Name _____

Objective: To understand and use place value with multi-digit decimal numbers

The decimal 8.888 is greater than one.						
Each digit in 8.888 is $\frac{1}{10}$ the value of the digit to its left.	Decimal	Fraction				
Each digit is 10 times the value of the digit to its right.	0.1	<u>1</u> 10				
$8 = 0.8 \times 10$ $0.8 = 0.08 \times 10$	0.01	<u>1</u> 100				
$0.08 = 0.008 \times 10$	0.001	<u>1</u> 1000				
Write 0.789 in expanded form using fractions for the decimal part.						
Break apart the number using the place value of each digit.						
0.789 = 0.7 + 0.08 + 0.009 = $(7 \times \frac{1}{10}) + (8 \times \frac{1}{100}) + (9 \times \frac{1}{1000})$ So, $0.789 = (7 \times \frac{1}{10}) + (8 \times \frac{1}{100}) + (9 \times \frac{1}{1000}).$		$= 7 \times \frac{1}{10}$				
Write $(7 \times 1) + (3 \times \frac{1}{10}) + (5 \times \frac{1}{1000})$ as a decimal in standard form.						
Simplify each term. Then add the products.						
$(7 \times 1) + (3 \times \frac{1}{10}) + (5 \times \frac{1}{1000})$ 7 + 0.3 + 0.005 = 7.305						
So, the decimal form of $(7 \times 1) + (3 \times \frac{1}{10}) + (5 \times \frac{1}{1000})$ is 7.305.						
Practice						
Write each decimal in fraction form.						
1. 0.5 2. 0.08 3. 0.2	4. 0.00)9				
Write each as a decimal.						
5. $6 \times \frac{1}{100}$ 6. $2 \times \frac{1}{1000}$ 7. $1 \times \frac{1}{10}$	8. 4 ×	<u>1</u> 100				

Discuss and Write

9. Compare and contrast multiplying by a power of ten and dividing by a power of ten. Explain what happens to the value of the digits.

Nar	ne	C		Decimals and Expanded Form Chapter I, Lesson 4A
Pra	actice			
Wri	te in expanded form.			
10.	1.801	11.	2.034	
12.	2.292	13.	7.573	
14.	3.567	15.	5.951	
Wri	te in decimal form.	_		
16.	$(2 \times 1) + (8 \times \frac{1}{10}) + (8 \times \frac{1}{1000})$			
17.	$(3 \times 1) + (1 \times \frac{1}{100}) + (4 \times \frac{1}{1000})$			
18.	$(4 \times 1) + (1 \times \frac{1}{10}) + (6 \times \frac{1}{100}) + (3 \times \frac{1}{100})$	<u>1</u>)		
19.	$(7 \times 1) + (8 \times \frac{1}{10}) + (5 \times \frac{1}{1000})$			
20.	$(5 \times 1) + (2 \times \frac{1}{10}) + (7 \times \frac{1}{100}) + (1 \times \frac{1}{100})$	<u>1</u> 000)		
21.	$(6 \times 1) + (3 \times \frac{1}{10}) + (1 \times \frac{1}{100}) + (5 \times \frac{1}{100})$	<u>1</u>)		

Problem Solving

Solve. Use a strategy that works best for you. Show your work.

- the digit in the tens place compare to the value of the digit in the hundreds place?
- 22. In the number 2334, how does the value of 23. In the number 2334, how does the value of the digit in the hundreds place compare to the value of the digit in the tens place?

Critical Thinking

24. Write a number in which the value of the digit in the hundredths place is exactly $\frac{1}{10}$ the value of the digit in the tenths place. Explain how you found your answer.