
AN1501/0202 1/13

AN1501
APPLICATION NOTE

SIMPLE MICROCONTROLLED BALLAST
by Clifford Ortmeyer and Albert Kunickis Jr

INTRODUCTION

The purpose of this paper is to give a basic understanding of a microcontroller and its potential

usage in an electronic ballast. A brief summary of how the microcontroller operates and the

most common types of functions it can perform will be shown as they relate to being used in an

electronic ballast. Next, ideas of how to implement the most common functions and their as-

sociated advantages/weaknesses will be examined. Finally, a brief summary of things that

should be examined closely will be presented to help assure a good start to a basic microcon-

trolled ballast design.

First, lets look at a basic diagram of an existing electronic ballast.

This is a very simple diagram of an existing electronic ballast. Today, the voltage controlled

oscillator (VCO) and the half bridge driver are usually combined in a single package. The Con-

trol portion, which may be comprised of the fault detection circuitry and an op-amp to close the

loop, may also be included in the same package (for example, the L6574 Ballast Controller

IC). This is a good solution for having a basic platform from which new designs can easily be

made. In some cases, it may be necessary to include a more flexible solution that allows for

parameters that are usually fixed in an analog solution – such as ignition profiles and restart

methods. It is in these and many other cases that a microcontroller can be used to define a

more user specific operating profile.

Lres

Cres

DC BLOCK

450 V

Ref.
CONTROL

LAMP

HALF BRIDGE
DRIVER

POWER FACTOR
CONTROLLER

LINE
INPUT

VCO

1

2/13

SIMPLE MICROCONTROLLED BALLAST

A simplified diagram of a microcontrolled ballast is shown below.

In this diagram, the microcontroller takes the place of the VCO and the control logic. The mi-

crocontroller has an output(s) that emulates the VCO output which in turn controls the turn-on

and turn-off the upper and lower portion of the half bridge. In this manner, the dead time, fre-

quency, and duty cycle of the half bridge output can all be independently controlled.

The control logic that has been replaced by the micro is essentially the brains of the control

logic. External analog components will still be needed to scale down and, if needed, filter the

fault signals. The micro can then control the response to each fault condition as determined by

the users programming code. An example of when this might be useful is when a lamp fails to

ignite, the micro could detect this and restart the preheat and ignition sequence but with a

longer preheat time.

Lres

Cres

DC-BLOCK

450 V

LAMP

HALF BRIDGE
DRIVER

POWER FACTOR
CONTROLLER

LINE
INPUT

MICRO

2

3/13

SIMPLE MICROCONTROLLED BALLAST

1 MICROCONTROLLER FUNDAMENTALS

To understand how the micro can be used in a ballast, the basic components that will gener-

ally be used need to first be understood. One of the few basic components that will be used

are “inputs” and “outputs”. By this we mean that when the user programs the micro, the pro-

gramming code tells it which pins are to be an input or an output. Not all pins can be config-

ured in this manner, but for now we will concentrate on the pins whose functions we can

modify.

First lets look at a pin that we have configured as an input pin. An input pin essentially looks

at the voltage on the pin and passes this information to the main processor (the “brain” of the

microcontroller). It can tell the processor when it sees a rising or falling voltage level, or it can

read the exact voltage level on that pin. Which type of voltage it is to look for is something that

the user configures when the user programs the microcontroller. Generally, a pin that is con-

figured as an “input” looks for either a high or low voltage level. An “analog input” is an input

that reads the exact voltage level on the pin as opposed to looking only for a high or low level.

A typical example using an “input” pin is shown below.

1.1 INPUT EXAMPLE

In this example we configure the pin to be an input pin and to look for a high voltage. For in-

stance, when the lower lamp filament is connected to the 1 ohm resistor, the 10k ohm and 1

ohm resistor form a voltage divider where the midpoint is brought to the input pin. When the fil-

ament is connected to the 1ohm resistor, the voltage divider applies approximately 0 volts to

the input pin. When the filament is disconnected from the 1 ohm resistor, for instance in the

case of lamp removal (as shown in the picture), the voltage on the input pin rises to 5v. The mi-

crocontroller sees this voltage level shift, and can then take the appropriate action. The action

taken is determined by what the user tells the micro to do when the microcontroller is pro-

grammed. In this case the user may tell the ballast to turn off since the lamp has been re-

moved.

5V

Input

10k ohm

1 ohm µC

4/13

SIMPLE MICROCONTROLLED BALLAST

1.2 ANALOG INPUT EXAMPLE

When a pin is configured as an “analog input” it acts as an A/D converter and looks at the

voltage on the pin and transforms that voltage of 0V to 5V into a corresponding number be-

tween 0 and 255. For example, if the voltage on the Analog Input pin is 2.5 V, then the A/D will

convert the 2.5V to a value of 128. The program that has been stored in the micro may then in

turn tell an output pin to change the frequency of the half bridge to that of a 50% dimming level.

How does the microcontroller change the frequency of the half bridge? This is done by con-

trolling a pin that has been configured as an “Output” pin.

Just as we configured a pin to be either an “input” or an “analog input”, we can also configure

a pin to be used as an “output”. An output pin can configured in two different states – either a

“push-pull” output or an “open drain” output.

In the push-pull configuration, a “high” can be applied to the pin. This puts a voltage on the pin

that is equivalent to the Vcc of the microcontroller with a limited current sourcing capability

(few mA). The second mode in the push-pull configuration is a “low”. In the low state, the pin

is shorted to ground and again has a limited capability to sink current up to 30mA (high current

pins only). An example of a “push-pull” configuration is given next.

Q1

L

Q2 C

+HV5V

Analog Input

µC

H
A

L
F

 B
R

ID
G

E

5/13

SIMPLE MICROCONTROLLED BALLAST

1.3 PUSH-PULL OUTPUT EXAMPLE

In this example, the pin is configured as a push-pull output. The output pin goes from a “low”

to a “high” state, which in turn applies 0V on the output pin and then 5V correspondingly. A

“low” on the pin is accomplished by turning on the lower FET in the µC, thus pulling the output

pin to ground. A “high” is accomplished by turning off the lower FET and turning on the upper

FET in the microcontroller.

In the example above, a single output from the micro goes into a single input on a half bridge

driver. In cases where the user wants to control the upper and lower FET independently, a half

bridge driver with two inputs can be used – one for turning on/off the upper FET and another

for turning on/off the lower FET. In that case, the user would configure two pins on the micro-

controller as outputs – one for each half bridge input. An example of when this would be useful

is when the user wants to dim the ballast by varying the PWM duty cycle of the half bridge

output instead of only varying the frequency as shown above.

The second configuration of the output pin is as an “open drain” output. This configuration is

generally characterized as an open drain FET. In this case a “high” corresponds to the pin

being in a “floating” state and a “low” again acting as a short to ground. An example of this

state being used would be when the user wants to short a point to ground, but at all other

times, the pin is to have no affect on the circuit.

In addition to the aforementioned parts of a micro, there are many other components that can

be used in a ballast. We will discuss the most common components briefly and leave it to the

reader to further investigate each components workings in more detail.

Q1

Q2

+HV

Output

µc

Q1

Q2

5v
HALF
BRIDGE

Input

5V

0V

6/13

SIMPLE MICROCONTROLLED BALLAST

2 AUTORELOAD TIMER

The first component (or peripheral) is called the “autoreload timer“. The autoreload timer is just

what its name implies. It is a timer that the user sets up in his/her program that automatically

restarts after it has timed out. The user will specify how long the timer is to count for and in ad-

dition, can also have actions taken at the beginning and at any point within the count. If for in-

stance the user had an operation that was to operate continuously with respect to time, there

would be little sense in having the program repeat lines of code continuously. This is because

the microprocessor core (brain) has to operate on each line of code as it runs through the pro-

gram. Thus in an operation such as the push-pull output example above, each time the output

is to switch from high to low and visa versa, the processor would have to process the instruc-

tions for each change. However, with the autoreload timer, we can tell the timer to make the

output go high at the beginning of each count and somewhere before the count runs out, we

tell the timer to make the output go low. An example diagram of this function is shown below.

Notice in the diagram above there is a starting point called the reload register. This is where

the count begins and the output goes high. The second point is the compare value. Once the

counter reaches this value output goes low. So, by adjusting the reload register value the fre-

quency of the PWM output is set. By adjusting the compare value, the duty cycle is then set.

In most cases if the autoreload timer is being used to drive the PWM for the half bridge, the

duty cycle will most likely be 50%. So in that case the compare value would be set half way be-

tween the reload register value and the value 255.

In summary, the autoreload timer can be set up once to operate by itself so that the processor

core can perform other functions. If the frequency needs to be changed, the program can

again load new values into the reload register and compare value, and start the counter again

COUNTER

COMPARE
VALUE

RELOAD
REGISTER

PWM OUTPUT

t

t

255

000

VR001852

7/13

SIMPLE MICROCONTROLLED BALLAST

running on its own. The autoreload timer also has other functions, but this is probably one of

the most common usages in ballast design. A brief look at a datasheet of one of ST’s micro-

controllers with the autoreload feature will go into more detail on the capabilities of this periph-

eral.

3 TIMER

In addition to the autoreload timer, there may also be more than one generic timer available.

The generic timer counts down to zero from a number that is input from the user program. The

duration of each count can also be modified by loading a different number into it’s corre-

sponding register. An example of when the timer could be used would be the following. In

order to preheat the lamp filaments of a microcontrolled ballast, the autoreload timer could be

set to output a PWM (as discussed above) at 100 kHz. Once the PWM was started, the timer

could be set up and turned on to count for 1 second. After the timer finished counting, the

counter would tell the processor it was finished and the user program could then tell the au-

toreload timer to operate at a different frequency or ramp down to an ignition frequency. This

process will be detailed once we look at the example program (later in the paper).

4 PROGRAMMING AND OPERATION

Now that we have some of the basic components of the microcontroller covered, lets discuss

a few more details and then show how this is all implemented in an example program.

First, lets discuss how the microcontroller operates. It is assumed that the user has had some

programming experience. When the user writes a program, that program is stored in the

memory of the microcontroller. The processor then starts from the beginning of the program

and works its way down performing operations that the program tells it to do (such as con-

figure pin one as an output, then make it a “high” etc.) from the beginning to the end of the pro-

gram. Programs must never end and should always run in some type of continuous loop.

One main feature that a program performs is to look for signals that require some type of ac-

tion to be taken. This was shown in the first example. When the input went from 0 to 5V, the

processor is to shut down the ballast. They way in which the processor knows that the voltage

has changed can be determined in two ways – either by polling or by an interrupt. When we

poll an input, we essentially write in code into our program to go and look at the input pin to see

if its voltage level has changed. If this voltage change is a critical parameter, code must be en-

tered quite often to go and look at this pin. One problem with this method of detection is that it

the processor must stop what it is doing, go look at the pin, and go back to what it was doing.

However, if a critical fault occurs, damage may be done before the code gets back to the point

where it looks for that fault. In that case it may be best to use the second method of detection

– an interrupt.

8/13

SIMPLE MICROCONTROLLED BALLAST

When time is of the essence to capture a fault signal, an interrupt may be used to tell the micro

that a problem has occurred. An interrupt is a signal that is sent to the processor to essentially

“interrupt” what it is currently doing and take care of the issue that caused the interrupt. Many

of the pins that are configured as inputs can also be configured to generate an interrupt. With

an interrupt enabled pin, the program code does not have to be written to constantly go back

and look at the voltage on the pin. The microcontroller is able to watch the pin for changes,

while at the same time running the program code that is performing other operations. Relating

again to our first example, if the lamp is removed and the ballast is not shut down immediately,

hard switching could occur and damage to the circuit could result. In this case the user could

program the input pin to trigger an interrupt when the fault occurs. The interrupt would then tell

the micro where to go in the code to take care of the problem.

So what method should be chosen to detect changes in a pins voltage level or state? This is

dependant on how critical the timing is. If it is not critical, the user may want to poll the pin

since this is always available (simply adding additional code). The main reason that one would

not always want to use an interrupt is two-fold. First, depending on the type of interrupt that is

being used, a more critical interrupt may happen on another pin. If this happens, the more crit-

ical interrupt may not be taken care of until the first interrupt is resolved. Second, not all pins

can be enabled with an interrupt that will operate in the same fashion. For instance, some pins

will only allow a rising edge interrupt, and if all of those interrupts are taken with only falling

edge interrupts available, then the user might have to put an inverting circuit into the project

(thus more cost). Other reasons and options will become more apparent as the user begins

programming.

9/13

SIMPLE MICROCONTROLLED BALLAST

5 STORING DATA

Another advantage of using a micro is the ability to store information. This information can

take many forms. One type of information that can be stored is data that may be used de-

pending on what inputs the micro receives. For instance, if the circuit detects that a 18W CFL

is inserted into the lamp socket, a different preheat time may be desired than would be used

for a 13W CFL. The microcontroller’s “analog input” will take the input from the lamp detection

circuit, match it with the correct preheat time, and load that time into the “timer”. If the 13W

CFL was inserted, the same process would occur, but the timer would pick the other stored

time variable and load it into the “timer” instead.

If the amount of data that needs to be retrieved is larger than just a few points of data, a “table”

may be used. A table is an area of memory where larger amounts of data can be stored. An

example of when a table might be used is for the definition of a dimming level. Lets say that

one of the microcontrollers inputs monitors a voltage level (0-5V for instance). A voltage of 0V

corresponds to a dim level of 1%, 2.5V equals 50%, and a voltage level of 5V corresponds to

a dim level of 100%. The PWM frequency that corresponds to each of the dim levels is 90kHz,

65kHz, and 55kHz correspondingly. Thus a representative table may look like this for a typical

dimming design:

The actual data table(s) would store the appropriate variables to make the autoreload timer

operate at the frequencies shown in the chart. Also, if a more detailed dimming range is

needed, the table would be enlarged to include A/D readings that had fractional voltages. For

example, 1.1V may correspond to a dim level of 21% - etc.

A/D reading Corresponding dim level PWM frequency

0V 1% 90kHz

1V 20% 80kHz

2V 40% 70kHz

3V 60% 60kHz

4V 80% 58kHz

5V 100% 55kHz

10/13

SIMPLE MICROCONTROLLED BALLAST

Figure 1. Simple microcontrolled ballast schematic

VI
Pe

r D
em

o
12

v
O

ut

PO
W

ER
SU

PP
LY

M
IC

R
O

C
O

N
TR

O
L

H
AL

F
BR

ID
G

E

FAULT DETECTION

FA
U

LT
 D

ET
EC

TI
O

N

FA
U

LT
D

ET
EC

TI
O

N

P
O

W
ER

SU
PP

LY

0

0

0

0

0

0

12
v

0

0

0
12

v

0

0

5v

0
0

5v

0

C
11

C
7

M
1

ST
P5

N
B6

0

U
2

ST
62

T5
2C

B3

914 10

1 2 3 4 5 6

16 15

8

13

7

1112

PA
4/

AI
N

N
M

I

PA
5/

AI
N

PB
0

Vp
p/

TE
ST

PB
2

PB
3

AR
TI

N
/P

B6

AR
TO

U
T/

PB
7

PC
2/

SI
N

/A
IN

PC
3/

AI
N

Vs
s

R
ST

VD
D

O
SC

IN

O
SC

ou
t

M
2

ST
P5

N
B6

0

U
4A

L6
38

4

56

1 2 43

8 7

LV
G

O
U

T

IN Vs G
N

D

D
T

BS

H
VG

C
1

R
6

R
7

L1

R
1

C
10

R
2

C
8

C
3

C
9

R
3

R
10

V1

12
0v

 A
C

C
4 1n

R
11

R
12

R
8

C
2

U
5 L4

93
15

0

2 3

1

IN OUT

G
N

D

R
13

R
14

X1 8M
H

z

R
9

C
5

D
2

D
4

5vD
1

D
3

R
15

C
6

11/13

SIMPLE MICROCONTROLLED BALLAST

6 EXAMPLE PROGRAM

We will now look at an example program written in assembly language just to give an idea of

what the code might look like. We will point out the major sections of the code and what they

are doing. It is also written in C language as well and is included after the assembly language.

The associated zip file is the code (written in “C” & assembly) used for the demonstration bal-

last. Programming comments are included to help users and other programmers determine

what is happening in the main parts of the code.

In addition, in the appendix section, you will find the flowchart of the program.

12/13

SIMPLE MICROCONTROLLED BALLAST

APPENDIX

Figure 2. Flowchart

Load

Initialize

Load

Configure

Load

Setup Auto

Start

Check Lamp

Over-Voltage

Over-Voltage?

Set Lamp

Start Lamp

Sequence

Set Lamp
Operating
Frequency

Open-Load?

Check Lamp

Open- Load

Yes

No

Yes

No

Over-Voltage?

Monitor Zero

Volt Reference

Set Dim Level

from zero to ten

volt reference

Open-Load?
Yes

No

Yes

No

Watchdog

Watchdog

Variables

Ports

Watchdog

Reload Timer

Preheat

for

for

Ignition

Check Lamp

Open- Load
for

Check Lamp

Over-Voltage
for

to Ten

13/13

SIMPLE MICROCONTROLLED BALLAST

“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2002 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

