeseer.ist.psu.edu/nikhil91id.html

[13] Iain E.G. Richardson. In H.264 and MPEG-4 Video Compression. John Willey &

Sons, 2003.

[14] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In CC, pages 179-196, 2002.

